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theorists



Introduction

Picture: ATLAS simulation

The LHC is almost running and we will have to deal with the data soon.
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Introduction

New Physics = Data (experimental) - Background (theory)

Master equation for LHC discovery: 

Experiment

- Collecting raw data
- Detector corrections
- Converting to hadron level
- Converting to parton level

Theory

- Calculate at least at NLO 
level (if it is available)

- Resum the large 
logarithms and match it to 
NLO (if it is available) 

MC event 
generators

Data (no new physics) = [Hard part ⊗ Shower + MPI ⊗ Shower] ⊗ Hadronization

Master equation of the Monte Carlo program:

Well defined Needs some work Only model



Introduction

H

1. Incoming hadron                   (gray bubbles)

➮ Parton distribution function

2. Hard part of the process    (yellow bubble)
➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                (red graphs)
➮ Parton shower calculation
➮ Matching to the hard part

4. Underlying event                        (blue graphs)
➮ Models based on multiple 
interaction

5. Hardonization                     (green bubbles)
➮ Universal models 

The structure of the Monte Carlo event generators



Inclusive hadron production

Non-perturbative part
what we “measure”

Perturbative part
what we calculate
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- AlpGen
- Helac
- MadGraph
- PHOX
- ...

DGLAP Evolution
     schemeMS

X

π+

- S. Kretzer
- Kniehl, Kramer, Pötter
- MRS pion (1992)
- ...

∑

a=g,uū,d,... d

dt
da(η, t)

= Pab(η, t)⊗ db(η, t)

Q ∼
√

ŝ Q0 ∼ 1 GeV

a

Structure of the one-hadron inclusive cross section

In this calculation the only free parameters are  choice factorization scheme and scale. We 
have a well defined and systematically improvable structure. 



d

dt
U(t, t′) = [HI(t)− VI(t)]U(t, t′)

Parton shower

Evolution equation:

Free parameters:
- finite pieces in the splitting operator
- choice of the momentum mapping
- choice of the evolution variable

This is an operator equation. It evolves 
the momenta, flavor, spins and colors of 
the partonic system ({p, f, s’, c’, s, c}m). 

We do NOT need 40 error set of the 
parton shower but we rather need a 
“conventional shower scheme”

Parton Shower
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Non-perturbative part

what we “measure”
Perturbative part
what we calculate
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- Lund model
- Cluster model
- ...

- Herwig(++)
- Pythia(++)
- Ariadne
- ...

- AlpGen
- Helac
- MadGraph
- MFCM
- NLOJET++
- ...
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Structure of the Monte Carlo algorithm:
HAdronization Modell

- Universal object. One can consider it 
as a measurement function. It 
measures the partonic color flow.

- In principle the LEP measurement 
determines.  

- Model with tuning parameters.

Here we need 40 error set of the 
hadronization to estimate the 
uncertainties.  

It would be nice to have Tune A0-40.



Iterative Algorithm
The parton shower evolution starts from the simplest hard configuration, that is usually 
2→2 like.

“Nothing happens”

“Something  happens”
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Classical Parton Shower
☀ The parton shower relies on the universal 

soft and collinear factorization of the QCD 
matrix elements. It is universal property and 
true at all order. This should be the only 
approximation ...

... but we have some further approximations:
✗ Interference diagrams are treated 

approximately with the angular ordering
✗ Color treatment is valid in the                 

limit 
✗ Spin treatment is usually approximated. 
✗  Approximation in the phase space

... non-systematic approximations lead to 
systematically NOT improvable algorithm.

Nc →∞
Parton shower as 
classical statistical 
mechanics 



“Quantum Parton Shower”

☀ The parton shower relies on the universal soft 
and collinear factorization of the QCD matrix 
elements. It is universal property and true at all 
order. This should be the only approximation ...

Parton shower as 
Quantum statistical 
mechanics 

ZN and D. Soper: JHEP 0709:114 (2007) 
                                JHEP 0803:030 (2008)
                                JHEP 0807:025 (2008)



Conventional Shower Scheme
Shower must be fully exclusive. 
• Full color evolution with quantum interference. 

This goes beyond the leading color approximation.
• Spin correlations.   

Splitting operator must be as exact as possible.
• Possibly based on exact Feynman graphs 

Don’t mix the kinematical and dynamic effects.  
• Mapping based on exact phase space factorization.   
• Recoil strategy must be independent of the dynamics. 

e.g.: Don’t choose the recoiled parton to the color connected one.   
• Don’t use explicit angular ordering or angular veto. 

