Proton-proton weak capture in chiral effective field theory

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

INPC 2013 Florence (Italy) June 2-7, 2013

Outline

Collaborators

- L.E. Marcucci INFN & Pisa University, Pisa (Italy)
- L. Girlanda INFN & Salento University, Lecce (Italy)
- R. Schiavilla & M. Piarulli- Jefferson Lab. & ODU, Norfolk (VA, USA)
- A. Kievsky INFN & Pisa University, Pisa (Italy)

Historical perspective

- $p + p \rightarrow {}^{2}H + e^{+} + \nu_{e}$ fusion rate at $E \approx 10$ keV
 - first estimate: Bethe & Critchfield, 1938
 - "Standard Nuclear Physics Approach" (SNPA): \rightarrow Schiavilla *et al.*, 1998
 - phenomenological potentials (AV18, CD-Bonn) & currents
 - $\rightarrow \pi-$, $\rho-$, ... exchanges
- No consistency between potentials and currents
- No control over the accuracy of the calculations

EFT approach

- Effective field theory: N π interactions "dictated" by chiral symmetry [Weinberg (1990), Bernard, Kaiser, & Meissner, (1995); Ordonéz, Ray, & U. van Kolck (1996), ...]
- Potentials and currents can be derived from the same Lagrangian
- The contributions can be organized in powers of $(Q/\Lambda\chi)^{\nu}$ (Chiral Perturbation Theory)

Theoretical studies of *pp* fusion (2)

EFT approach (contd)

NN interaction:

- N3LO [Entem & Machleidt, (2003)]
- Jülich N3LO [Epelbaum *et al.*, (2003)]
- 3N interaction:
 - N2LO [Epelbaum et al., (2002)]

• Currents
$$\mathcal{J}_{\mu}^{(h)} = \mathcal{V}_{\mu}^{(h)} - \mathcal{A}_{\mu}^{(h)}$$

• $\mathcal{V}_{\mu}^{(h)} \equiv \{\rho^{V}, \mathbf{J}^{V}\} \text{ (from } \mathcal{J}_{\mu}^{(EM)})$
• $\mathcal{A}_{\mu}^{(h)} \equiv \{\rho^{A}, \mathbf{J}^{A}\}$

 N3LO: Park *et al.*, PRC 67, 055206 (2003)]

 Low energy constants (LECS) + cutoff parameter Λ

	2N force	3N force	4N force		
LO	ХH	—	—		
NLO	ХЫАМЦ	—	_		
N²LO		HH HX X	—		
N²LO	X444- 4944-	四 田 政-	1141 平平		

charge & current operators in the "pionfull" EFT

J^{μ}	LO (Q ⁻³)	NLO (Q^{-2})	$N^{2}LO(Q^{-1})$	$N^3LO(Q^0)$	$N^4LO(Q^1)$
j ^A	1B	_	1B-RC	2B	1B-RC, 2B-1L, CT, <mark>3B</mark>
ρ^A	_	1B	2B	1B-RC	1B-RC, 2B-1L
j ^V	-	1B	2B	1B-RC	1B-RC, 2B-1L, CT
ρ^V	1B	_	_	2B	1B-RC, 2B-1L, <mark>3B</mark>

Current interest

- "Hybrid" calculations: AV18 + EFT currents [Park et al., (2003)]
- Pionless EFT at N²LO: [Wei et al., (2012)]
- ullet ightarrow new estimate using both EFT potential and currents

M. Viviani (INFN-Pisa)

Proton-proton weak capture

June 4, 2013 5 / 14

Low energy constants (LECs)

Most of the LECs in ${\mathcal L}$ are fixed by comparing with the abundant NN database

The N3LO currents by [Park et al., (2003)] includes three additional unknown LECs

Two LEC in the vector part: using CVC \Rightarrow fitted to the A = 3 magnetic moments

One LEC in the axial part - related to the 3N potential

Gardestig and Phillips, PRL **96**, 232301 (2006) Gazit *et al.*, PRL **103**, 102502 (2009)

fit c_D (d_R) to GT_{exp} and c_E to B(A = 3) (using the N3LO/N2LO model) $\Rightarrow \{c_D; c_E\}_{MAX}$ and $\{c_D; c_E\}_{MIN}$: related to the uncertainty of GT_{exp}

★ | ★

Test of the theory: muon capture

•
$$\Gamma(\mu - d) = 300 - 500 \text{ s}^{-1} \rightarrow [\text{MuSun Experiment (PSI)}]$$

• $\Gamma(\mu - {}^{3}\text{He}) = 1496(4) \text{ s}^{-1} [\text{Ackerbauer et al. (1998)}]$

$$\Gamma(\mu - {}^{3}{
m He}) = 1496(4) \; {
m s}^{-1}$$
 [Ackerbauer et al., (1998)

Stringent test of the nuclear wave functions/transition operators Extraction of the pseudoscalar form factor of the nucleon factor

$$j^{\mu} = \overline{u_{p}} \left[F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2}) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}} - G_{A}(q^{2})\gamma^{\mu}\gamma^{5} - G_{PS}(q^{2})\frac{q^{\mu}\gamma^{5}}{2M_{N}} \right] u_{n}$$

Results: $\Gamma^D(\mu^- + d)$ and $\Gamma_0(\mu^- + {}^{3}\mathrm{He})$

	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	Γ^D	Γ ₀
$IA - \Lambda = 500 \text{ MeV}$	238.8	21.1	44.0	72.4	381.7	1362
$IA - \Lambda = 600 \; MeV$	238.7	20.9	43.8	72.0	380.8	1360
$FULL - \Lambda = 500 \text{ MeV}$	254.4(9)	20.5	46.8	72.1	399.2(9)	1488(9)
$FULL-\Lambda=600~MeV$	255(1)	20.3	46.6	71.6	399(1)	1499(9)

