Scissors Strength in the Quasi-Continuum of Actinides

<u>M. Guttormsen</u>¹, L.A. Bernstein², A. Bürger¹, F. Gunsing³, A. Görgen¹, A.C. Larsen¹, T. Renstrøm¹, S. Siem¹, M. Wiedeking⁴, T. Wiborg Hagen¹, and J.N. Wilson⁵

¹ Department of Physics, University of Oslo, N-0316 Oslo, Norway
² Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550-9234, USA
³ CEA Saclay, DSM/Irfu, F-91191 Gif-sur-Yvette Cedex, France
⁴ iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
⁵ Institut de Physique Nucleaire d'Orsay, Bat. 100, 15 rue G. Glemenceau, 91406 Orsay Cedex, France

Contact email: magne.guttormsenl@fys.uio.no

The orbital *M1-scissors* resonance has been measured for the first time in the quasi-continuum of actinides [1]. Particle- γ coincidences are recorded with deuteron and ³He induced reactions on ²³²Th at the Oslo cyclotron laboratory. The outgoing charge particles were measured in backward angles with the SiRi particle-telescope system. The γ -ray spectra were recorded for various excitation energies with the CACTUS system consisting of 28 5" x 5" NaI detectors.

The residual nuclei 231,232,233 Th and 232,233 Pa show an unexpectedly strong integrated γ -ray strength of $B(M1) = 11-15 \ \mu^2$ in the 1.0 - 3.5 MeV γ -ray energy region. The results are comparable with maximum sum-rule estimates of about $B(M1) = 15-17 \ \mu^2$ [2]. Figure 1 shows the scissors resonance for different excitation regions in 233 Th.

The presence of the strong scissors resonance has significant impact on (n, γ) cross sections. These cross sections have impact on fuel-cycle simulations of fast nuclear reactors and nucleosynthesis in explosive stellar environments.

Figure 1: The radiative strength functions (RSF) for ²³³Th measured at different initial excitation energies. The data of the two upper panels are based on statistically independent data sets.

- [1] M. Guttormsen et al., Phys. Rev. Lett, 109, 024606 (2002).
- [2] K. Heyde et al., Rev. Mod. Phys. 82, 2365 (2010).