The onset of triaxiality in neutron-rich rhenium isotopes

<u>M.W. Reed</u>¹, G.J. Lane¹, G.D. Dracoulis¹, A.P. Byrne¹,H. Watanabe^{1,2}, R.O. Hughes¹, F.G. Kondev³,M. P. Carpenter⁴, R.V.F. Janssens⁴, T. Lauritsen⁴, C.J. Lister^{4,5}, D. Seweryniak⁴, S. Zhu⁴, P. Chowdhury⁵

Department of Nuclear Physics, R.S.P.E., Australian National University, Canberra ACT 0200, Australia
² RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

³ Nuclear Engineering Division, Argonne National Laboratory, Argonne IL, U.S.A.

⁴ Physics Division, Argonne National Laboratory, Argonne IL, U.S.A.

⁵ Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.

Contact email: matthew.reed@anu.edu.au

Experiments that observe nuclear isomers provide insight into the composition of nuclei and enable tests of nuclear structure predictions. In general, isomers in heavy neutron-rich isotopes, at or beyond the line of stability, cannot be produced by conventional fusion-fission or fusion-evaporation reactions. Our approach has been to access these nuclei via multinucleon transfer or deep inelastic reactions. To maximise production cross-sections, neutron-rich targets and beams were chosen. Neutron-rich rhenium isotopes were populated using a pulsed or chopped ¹³⁶Xe beam produced by the ATLAS accelerator at Argonne National Laboratory, incident on gold-backed ¹⁸⁷Re and ¹⁹²Os targets. Gamma-ray emission from excited reaction products was measured using the Gammasphere detector array.

The region close to ¹⁹⁰W has been predicted to exhibit changes in nuclear deformation [1,2], transitioning from prolate, through triaxial, to oblate shapes as more neutrons are added. Recent experiments on heavy neutron-rich isotopes in the region (^{188,190}W and ^{191,193}Ir) [3,4] show signatures of a transition to triaxial shapes. Specifically, in ¹⁸⁸W and ¹⁹⁰W there is a decreasing trend of the reduced hindrances for the isomer decays in more neutron-rich nuclei. Whilst the significant signature splitting of the $h_{11/2}$ band in ¹⁹¹Ir and ¹⁹³Ir points to these nuclei having non-prolate shapes, theoretical calculations predict significant changes in triaxiality for different 3-quasiparticle configurations [4]. Measurements of quasiparticle configurations in ¹⁸⁹Re and ¹⁹¹Re will further the understanding of this transition into a triaxial regime in heavy neutron-rich nuclei.

The present focus is on the neutron-rich isotopes ¹⁸⁷Re, ¹⁸⁹Re and ¹⁹¹Re. Previous experiments in this region identifed delayed γ -rays from isomeric states in ¹⁸⁷Re [5] and ¹⁹¹Re [6], although a full level scheme is only known ¹⁸⁷Re. In addition to γ -ray spectroscopic studies, ¹⁸⁷Re, ¹⁸⁹Re and ¹⁹¹Re have also been the subject of particle transfer experiments (polarised t, α) on stable osmium targets, where low-spin excited states were examined [7]. In the current experiment, the $9/2^{-}[514]$ proton state and its associated rotational band were observed in the decay of 3-quasiparticle isomers in all three isotopes. The trends in the isomeric transition reduced hindrances and the aligned angular momenta of the $9/2^{-}[514]$ bands are related to shape changes across the isotopic chain, and can be used to test the inference of increasing triaxiality in the more neutron-rich isotopes.

This work is supported in part by the US Department of Energy, Office of Nuclear Physics, under contract No. AC02-06CH11357.

- [1] P. D. Stevenson et al., Phys. Rev. C 72, 047303 (2005).
- [2] L.M. Robledo, R. Rodríguez, and P. Sarriguren, J. Phys. G 36, 115104 (2009).
- [3] G. J. Lane et al., Phys. Rev. C 82, 051304(R) (2010).
- [4] G. D. Dracoulis et al., Phys. Lett. B 709, 59 (2012).
- [5] T. Shizuma et al., Eur. Phys. J. A 17, 159 (2003).
- [6] S. J. Steer et al., Phys. Rev. C 84, 044313 (2011).
- [7] C. R. Hirning et al., Nucl. Phys. A 287, 24 (1977).