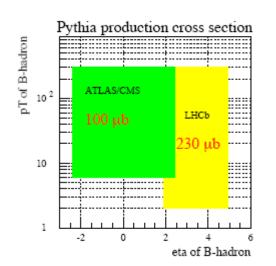
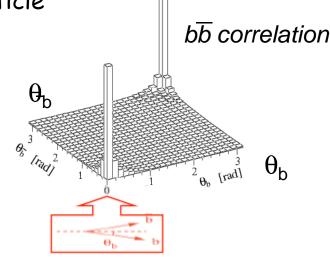


1

Minimum Bias at LHCb

Umberto Marconi, INFN Sezione di Bologna

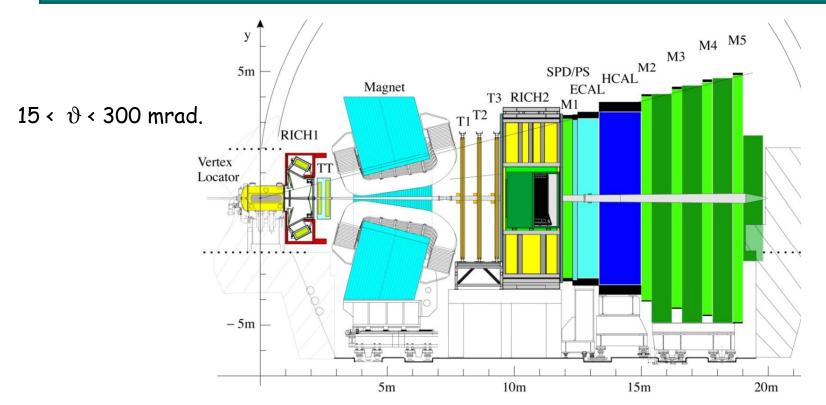

MPI@LHC 2008 Perugia, October 2008


The LHCb Experiment.

- LHCb is a dedicated beauty physics experiment at LHC.
- Advantages of beauty physics at hadron colliders:
 - High value of the beauty cross section expected at 14 TeV: $\sigma_{\rm bb}\sim 500~\mu b$ (the e+e- cross section at Y(4s) is 1 nb).
 - Access to all b-hadrons: B_d, B_u, B_s, b-baryons and B_c
- The challenge:
 - Multiplicity of tracks.
 - Rate of background events: $\sigma_{\text{inel}} \sim 80 \text{ mb}$

The LHCb Detector.

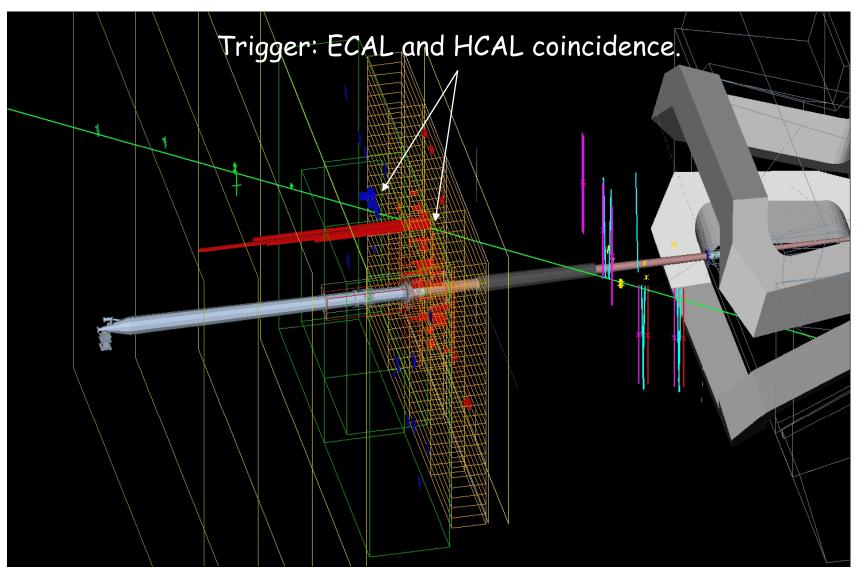
- Spectrometer to cover the forward region: bb pair production peaks at small ϑ angles, with small relative opening angles.
- Selective and efficient trigger system, also on fully hadronic B decay modes.
- Tracking and vertex reconstruction for good mass resolution and proper time measurements of secondary vertices.
- PID capabability to discriminate particle in the final states: μ,π,K



