Neutron-rich hypernuclei beyond $^6_\Lambda { m H}$

A. Gal¹, D.J. Millener²

Contact email: avragal@savion.huji.ac.il

Recent experimental evidence presented by the FINUDA Collaboration for a particle-stable $^6_\Lambda H$ [1] has stirred renewed interest in charting the limits of particle-stable neutron-rich Λ hypernuclei, particularly when the nuclear core is unbound. Ongoing few-body calculations of $^6_\Lambda H$ have been reported in HYP2012 [2], and a (π^-, K^+) experiment on 6 Li and 9 Be targets is underway at J-PARC [3].

We have studied theoretically within a shell-model approach several neutron-rich Λ hypernuclei in the nuclear p shell that may be formed in (π^-,K^+) or in (K^-,π^+) reactions on stable nuclear targets. The relevant hypernuclear shell-model matrix elements are taken from a theoretically-inspired successful fit [4] of γ -ray transitions in p-shell Λ hypernuclei [5] which includes also $\Lambda N \leftrightarrow \Sigma N$ coupling. Predictions will be given for the binding energies of ${}^9_\Lambda {\rm He}, {}^{10}_\Lambda {\rm Li}, {}^{12}_\Lambda {\rm Be}, {}^{14}_\Lambda {\rm B}$. None of the large effects conjectured by Akaishi and Yamazaki [6] to arise from $\Lambda N \leftrightarrow \Sigma N$ coupling is borne out by these detailed realistic shell-model calculations. This is evident from the relatively modest $\Lambda N \leftrightarrow \Sigma N$ component of the total beyond-mean-field contribution to the Λ hypernuclear g.s. binding-energy, marked $\Delta B_\Lambda^{\rm g.s.}$ in Table 1. A detailed exposition will be given during the presentation.

Table 1: Beyo	and mean field $\Delta B_{\Lambda}^{ m g.s}$	shell-model contri	butions (in keV)	to g.s. o	of neutron-rich hypernuclei
---------------	--	--------------------	------------------	-----------	-----------------------------

target	n-rich	less $2n$	$\Lambda - \Sigma$	$\Lambda - \Sigma$	induced	$\Delta B_{\Lambda}^{\mathrm{g.s.}}$
AZ	$_{\Lambda}^{A}(Z-2)$	$\Lambda^{(A-2)}(Z-2)$	last $2n$	total	$l_N \cdot s_N$	total
⁶ Li	$^{6}_{\Lambda} \text{H}(0^{+})$	${}^{4}_{\Lambda}{\rm H}(0^{+})$	101	101	176	278
9 Be	$^{9}_{\Lambda} \text{He}(\frac{1}{2}^+)$	$^{7}_{\Lambda}\mathrm{He}(\frac{1}{2}^{+})$	152	253	619	879
$^{10}\mathrm{B}$	$^{10}_{\Lambda} { m Li}(ar{1}^-)$	$^{8}_{\Lambda} \text{Li}(\bar{1}^{-})$	115	275	595	1022
$^{12}\mathrm{C}$	$^{12}_{\Lambda}{ m Be}(0^{-})$	$^{10}_{\Lambda}{ m Be}(1^{-})$	123	158	554	748
^{-14}N	$^{14}_{\Lambda}{\rm B}(1^{-})$	$^{12}_{\Lambda}{\rm B}(1^{-})$	152	255	458	785

^[1] M. Agnello et al. (FINUDA + A. Gal), Phys. Rev. Lett. 108 (2012) 042501, Nucl. Phys. A 881 (2012) 269.

¹ Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

² Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

^[2] B.F. Gibson, I.R. Afnan, to appear in the proceedings of HYP2012, Nucl. Phys. A (2013); E. Hiyama, to appear in the proceedings of HYP2012, Nucl. Phys. A (2013).

^[3] See http://j-parc.jp/researcher/Hadron/en/Proposal_e.html for J-PARC experiment E10.

^[4] D.J. Millener, Nucl. Phys. A 881 (2012) 298, and references therein.

^[5] H. Tamura et al., Nucl. Phys. A 835 (2010) 3, and references therein.

^[6] Y. Akaishi, T. Yamazaki, in *Physics and Detectors for DA* Φ *NE*, Eds. S. Bianco et al., Frascati Physics Series Vol. XVI (INFN, Frascati, 1999) pp. 59-74.