CMS

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Flow and Correlations in PbPb and pPb Collisions

Monika Sharma For the CMS Collaboration

June 04, 2013

Motivation: hydrodynamics

Motivation: establishing baseline of PbPb collisions

Controlled environment? pPb collisions

✓ No deconfined medium is expected to be formed?
✓ What about azimuthal anisotropy in pPb collisions?

Motivation

- Long range correlations can be explained by flow harmonics in PbPb
- Are these correlations in pPb also related to hydrodynamic flow?
- Or CGC?

Data sets, trigger selection and multiplicity distribution

Track (p_T >0.4 GeV/c, $|\eta|$ <2.4) multiplicity distribution in pPb for different triggers

The fraction of events in $300 \le N_{trk}^{offline} < 350$ is about 10⁻⁷ with respect to all MinBias events.

Data sets, trigger selection and multiplicity distribution

- Data sets
 - ➤ 2013 pPb + Pbp, 31 nb⁻¹
 - ➤ 2011 PbPb, 2.3µb⁻¹ (50-100%)
- Triggers
 - Minimum bias trigger
 - High multiplicity triggers in 2013

Track multiplicity distribution in MinBias pPb and PbPb 50-100%

June 04, 2013

Monika Sharma at INPC-2013, Florence, Italy

Results: Two-particle correlations in PbPb and pPb

- PbPb and pPb use the same multiplicity selection, $220 = \langle N_{trk}^{offline} \langle 260 \rangle$
- Very strong long-range correlations in pPb

Discovery: pPb pilot run

- Explore in detail the multiplicity and p_T dependence of the 2-particle correlations
- New observable: 4-particle correlations add greater sensitivity to collective effects

Monika Sharma at INPC-2013, Florence, Italy

Discovery: pPb pilot run

- Explore in detail the multiplicity and p_T dependence of the 2-particle correlations
- New observable: 4-particle correlations add greater sensitivity to collective effects

2-particle correlation method

Monika Sharma at INPC-2013, Florence, Italy

Multi-particle correlations

Four particle correlations (Q-cumulant method): remove 2 and 3 particle correlations

$$\begin{array}{c|c} \varphi_{1} & \varphi_{3} \\ \varphi_{2} & \varphi_{4} \end{array} = \begin{array}{c} \varphi_{3} & \varphi_{4} \end{array} + \begin{array}{c} \varphi_{1} & \varphi_{2} \end{array} + \begin{array}{c} \varphi_{1} \end{array} + \begin{array}{c} \varphi_{1} & \varphi_{2} \end{array} + \begin{array}{c} \varphi_{1} \end{array} + \begin{array}{c} \varphi_{1} \end{array} + \begin{array}{c} \varphi_{1} \end{array} + \begin{array}{c} \varphi_{1}$$

Associated yield

Yield vs p_T

- Similar p_T dependence for PbPb and pPb
- Larger in PbPb ($|\Delta \eta| > 2$)
- Expected behavior due to jets (Fig. b)

Yield vs multiplicity

- Yield becomes significant at N~40-50, followed by a monotonic rise
- Larger in PbPb ($|\Delta \eta| > 2$)

v₂ in PbPb and pPb

- v_2 shows similar shape in pPb and PbPb, but is smaller in pPb
- hydro calculation agrees with $v2{4}$

v₃ in PbPb and pPb

- v_3 shows similar shape in pPb and PbPb; magnitude comparable
- Hydro prediction: v_3 {PP}, not including fluctuations

Multiplicity dependence of v₂

• v_2 is smaller in pPb than in PbPb; turns on at N~40-50

Multiplicity dependence of v₃

• v_3 is essentially the same in pPb and PbPb; turns on at N~40-50

Comparison of high statistics, high multiplicity pPb and PbPb data as a function of p_T and multiplicity

- Large $v_2\{4\}$ and $v_3\{2\}$ in pPb
- Associated yield, v_2 {4} and v_3 {2} become apparent at about the same multiplicity; N~50
- v_3 {2} is essentially the same in pPb and PbPb at the same multiplicity

Back-up

Peripheral subtraction

- Away-side correlations contain non-flow effects
- Subtract the data for high multiplicity by low multiplicity to correct for this

Fourier decomposition:

$$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}N^{\text{pair}}}{\mathrm{d}\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left\{ 1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta\phi) \right\}$$

Subtracting peripheral correlations in v_2 , v_3 calculations:

$$V_{n\Delta}(\text{cent}) - V_{n\Delta}(\text{peri}) \times \frac{N_{\text{assoc}}(\text{peri})}{N_{\text{assoc}}(\text{cent})} \times \frac{Y^{\text{jet}}(\text{cent})}{Y^{\text{jet}}(\text{peri})}$$

Subtract N_{trk}^{offline}<20 (70-100%) to Account for the fact that jet avoid removing signal (N_{trk}^{offline} ~ 40)

correlation increases with multiplicity

Test our procedure in HIJING

Weighted by near-side jet yield, most of non-flow correlations are subtracted

PbPb vs pPb: p_T **dependence**

v₂ in PbPb and pPb

- v₂ is smaller in pPb than in PbPb
- Peripheral subtraction has a small effect at high multiplicity

$$v_2\{2\} = \sqrt{\langle v_2 \rangle^2 + \sigma_{v_2}^2}$$
 $v_2\{4\} = \sqrt{\langle v_2 \rangle^2 - \sigma_{v_2}^2}$ $\frac{\sigma_{v_2}}{v_2} = \sqrt{\frac{v_2^2}{v_2^2}}$

 $\{2\} - v_2^2\{4\}$

 $\overline{\{2\} + v_2^2\{4\}}$

* Hydro-flow is not incorporated in the HIJING MC model $-c_2\{4\}$ consistent with zero for small bin width (2 or 5), while becomes nonzero for big bin width (30)

The effect becomes larger going to more peripheral collisions

* In pPb data, c_2 {4} crosses zero and becomes negative at certain multiplicity. This is an indication of the onset of multi-particle correlation effect

A bin width of 5 is chosen for the $v_2{4}$ analysis