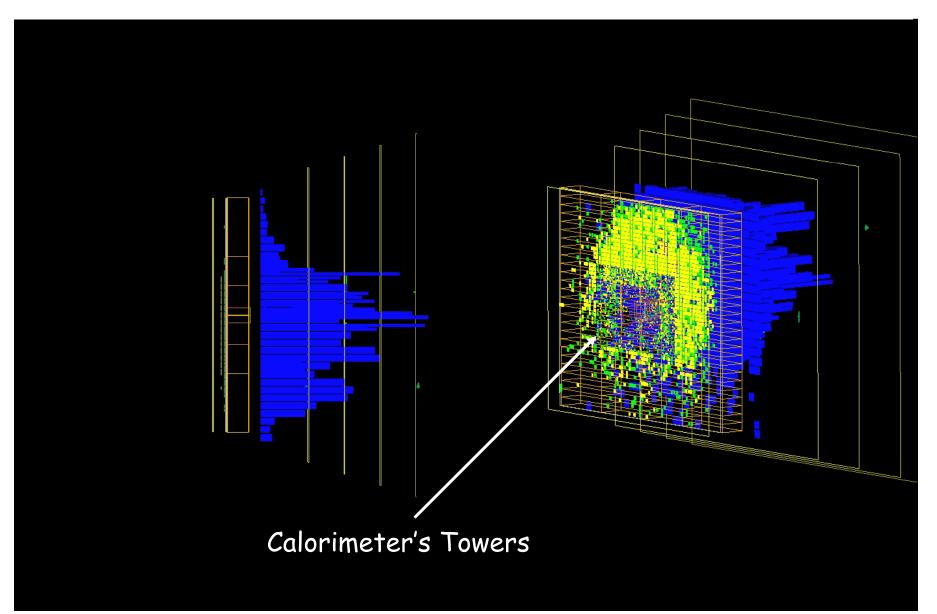
B meson average momentum p $\sim 80~GeV/c$


B meson average transverse momentum p $_\perp \sim 5~GeV/c$

The LHCb Detector (II).

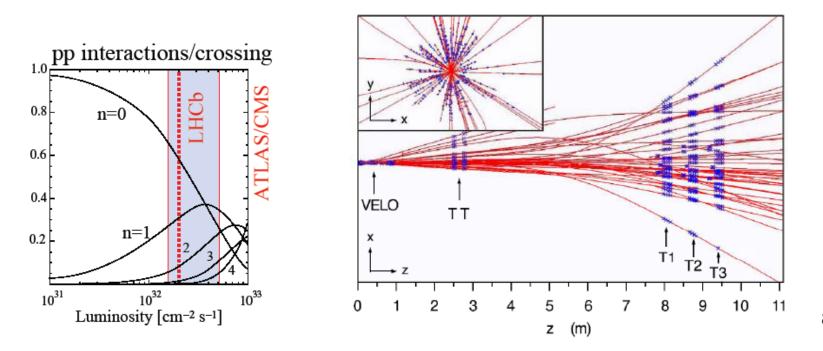

VELO: Silicon Strip detector for precise secondary vertex reconstruction. **TT,T1,T2,T2**: tracking stations, Silicon Strip and Straws to detect charged particles. **RICH1**, **RICH2**: Ring Imaging Cherenkov detectors for $\pi/K/p$ separation. **ECAL**, **HCAL**: electromagnetic and hadronic calorimeters for trigger and energy flow. **M1-M5**: Muon stations for muon identication

The LHCb Detector.

