Evolution of Single-Particle Energies for $\mathbf{N}=\mathbf{9}$ Nuclei at Large N / Z

A. H. Wuosmaa ${ }^{1}$, S. Bedoor ${ }^{1}$, M. Alcorta ${ }^{2}$, B. B. Back 2, B. A. Brown ${ }^{3}$, C. M. Deibel ${ }^{4}$, C. R. Hoffman 2, J. C. Lighthall ${ }^{1,2}$, S. T. Marley ${ }^{1,2}$, R. C. Pardo ${ }^{2}$, K. E. Rehm ${ }^{2}$, A. M. Rogers ${ }^{2}$, J. P. Schiffer ${ }^{2}$, D. V. Shetty ${ }^{1}$
${ }^{1}$ Department of Physics, Western Michigan University, Kalamazoo MI 49008-5252, USA
${ }^{2}$ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
${ }^{3}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
${ }^{4}$ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

> Contact email: alan.wuosmaa@wmich.edu

We have studied the ${ }^{13} \mathrm{~B}(d, p)^{14} \mathrm{~B}$ reaction in inverse kinematics to better understand the evolution of the properties of single-neutron states in the $s d$ shell for neutron-rich $\mathrm{N}=9$ isotones. We have also obtained data for the ${ }^{15} \mathrm{C}\left(d,{ }^{3} \mathrm{He}\right){ }^{14} \mathrm{~B}$ reaction to provide additional information on ${ }^{14} \mathrm{~B}$ complementary to that obtained with the (d, p) reaction. The nucleus ${ }^{14} \mathrm{~B}$ is the most neutron-rich $\mathrm{N}=9$ isotone that is still particle bound in its ground state, and provides an excellent opportunity to explore the effects of the tensor contribution to the evolution of $s d$-shell effective single-particle energies, the properties of loosely-bound or un-bound states, and to test the predictions of shell-model interactions at the boundary of nuclear stability. The inversion of the relative positions of the $1 s_{1 / 2}$ and $0 d_{5 / 2}$ orbitals when moving from ${ }^{17} \mathrm{O}$ to ${ }^{15} \mathrm{C}$ is behavior is driven largely by the changing tensor interaction between the p-shell protons and the $s d$ shell neutron, however other effects are also likely to be important, such as halo behavior that arises due to the small neutron binding energy. The very weakly bound first-excited state, should its wave function be dominated by a $1 s_{1 / 2}$ neutron configuration, may be the best-known example of a single-neutron-halo state. As the states of interest are either loosely bound, or unbound with respect to neutron decay, they also pose a challenge to the usual reaction models used to analyze transfer-reaction data.

We have studied ${ }^{14} \mathrm{~B}$ using two reactions: neutron adding with ${ }^{13} \mathrm{~B}(d, p){ }^{14} \mathrm{~B}$, and proton removal with ${ }^{15} \mathrm{C}\left(d,{ }^{3} \mathrm{He}\right){ }^{14} \mathrm{~B}$. The experiments were conducted in inverse kinematics using radioactive beams produced using the in-flight method via the ${ }^{14} \mathrm{C}\left({ }^{9} \mathrm{Be},{ }^{10} \mathrm{~B}\right){ }^{13} \mathrm{~B}$ and ${ }^{14} \mathrm{C}(d, p){ }^{15} \mathrm{C}$ reactions at the ATLAS facility at Argonne National Laboratory. The proton and ${ }^{3} \mathrm{He}$ reaction products were detected with HELIOS [1] (the HELIcal Orbit Spectrometer), in coincidence with the recoiling residual nuclei. HELIOS exploits a uniform magnetic field to transport light-charged particles from the target to an array of position-sensitive silicon detectors. This method alleviates many difficulties associated with the study of such transfer reactions in inverse kinematics. Similar experiments have been performed to analyze the properties of $s d$-neutron states in ${ }^{13} \mathrm{~B}[2],{ }^{16} \mathrm{C}[3]$, and ${ }^{20} \mathrm{O}[4]$. The neutron-adding reaction yields relative spectroscopic factors that allow us to construct wave functions for the low-lying excitations in ${ }^{14} \mathrm{~B}$ which, for 2 and 1^{-}levels, are configurationmixed states that include both $\pi\left(0 p_{3 / 2}\right)^{-1} v\left(1 s_{1 / 2}\right)$ and $\pi\left(0 p_{3 / 2}\right)^{-1} v\left(0 d_{5 / 2}\right)$ contributions. The protonremoval data permit a better isolation of the $\pi\left(0 p_{3 / 2}\right)^{-1} v\left(1 s_{1 / 2}\right)$ components and together, the results provide a determination of the $1 s_{1 / 2}$ and $0 d_{5 / 2}$ effective single-particle energies in this nucleus that can be compared to other similar nuclei in this region. Experimental results and a comparison of the data to shell-model and ab-initio No-Core Shell-Model calculations will be presented.

This work is supported by the U. S. Department of Energy under contract numbers DE-FG02-04ER41320 and DE-AC02-06CH1 1357, and the U. S. National Science Foundation under grant numbers PHY-02-16783 and PHY-07-58099.
[1] A. H. Wuosmaa et al., Nucl. Instrum. in Phys. Res. A 580, 1290 (2007), and J. C. Lighthall et al., Nucl. Instrum. in Phys. Res. A 622, 97 (2010).
[2] B. B. Back et al., Phys. Rev. Lett. 104, 132501 (2010).
[3] A. H. Wuosmaa et al., Phys. Rev. Lett. 105, 132501 (2010).
[4] C. R. Hoffman et al., Phys. Rev. C 85, 054318 (2012).

