Search for multi-quasiparticle isomers in ²⁵⁴Rf*

J. Chen¹, <u>F.G. Kondev</u>¹, D. Seweryniak¹, I. Ahmad¹, M. Albers¹, M. Alcorta¹, P. Bertone¹, M.P. Carpenter¹, C.J. Chiara¹, H.M. David², D.T. Doherty², J.P. Greene¹, P. Greenlees³, D.J. Hartley⁴, K. Hauschild⁵, C.R. Hoffman¹, S.S. Hota⁶, R.V.F. Janssens¹, T.L. Khoo¹, J. Konki³, T. Lauritsen¹, C. Nair¹, Y. Qiu⁶, A.M. Rogers¹, G. Savard¹, S. Stolze³, S. Zhu¹

¹ Argonne National Laboratory, Argonne, Illinois 60439, USA

² University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

³ Department of Physics, University of Jyväskylä, FI-40014 Finland

⁴ Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA

⁵ CSNSM, IN2P3-CNRS, F-91405 Orsay Campus, France

⁶ Department of Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA

Contact email: kondev@anl.gov

Deformed, axially-symmetric nuclei in the trans-fermium region are known to exhibit high-K isomerism [1], owing to the presence of high-K orbitals near both the proton and neutron Fermi surfaces. The properties of such isomers provide important information on the single-particle structures in the region, as well as on the role played by the pairing and residual nucleon-nucleon interactions.

We have carried out a search for isomeric states in 254 Rf using the 206 Pb(50 Ti,2n) reaction and the Argonne Fragment Mass Analyzer (FMA). A 242.5-MeV beam of 50 Ti with an intensity of ~200 pnA was provided by the ATLAS accelerator. The recoiling reaction products were identified at the FMA focal plane by their mass to charge-state ratio and implanted into a DSSD. Both implant and decay events were measured and correlated temporally, and spatially. For the first time, a digital data acquisition system was deployed, which allowed comprehensive pulse-shape analysis of the recoil-decay pile-up events to be performed and identification of implant and decay events separated by decay times as short as hundreds of nanoseconds. Furthermore, this novel approach resulted in a much lower ~50-keV threshold for conversion-electron events, associated with decays of isomeric states within the first 6 μ s following implantation, independent from the energy threshold set in the digitizer firmware.

Fission events associated with the known 254 Rf ground-state decay were unambiguously identified. In addition, fast (~2 μ s) electron events correlated with an implanted A=254 recoil and followed by a 254 Rf ground-state fission events were observed and associated with the decay of a new isomeric state. Evidence was also found for the existence of a second, longer-lived isomer. The data from this experiment will be presented and the results will be discussed in comparison with predictions from multi-quasiparticle blocking calculations that include empirical estimates for the residual configuration-dependent, nucleon-nucleon interactions.

*This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

[1] G. Audi, F.G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, Chinese Physics C36, 1157 (2012).