Choice of the evolution variable
• Must be soft and collinear sensitive.
• Should be as simple as possible (e.g.: virtuality)
• Should give the best phase space phase space coverage 

How to do the matching to LO and NLO matrix elements systematically?

What would be the requirements for a conventional shower scheme?



QCD vs. Parton Shower
Recent paper by Marchesini  and Dokshitzer indicates that the color dipole based 
showers are not consistent with the parton evolution picture. They studied the quark 
energy distribution. Good news, there is no problem.

d

dt
Dq(t, t′, x) =

∫ 1

x

dz

z
Pqq(z)Dq(t, t′, x/z) +O(e−t)

No approximation and assumptions. 
Only algebraic manipulations.

From shower equation 

to DGLAP

d

dt

(
x, q

∣∣U(t, t′)
∣∣M2

)
=

(
x, q

∣∣[HI(t)− V(t)]U(t, t′)
∣∣M2

)



Drell-Yan pT distribution
Building a shower based on the Catani-Seymour splitting functions and mappings can 
lead to the loss of accuracy. 

d

dt
σ(t, t′; pT ) = K(t, pT )⊗ σB(pT = 0) + · · ·

This is effectively an approximated NLO calculation. No resummation of the large 
logarithms correctly. We got wrong equation because of the choice of the momentum 
mapping. This can be fixed, but...

Still depends on the momentum mapping.

d

dt
σ(t, t′; pT ) = K(t, pT )︸ ︷︷ ︸⊗ σ(t, t′; pT ) + · · ·

We have to study and test against known results our shower algorithm analytically at parton 
level not just numerically.  



Color Correlations
With a simple “color shower” we can estimate the importance of the subleading color 
contributions. 

from N=30000 events; m=30 
splitting in every events

〈
{c′}m

∣∣{c}m

〉
=

cP (m)
NPm
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Multi Parton Interaction

Data (no new physics) = [Hard part ⊗ Shower + MPI ⊗ Shower] ⊗ Hadronization

Back to our master equation:

The MPI models based on the eikonal model. This is a model to calculate total cross 
section.

σtot = 2π

∫ ∞

0
db b(1− exp(−A(b)σQCD))

The parton showers basically exclusive implementation of total cross section based on 
eikonal model. The number of the hard interactions selected according to the Poisson 
distribution:    

Pn =
2π

σtot

∫ ∞

0
db b

[A(b)σQCD]n

n!
exp(−A(b)σQCD)

No momentum conservation is built in this formula.
HERWIG++:  Vetoing unwanted events
PYTHIA:        PDF rescaling

Basically only two 
tuning parameters.



Factorization Theorem
Deep inselastic scattering we can proof the factorization of the cross section:

In hadro-hadron collision we cannot proof the factorization in general. It is understood 
only for some simple quantity, like Drell-Yan cross section. For other (more exclusive 
quantities) we can assume and check it by order by order.

σ[F ] =
∑

a

∫ 1

0
dηfa/H(η, µ)

∫
dσ̂a[F ]

σ[F ] =
∑

ab

∫ 1

0
dηafa/H(ηa, µ)

∫ 1

0
dηbfb/H(ηb, µ)

∫
dσ̂ab[F ]

Now the questions:

- If now factorization at hard level, what can we expect in the multiple interaction case?
- Can we understand something at least order-by-order basis?



Deep Inelastic Scattering
The physical picture behind the evolution equation 

Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadron. 

This picture is consistent with 
the pQCD and leads to the 
DGLAP evolution equation

µ
d

dµ
fa/H(η, µ) =

∑

b

[Pa,b ⊗ fb/H ](x, µ)



Hadron Collision
Let us see how it looks at hadron collider

In hadron-hadron collision the parton 
distribution function also absorbs the 
contribution of the secondary interactions.

This is a more complicated  evolution 
than in the DIS case. 

- Is there factorization or can we define in 
a systematic way?

- If yes, how does it work?
- What is the evolution equation?

As a first guess, the evolution equations would be something like

µ
d

dµ
fa(η, µ) =

∑

b

[(Pa,b+Ha,b)⊗ fb](η, µ)+Ga[Da′,b′ , fa](η, µ)

µ
d

dµ
Da,b(ηa, ηb, µ) = Fa,b[Da′b′ , fa′ ](ηa, ηb, µ)



Conclusion

•  A standardized parton shower scheme would be nice.

• Error set for hadronization model tunning (e.g.: Tune A0-40)

• We need a lot of theoretical study of the multiple 
interactions in hadron collisions. 
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