Investigation of 0⁺ **states in mercury isotopes after two-neutron pickup**

<u>C. Bernards</u>¹, R.F. Casten¹, V. Werner¹, P. von Brentano², D. Bucurescu³, G. Graw⁴, S. Heinze², R. Hertenberger⁴, J. Jolie², S. Lalkovski⁵, D.A. Meyer¹, D. Mücher^{2*}, P. Pejovic², C. Scholl², H.-F. Wirth⁶

¹ Wright Nuclear Structure Laboratory, Yale University, New Haven, CT-06520, USA
 ² Institut f
ür Kernphysik, Universität zu Köln, D-50937 Köln, Germany

³ National Institute for Physics and Nuclear Engineering, Bucharest, R-76900, Romania

⁴ Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany

⁵ Faculty of Physics, University of Sophia, 1164 Sofia, Bulgaria

⁶ Physik Department, Technische Universität München, D-85748 Garching, Germany

Contact email: christian.bernards@yale.edu

In recent years, much effort was invested in systematic studies of low-lying 0^+ excitations in mediumto heavy-mass nuclei, ranging from 152 Gd to 194 Pt. This region is particularly interesting, as the structure of these nuclei changes from transitional nuclei in the Gd region, over well-deformed nuclei in the Yb region, to γ -soft nuclei in the Pt region [1].

Experiments at the high-resolution Q3D magnetic spectrograph [2,3] in Munich allowed the study of 0^+ states in unprecedented detail using (p, t) transfer reactions, and started with the discovery of an unforeseen high number of low-lying 0^+ excitations in ¹⁵⁸Gd [4]. Extending these studies to other nuclei, the enhanced density of low-lying 0^+ states in the Gd region was interpreted as a new signature for the shape-phase transition from spherical to deformed nuclei [5].

By investigating the mercury isotopes, we now probe further towards the end of the proton and neutron shell. Studying their 0^+ excitations is particularly interesting, as they lie in a shape-phase transitional region too: A prolate-oblate phase transition has been identified by investigating several observables from ¹⁸⁰Hf to ²⁰⁰Hg [6]. By extending the 0^+ studies to the Hg isotopes, we can test if the low-lying 0^+ density can be applied as a signature of this shape-phase transition as well.

We present the results of our high-resolution study on excited 0^+ states in the mercury isotopes ¹⁹⁸Hg, ²⁰⁰Hg, and ²⁰²Hg up to 3-MeV excitation energy. In these experiments, we observed significantly fewer 0^+ states than in other experiments of the (p, t) transfer campaign. We discuss the low-energy 0^+ state density as a function of the valence nucleon number $N_{\rm val}$ and test if the 0^+ density can be used as a signature for the prolate-oblate shape-phase transition in the Hf-Hg region.

[1] P. Cejnar, J. Jolie, and R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010).

[2] M. Löffler, H.J. Scheerer, and H. Vonach, Nucl. Instr. Methods 111, 1 (1973).

[3] H.-F. Wirth, Ph.D. thesis, Technische Universität München, 2001.

[4] S.R. Lesher et al., Phys. Rev. C 66, 051305(R) (2002).

[5] D.A. Meyer et al., Phys. Lett. B638, 44 (2006).

[6] J. Jolie and A. Linnemann, Phys. Rev. C 68, 031301(R) (2003).

^{*}Present address: Physik Department, Technische Universität München, D-85748 Garching, Germany