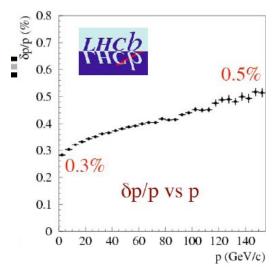


All the sub-detectors installed and commissioned

Detector Commissioning with Cosmics.



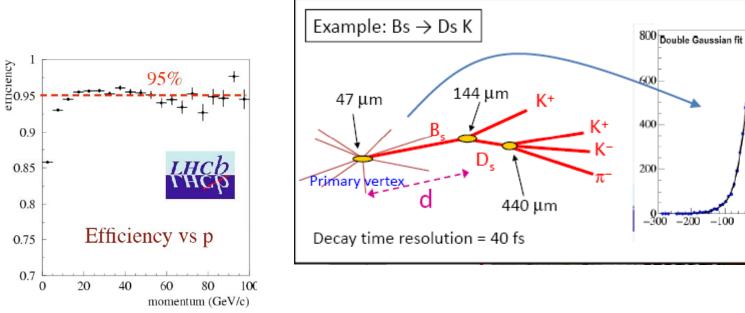
Particles Splash due to Beam Dumping


LHCb Running Conditions.

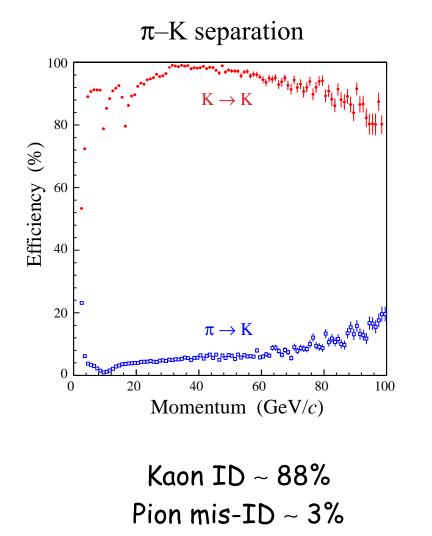
- Run at reduced luminosity with respect to the LHC capabilities: Average instantaneous luminosity $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$.
- L value at the level of 2× 10³² cm⁻²s⁻¹ favours the probability of small number of primary interactions per bunch crossing.
- At the average luminosity 10¹² bb pairs produced per year of data taking (2 fb⁻¹).

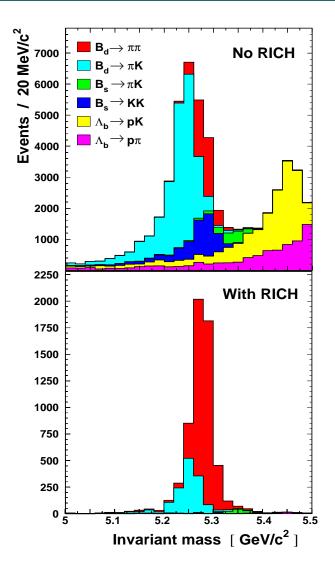
Detector Performances.

- $\delta p/p$, depending on p: 0.3% ÷ 0.5%.
- Mass resolution: 10÷20 MeV/c²
- High efficiency on "long tracks" from B decays: 95%. 4% ghosts for tracks with p_T > 0.5 GeV/c.
- Impact parameter resolution: $\sigma_{IP} \sim 30 \ \mu m$
- Proper time resolution: 40 fs.