Γ^D =**399(3)** s⁻¹ & Γ₀ =**1494(21)** s⁻¹

vs.
$$\Gamma^{D}(exp) \cdots$$
 & $\Gamma_{0}(exp)=1496(4) s^{-1}$

Comparison between Γ_0 and $\Gamma_0(exp) \rightarrow$

$$G_{PS} = 8.2 \pm 0.7$$
 vs. $G_{PS}^{\chi PT} = 7.99 \pm 0.20$

Marcucci et al., PRL 108, 052502 (2012)

M. Viviani (INFN-Pisa)

$p+p ightarrow d+e^++ u_e$ astrophysical factor

$$\sigma(E) = \frac{1}{(2\pi)^3} \frac{G_V^2}{v} m_e^5 f(E) \sum_M |\langle d, M | \mathbf{A}_- | pp \rangle|^2$$

$$S(E) = S(0) + S'(0)E + \frac{1}{2}S''(0)E^2 + \dots$$

Goal: < 1% accuracy

- Dominant contribution from the ¹S₀ wave
- P-wave contribution: $\sim 1\%$
- Two-body contribution: $\sim 1\%$

pp wave function

- EM interaction: $V_{C1} + V_{C2} + V_{DF} + V_{VP} + \cdots$
- V_{VP} ∼ exp(−2m_er): sizeable effect at low energies
- Necessity to solve the Schroedinger equation up to 1,000 fm

1% effect

See also the review paper: [E. G. Adelberger *et al.*, Rev. Mod. Phys. **83**, 195 (2011) [arXiv:1004.2318]]

M. Viviani (INFN-Pisa)

Proton-proton weak capture

June 4, 2013 9 / 14

Results with the EFT

N3LO potential – d_R , g_{4S} , g_{4V} fixed using the N3LO/N2LO wave functions

$S(0) [\times 10^{-25} \text{ MeV b}]$

		$^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	³ P ₂
IA	$\Lambda = 500 \text{ MeV}$	3.961(2)			
FULL	$\Lambda = 500 \text{ MeV}$	4.008(5)	4.011(5)	4.020(5)	4.030(5)
	$\Lambda{=}600 \text{ MeV}$	4.008(5)	4.010(5)	4.019(5)	4.029(5)

Effect of the EM interactions $V_{C2} + V_{DF} + V_{VP} + \cdots$

To be included only in the ${}^{1}S_{0}$ channels[Machleidt & Emtem, (2012)]

	$S(0) imes 10^{23}$ [MeV fm ²]	S'(0)/S(0) [MeV ⁻¹]	S''(0)/S(0) [MeV ⁻²]
N3LO+ V_{C1}	4.03	11.53	226
M3LO+V _{EM}	4.00	11.42	239

Summary: $S(0) = (4.030 \pm 0.006) \times 10^{-25}$ MeV b Theoretical uncertainty reflects our knowledge of the LECs (g_A , g_{4S} , d_R , ...)

M. Viviani (INFN-Pisa)

Proton-proton weak capture

S(E) calculated in the range 0 – 100 keV

N3LO potential + N3LO current

Results with the EFT

Fit of the astrophysical factor $[S^{(n)}] = MeV^{-n}$

$$S(E) = S(0) \Big[1 + \sum_{n=1}^{N} \frac{1}{n!} S^{(n)} E^n \Big]$$

Res	ult						
	п	$S^{(1)}$	S ⁽²⁾	S ⁽³⁾	$S^{(4)}$	χ^2	
	N = 2	12.59(1)	199.3(1)			8.8×10^{-4}	
	<i>N</i> = 3	11.94(1)	248.8(2)	-1183(8)		1.9×10^{-4}	
	N = 4	11.34(1)	327.1(5)	-5592(12)	99×10^3	2.0×10^{-5}	
	Only S-wave - $N = 2$	12.23(1)	178.4(3)			1.2×10^{-3}	
	Only S-wave - $N = 3$	11.42(1)	239.6(5)	-1464(5)		1.9×10^{-4}	

Pionless EFT at N²LO [Chen *et al.*, 2012] $S(0) = (3.99 \pm 0.14)10^{-25} \text{ MeV } \text{b}, S^{(1)}(0) = (11.3 \pm 0.1) \text{ MeV}^{-1}, S^{(2)}(0) = (170 \pm 2) \text{ MeV}^{-2}$

S(E) calculated in the range 0 – 100 keV

Fit of the astrophyical factor

Conclusions and outlook

- Test of the nuclear models using the muon capture
- $\Gamma_0(\mu^- + {}^{3}\text{He})$: nice agreement theory vs. experiment
- $\Gamma^{D}(\mu^{-} + d)$:
 - more accurate experimental results \rightarrow MuSun
- New refined calculation of the pp fusion up to 100 keV
- In the future:
 - $\chi \text{EFT} \rightarrow \mu^{-} + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu}$ $\mu^{-} + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu}$ • $\chi \text{EFT} \rightarrow \text{reactions of astrophysical interest}$ $p + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + e^{+} + \nu_{e}$ $p + d \rightarrow {}^{3}\text{He} + \gamma$ $d + d \rightarrow {}^{4}\text{He} + \gamma$

Superkamiokande excess of high energy neutrinos

