Investigating the strength of the N = 34 subshell closure in ⁵⁴Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee², K. Matsui⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama⁸, H. Suzuki², R. Taniuchi⁵, Y. Utsuno⁹, J. J. Valiente-Dobón¹⁰, K. Yoneda²

¹ Center for Nuclear Study, University of Tokyo, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
² RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

³ Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

⁴ Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan

⁵ Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

⁶ Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

⁷ Department of Physics, Rikkyo University, Toshima, Tokyo 172-8501, Japan

⁸ Department of Physics, Tohoku University, Aramaki, Aoba, Sendai 980-8754, Japan

⁹ Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

¹⁰ INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Italy

Contact email: steppenbeck@cns.s.u-tokyo.ac.jp

Over the past few decades nuclear structure studies have focused intensively on the evolution of the traditional magic numbers away from the valley of β stability. In the neutron-rich fp shell, for example, the discovery of a new subshell closure at N = 32 became evident from experimental measurements of $E(2_1^+)$ and B(E2) reduced transition probabilities along the Ca [1], Ti [2, 3] and Cr [4, 5] isotopic chains, a characteristic that is reproduced rather well by the spherical shell model with effective interactions such as GXPF1 [6] and KB3G [7]. Another important manifestation of the GXPF1 interaction is the prediction of a significant subshell closure at N = 34 in Ca and Ti isotopes, however, this was found to be in contrast with experimental results for ⁵⁶Ti [3, 8], leading to the development of the modified interaction GXPF1A [9] and the most recent version, GXPF1B. Importantly, the predicted strength of the N = 34 subshell closure in ⁵⁴Ca remains relatively large in the GXPF1-based interactions, while some other models indicate a much weaker shell closure. Clearly, experimental input on the matter is essential to help resolve the situation.

In order to address this issue, the structures of ⁵³Ca and ⁵⁴Ca were investigated using in-beam γ -ray spectroscopy at the Radioactive Isotope Beam Factory, operated by RIKEN Nishina Center and Center for Nuclear Study, University of Tokyo. A radioactive beam containing ⁵⁵Sc and ⁵⁶Ti was employed to populate excited states in neutron-rich Ca isotopes via nucleon knockout reactions, and the structures of the reaction products were deduced by measuring $\gamma\gamma$ coincidences. Several new γ -ray lines have been assigned, including a strong candidate for the $2_1^+ \rightarrow 0_1^+$ transition in ⁵⁴Ca. The results will be discussed in terms of the energy systematics along the Ca isotopic chain, and modifications to shell-model effective interactions based on the new findings will be presented.

- [1] A. Gade et al., Phys. Rev. C 74, 021302(R) (2006);
- [2] R. V. F. Janssens et al., Phys. Lett. B 546, 55 (2002);
- [3] D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005);
- [4] J. I. Prisciandaro et al., Phys. Lett. B 510, 17 (2001);
- [5] A. Bürger et al., Phys. Lett. B 622, 29 (2005);
- [6] M. Honma et al., Phys. Rev. C 65, 061301(R) (2005);
- [7] A. Poves et al., Nucl. Phys. A 694, 157 (2001);
- [8] S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004);
- [9] M. Honma et al., Eur. Phys. J. A 25, 499 (2005).