 $\sigma_1 = 33 \pm 1 \text{ fs}$ $\sigma_2 = 67 \pm 3 \text{ fs} (31\%)$

σ(τ) ~40 fs


100 200 300


 $t_{rec} - t_{true}$ [fs]

0

Particle ID

The LHCb Trigger

- LHCb needs a trigger system to select B events.
- The trigger system is organized in two layers.
 - The LO trigger selects events with high p_T particles in the final state, detected with the Calorimeters and the Muon detectors, reducing the input rate from 40 MHz to 1 MHz.
 - LO is a hardware trigger, implemented on custom electronics.
 - The High Level Trigger selects exclusive B decay modes as well as auxiliary signals for systematic studies, like B inclusive decays.
 - HLT is a software trigger, implemented as selection algorithms running on a computing farm of about 2000 CPUs.
- The DAQ rate, after the HLT, is 2 kHz.
- MB events can be recorded at the maximum rate of about 2 kHz (max available bandwidth).
- MB physics can be performed on early data with large data samples.

MPI: "Hic Sunt Leones"

MPI: Multi Partonic Interactions

MPI in Pythia.

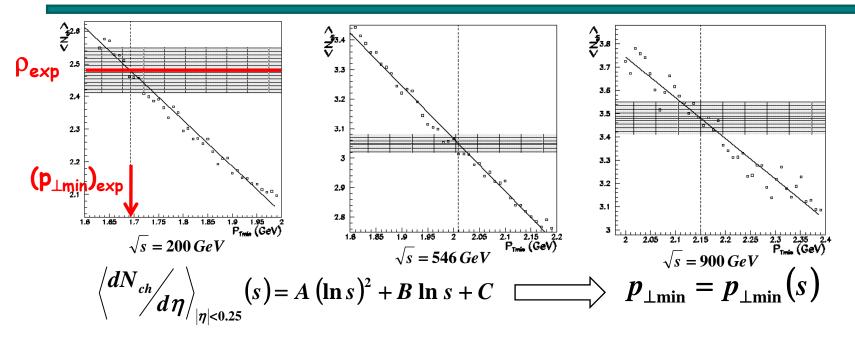
- The composite nature of the two colliding protons implies the possibility that several pairs of partons can enter into separate and simultaneous scatterings.
- Multiple interactions contribute to the overall event activity, in particular at low p_{\perp} .
- The total rate of parton-parton interactions is described by means of perturbative QCD. The perturbative parton-parton scattering framework is extended into the low- p_{\perp} region.
- A regularization of the divergence in the cross section for $p_{\perp} \rightarrow 0$ has to be introduced. The cutoff $p_{\perp min}$ is the main free parameter of the model. $\int_{a}^{s/4} d\sigma = 2$

$$\sigma_{\text{hard}}(p_{\perp \min}) = \int_{p_{\perp \min}^2}^{s/4} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}^2} \,\mathrm{d}p_{\perp}^2$$

- The average number of interaction per collision $\langle n \rangle = \frac{\sigma_{hard}(p_{\perp min})}{\sigma_{\perp}(s)}$
- The probability for a parton collision to take place $P(p_{\perp}) = \frac{1}{\sigma_{nd}(s)} \frac{d\sigma}{dp_{\perp}}$ at p_{\perp}

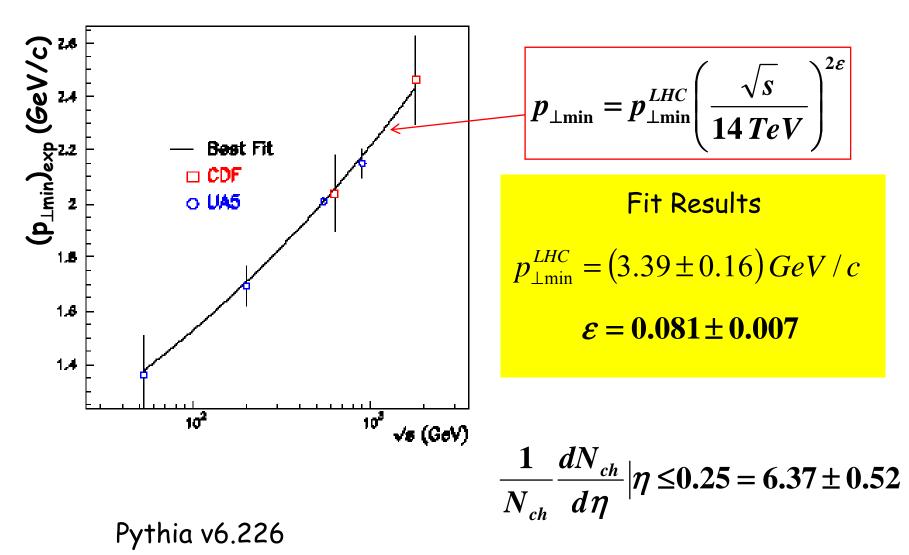
Tuning of MPI.

