Calculations of K nuclear quasi-bound states using chiral KN amplitudes

<u>J. Mareš</u>¹, N. Barnea², A. Cieplý¹, E. Friedman², A. Gal², D. Gazda¹

¹ Nuclear Physics Institute, 250 68 Řež, Czech Republic
² Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel

Contact email: mares@ujf.cas.cz

We review our latest calculations of K^- quasi-bound states in few- and many-body nuclear systems using subthreshold energy dependent chiral $\bar{K}N$ amplitudes [1,2].

We performed calculations of three-body $\bar{K}NN$ and four-body $\bar{K}NNN$ and $\bar{K}\bar{K}NN$ nuclear clusters in the hyperspherical basis, with interactions practically identical to those used in ref. [3]. Results of previous K^-pp calculations were reproduced and and upper bound was placed on the binding energy of a K^-d quasibound state. In view of the low K^-pp binding energy $B(K^-pp) \approx 16$ MeV and relatively large $\bar{K}N \to \pi Y$ mesonic width $\Gamma(K^-pp) \approx 40$ MeV, it might be difficult to identify the K^-pp quasi-bound state unambiguously in ongoing experiments. A self-consistent handling of the energy dependence of the subthreshold $\bar{K}N$ amplitude was found to restrain binding of the four-body \bar{K} nuclear clusters. We found relatively modest binding, about 30 MeV in both, with mesonic widths ranging from 30 MeV for $\bar{K}NNN$ to about 80 MeV for the lowest $\bar{K}\bar{K}NN$ quasi-bound state. However, the binding energies of K^- nuclear clusters could be enhanced by dispersive contributions. Our recent fits to kaonic atoms [4,5] suggest that $\Delta B_{\text{disp}} \sim \Delta \Gamma_{\text{nonmesonic}}$, and the binding energies could reach values $B(K^-pp) \sim 25$ MeV and $B(\bar{K}NNN, \bar{K}\bar{K}NN) \sim 50$ MeV.

For many-body K^- nuclear systems with densities close to nuclear matter density, the energy dependence of the chiral in-medium $\bar{K}N$ scattering amplitudes controls the self-consistent evaluation of the corresponding K^- optical potentials. We considered two in-medium versions of the scattering amplitudes: a version which takes into account only Pauli blocking in the intermediate states, and a version which adds self-consistently hadron self-energies [2,4]. The $\overline{K}N$ amplitudes were constructed using the in-medium coupled-channel model [6] that reproduces all available low energy $\bar{K}N$ observables, including the latest 1s level shift and width in the K^- hydrogen atom from the SIDDHARTA experiment [7]. While the two in-medium versions of the $\bar{K}N$ scattering amplitudes yield considerably different potential depths $\text{Re}V_K$ at threshold, they give similar depths in the self-consistent calculations with the subthreshold extrapolation, -Re $V_K \sim 80 - 120$ MeV. The mesonic widths of low-lying K^- states are substantially reduced in the self-consistent calculations, thus reflecting the proximity of the $\pi\Sigma$ threshold. On the contrary, the widths of higher excited K^- states are quite large even if only the pion conversion modes on a single nucleon are considered. After including 2 body $K^-NN \rightarrow YN$ nonmesonic modes, the total decay widths Γ_K are comparable or even larger than the corresponding binding energies B_K for all K^- nuclear quasi-bound states, exceeding considerably the level spacing. Our conclusions should discourage attempts to search for isolated peaks corresponding to K^- nuclear quasi-bound states in many-body nuclear systems.

- [1] N. Barnea, A. Gal, E. Z. Liverts, Phys. Lett. B 712 (2012) 132.
- [2] D. Gazda, J. Mareš, Nucl. Phys. A 881 (2012) 159; Nucl. Phys. A in press.
- [3] A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804 (2008) 197; Phys. Rev. C 79 (2009) 014003.
- [4] A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš, Phys. Lett. B 702 (2011) 402; Phys. Rev. C 84 (2011) 045206.
- [5] E. Friedman, A. Gal, Nucl. Phys. A 881 (2012) 150; Nucl. Phys. A 899 (2013) 60.
- [6] A. Cieplý, J. Smejkal, Nucl. Phys. A 881 (2012) 115.
- [7] M. Bazzi et al. (SIDDHARTA Collaboration), Phys. Lett. B 704 (2011) 113; Nucl. Phys. A 881 (2012) 88.