⁹⁹Moproductionvia ${}^{100}Mo(n,2n){}^{99}Mousingacceleratorneutrons$

Y.Nagai

NuclearEngineeringResearchCollaborationCenter, JapanAtomicEnergyAgency, Tokai-mura,Naka-gun,Ibaraki-ken319-1195,Japan

Contactemail: nagai@rcnp.osaka-u.ac.jp

^{99m}Tc, the daughter nuclide of ⁹⁹Mo with $T_{1/2}$ =66 h, is the most common radioisotope used in diagnosis. In fact, more than 25 million medical di agnostic procedures have been performed ^{99m}Tc-based radiopharmaceuticals. Therefore, a reliable e and constant worldwide every year using on of ^{99m}Tc. About 95% of ⁹⁹Mohas supply of ⁹⁹Moisthekey issue to ensure the routine applicati iched ²³⁵U in research reactors in the world. been produced by the fission reaction of highly enr ed the shortage of 99 Mo, which has triggered However, a number of incidents of the reactors caus supplies of ⁹⁹Mo.¹⁾ Infact, many efforts are widespreaddiscussionsonthemedium-andlong-term ⁹⁹Moor ⁹⁹mTcworldwide. ^{1,2)} beingmadeforthedomesticproductionof

We proposed a new route to produce ⁹⁹Mo via ¹⁰⁰Mo(n,2n)⁹⁹Mo using fast neutrons from an accelerator.³⁾Thereactioncross section is large, 1.5 batane utron energy $E_n \approx 14$ MeV, which is ten times larger than that of ⁹⁸Mo(n, γ)⁹⁹Moatthethermalenergy. We have performed all imp ortant steps necessary to obtain high-quality ^{99m}Tc using ⁹⁹Mo, which was produced using fast neutrons from ³H(d,n)⁴He.⁴⁾ The intensity of 14MeV neutrons at a ¹⁰⁰Mo sample position is the key issue for sufficiently producing ⁹⁹Mo. Recently, significant progress has been achieve d in accelerator technology, which enables us to obtain high-flux fa st neutrons with a most probable energy of 14MeV byC(d,n) using 40MeV deuterons.

We showed that other medical isotopes, such as 90 Y, 64 Cu, and 67 Cu, are significantly produced using accelerator neutrons. $^{6,7)}$

[1] T.Ruth, Nature **457**, 536(2009).

[2] K.Bertsche, Proceedingsof PAC'10, Kyoto, Japan, p. 121 (2010).

[3]Y.NagaiandY.Hatsukawa:J.Phys.Soc.Jpn.7 8,033201(2009);

F.MinatoandY.Nagai:J.Phy s.Soc.Jpn.79,093201(2010).

[4]Y.Nagaietal.:J.Phys.Soc.Jpn.80,083201 (2011).

[5]M.Fadil,B.Rannou,andtheSPIRAL2projectte am:Nucl.Instrum.MethodsPhys.Res., Sect. **B266**, 4318(2008).

[6]Y.Nagaietal.:J.Phys.Soc.Jpn.78(2009)1 13201.

[7]T.Kinetal.:J.Phys.Soc.Jpn.(2013)inpre ss.