- In LHCb tuning of the Multi Partonic Interactions parameters has been carried out using Pythia versions 6.1÷6.3.
- LHCb is currently using Pythia version 6.4, which provides a new MPI model.
- Amongst the MPI Model available LHCb uses Pythia Model 3: varying impact parameter and hadronic matter overlap consistent with a Gaussian matter distribution. Continuous turn-off of the cross-section at $p_{\perp min}$.
- $p_{\perp min}$ the cross-section parameter (scale of the cutoff) can be set through:

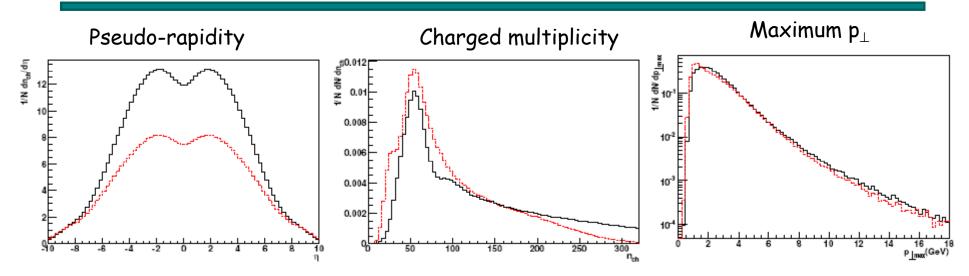

$$p_{\perp \min}(s) = A \times s^{\varepsilon} = PARP(82) \left(\frac{\sqrt{s}}{PARP(89)}\right)^{2PARP(90)}$$

$$\begin{array}{|c|c|c|c|c|} \hline \rho_{\exp} = \frac{dN_{ch}}{d\eta} \\ \hline \eta |_{\eta|<0.25} \\ \hline \sqrt{s} \ (\text{GeV}) & \rho_{\text{EXP}} \\ \hline 53 \ [\text{UA5}] & 1.96 \pm 0.10 \\ 200 \ [\text{UA5}] & 2.48 \pm 0.06 \\ 546 \ [\text{UA5}] & 3.05 \pm 0.03 \\ 630 \ [\text{CDF}] & 3.18 \pm 0.12 \\ 900 \ [\text{UA5}] & 3.46 \pm 0.06 \\ 1800 \ [\text{CDF}] & 3.95 \pm 0.13 \\ \hline \end{array}$$

14


- Parton distribution functions to be chosen carefully.
 - CTEQ4L. Inclusion of energy dependent p_{\perp} cut-off.
- Tuning of $p_{\perp min}$ on experimental data.
 - Charged particles densities p_{exp} produced in proton-antiproton collisions at the central region pseudo-rapidity η=0.

