Anisotropic collective flows in a kinetic transport theory at fixed $\eta/s(T)$

V. Greco^{1,2}, S. Plumari^{1,2}, A. Puglisi¹, M. Ruggieri¹, F. Scardina^{1,2}

¹ Dipartimento di Fisica, Università di Catania, I-95125, Catania, Italy ² INFN, Laboratori Nazionali del Sud, I-95125, Catania, Italy

Contact email: greco@lns.infn.it

The Relativistic Heavy-Ion program has shown that a key properties of the QGP is its very low shear viscosity to density entropy ratio $\eta/s(T)$. A key observable is supplied by the different harmonics of the collective flows $v_n(p_T)$. We present a transport approach, developed with $\eta/s(T)$ as an external parameter similarly to the hydrodynamical approach, able to naturally describe the $v_n(p_T)$ in a wide range of p_T and $\eta/s(T)$ (including the rise and fall observed at LHC).

Furthermore kinetic theory allows to implement properly the non-equilibrium Color Glass Condensate conditions determined by the Q_S saturation scale. We find that in the build-up of $v_2(p_T)$ the initial non-equilibrium distribution significantly compensates the larger space eccentricity of the CGC respect to the Glauber modeling.

We will show, exploring the T dependence of $\eta/s(T)$, that a study of v_n allows to understand the differences behind the build of collective flows from low energy scan at RHIC to LHC energies. Finally we will show that including a mean field dynamics from quasi-particle model the dynamics evolves according to recent lattice QCD equation of state and predicts a chemical evolution from gluon to quark dominance close to T_c .

[1] S. Plumari, W. Alberico, V. Greco, C. Ratti, Phys. Rev. D84 (2011) 094004.

[2] V. Greco, J. Phys. G 336 (2011) 012017.

[3] S. Plumari, A. Puglisi, F. Scardina and V. Greco, Phys. Rev. C 86 (2012) 054902.

[4] F. Scardina, M. Colonna, S. Plumari and V. Greco, arXiv:1208.2262 [nucl-th], submitted to Phys. Lett. B.