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Summary

» ALICE specific detector capabilities;
» MB physics & MPI at ALICE:
» multiplicity distribution
motivation
unfolding
corrections
sensitivity

» other possible signals for MPI@ALICE
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ALICE detector potential

Being at LHC the HI-dedicated experiment, ALICE has some
unique capabilities, complementary to those of the dedicated
p-p experiments (some pros and some cons):

» wide pr range and in particular low pr-cutoff (down to
100MeV);

excellent primary and secondary vertexing (c2° down to
50um, 0%, down to 30um);

excellent particle identification;
e and . identification;
high resolution ~-spectrometer;
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drawbacks: small luminosity, limited acceptance.
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Multiplicity distribution: interest for MPI
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Deviations of multiplicity distribution from
KNO scaling have been observed above
ISR energies (starting from 200GeV cen-
ter of mass energy).

Normalized Cross Section

“niny’

,'ﬁ" = The QGSM (DPM) model has been used to
explain the multiplicity distribution at high
energies as the sum of different contri-
butions corresponding to single-, double-,
... parton interactions, each obeying KNO

scaling. %
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Similar studies could allow to measure the multi-PDFs, e.g. the probability
P(x1, x2) of finding two partons with xr = x; and xo.
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Multiplicity distribution

ALICE can measure multiplicity distribution with high precision,
even though it will need to extend the measurements from the
acceptance (|n| < 1.4) to the full phase space.

To extract the real multiplicity
distribution from the measured
one:

» unfold measured
distribution;

» correct for vertex bias;
» correct for trigger bias;
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Why unfolding

The measured distribution M de- 5 g
pends on the true distribution T via s
a response matrix R: E

3
38

M=RT

50

R can be constructed knowing the
detector response.

1

150 200
true multiplicity

The goal is to construct T
knowing M, which is not so

. 10°E%, 10
simple as: \ — e [
otk \ - measured 1o - measured

T=R""M 5 .
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107 \'*t.\ 10 j-'
» R might be singular
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» strong fluctuations due T ey »oow 'szu..i.,.icifyﬁ_@
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to inversion anyway

B/ 12



Unfolding

using Bayesian method
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New iteration:

until convergence.

using x? minimization

2(U) = 37 (2 (M= Y AU
m t

m

Bin size < detector resolution
= several (strongly oscillating)
functions solve the eq. above
The solution is stabilized by
adding a parametrized term:

X3(U) = x3(U) + BP(U)
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Validation

Both unfolding methods have been
validated over a set of different input ¢
distributions (Pythia, Phojet, negative «
binomial, flat ...) and for each method .-
the parameters have been set so that ; ..
the result is not sensitive to the input
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Systematic uncertainties

Detailed study of systematic uncer-
tainties due to both

» the unfolding method itself

—

» MC assumptions
* not dependent on
mult.distrib.!
* particle composition
2—-6%
* relative cross-sections
< 1%
* material budget < 1%
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Vertex reconstruction- and trigger-bias corrections

=
T

» after unfolding we get the
mult.distr. for MB triggered
events having a reconstructed

correction factor

m
T
vt

vertex 1 —— correction to inelastic sample
160 —&— cortection to minimurm bias sample
» after vertex reconstruction bias b
correction we get the mult.distr. T
for MB triggered events I S

» finally we apply the trigger bias 0-8?
correction to get the mult.distr. L Ll
for all inelastic events ity

The correction is different from unity only at low multiplicities
(< 5).
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Other possible signals for MPI at ALICE
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bbbb
4-jets of v+3jets
2 like-sign electrons

azimuthal distribution of 4
highest-pr hadrons

like-sign Ws (too low o for our
luminosity)

Counts / Bin in 10° pp events

10° pp events
(1 year of nominal ALICE luminosity)
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Investigating MP1 in pA

» pN is a privileged collision system

» Predicted rate <S¢ ~ 10%

» Possibility to detect cccc by selecting events with "tagged”
DD, e.g. D°+e* or et et where the background et from bb
events can be estimated from measured single inclusive b
cross-section.

» Analysis in invariant mass of the D° — K—=* by tuning of
set of cuts on the decay products has shown the possibility
to reach a S/B~1 (from an initial S/B~ 10~4).
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