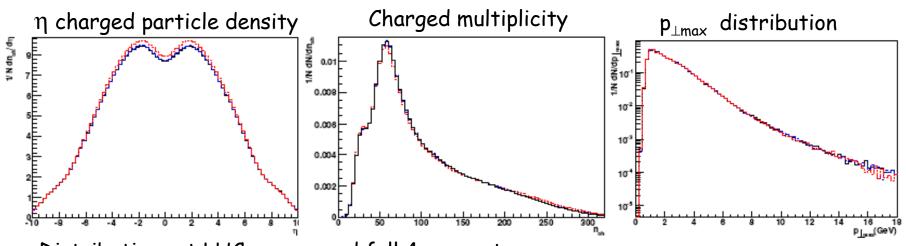
MPI $p_{\perp \min}(s)$



- At a given \sqrt{s} generate the density of charged particles varying the p_{lmin} values.
- Generate 10⁶ proton-antiproton collisions (non-diffractive) for each $p_{\perp min}$ value.
 - Uncertainty on the fitted value is then unaffected by MC statistical errors.
- At the given \sqrt{S} fit the $\rho(\mathbf{p}_{\perp min}) = \mathbf{A} \mathbf{p}_{\perp min} + \mathbf{B}$ dependence of simulated events.
- The solution for $p_{\perp min}$ is: $(p_{\perp min})_{exp} = A^{-1} (\rho_{exp} B)$ with error $\Delta (p_{\perp min})_{exp} = A^{-1} \Delta \rho_{exp}$

MPI $p_{\perp \min}^{LHC}$

MPI in Pythia 6.4



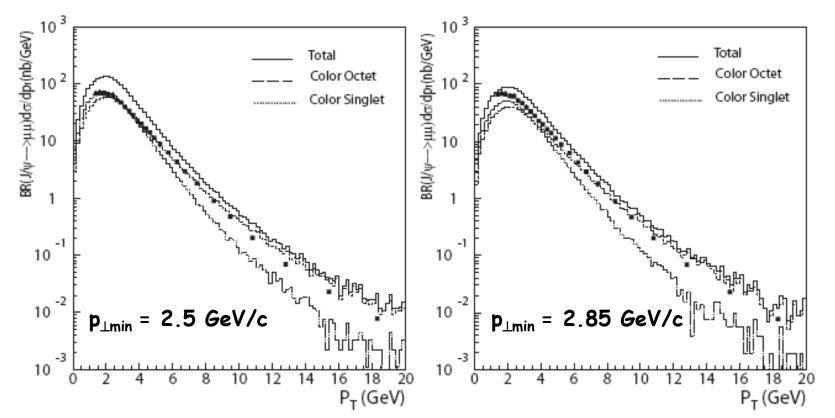
- Needs of retuning of the $p_{\perp min}$ value, moving to Pythia 6.4, due to the new available MPI model.
- Comparison of **Pythia 6.406** old-MPI model (red line) with **Pythia 6.406** new MPI model (black line) in the full solid angle acceptance, when using the same value of $p_{\perp min}$ = 3.41 GeV/c and ϵ =0.126, tuned for the old MPI model.
- The updated fit of MPI parameters tuned on Pythia 6.406 new MPI model gives:

$$p_{\perp \min}^{LHC} = (4.28 \pm 0.25) GeV/c \qquad \varepsilon = 0.119 \pm 0.009$$

• Maximum p_{\perp} : charged stable particle with highest p_{\perp}

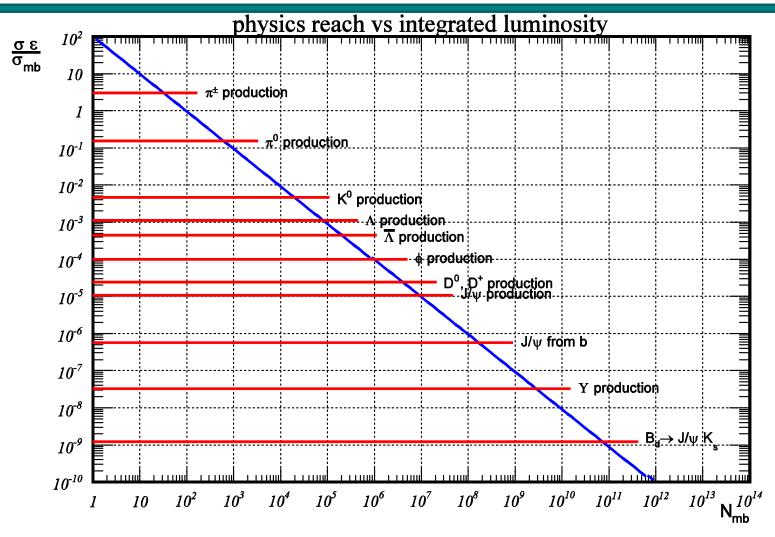
Tuning of MPI in Pythia.

- Distributions at LHC energy and full 4π acceptance.
- Comparison of different Pythia versions:


Pythia 6.2 (black solid line), used for 2004 Detector re-optimization studies.
Pythia 6.3 (blue dot-dashed), used for 2006 Monte Carlo data Production.
Pythia 6.4 (red dashed), to be used for the next data production.

- Retuning was needed to include the generation of excited meson states B*,B** whilst retaining the spin counting rules, through Pythia PARJ(14÷17)
 - The inclusion of the primary excited meson states led to an increase in the average multiplicity.
- Retuning to correct the production rates of the generated $\rho^0(770)$, $\omega(782)$, K*(892), etc.: through PARJ(11÷13).

Heavy Quarkonia Production in Pythia.

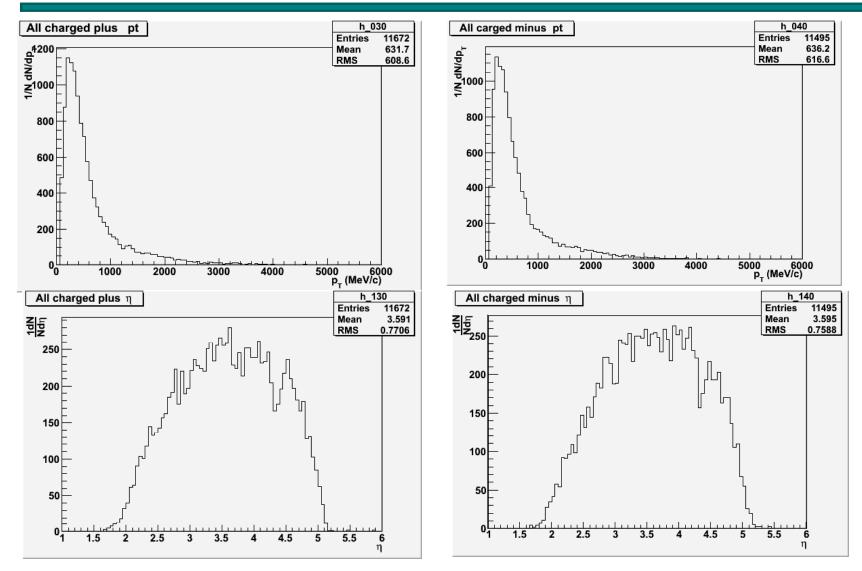

- Hidden charmonium production mechanism can be investigated at LHCb.
- In particular "prompt J/Ψ " signal is important in LHCb as it is a source of backgrounds for $B \rightarrow J/\Psi + X$ decays.
- NRQCD, implemented in Pythia since version 6.324, parametrizes the non-perturbative fragmentation of the q-qbar pair, extending Color Singlet Model to Color Octet Model.
 - COM implies 10 matrix elements $\langle Q\overline{Q} \left[{}^{2S+1}L_J^{(C)} \right] \rangle$ to be tuned: each representing the probability a q-qbar pair in a ${}^{2s+1}L_J^{(Color)}$ state builds up a given bound state.
- The first attempt to tune CSM and COM together with the $p_{\perp min}$ by the LHCb collaboration is documented in the LHCb note: LHCb-2007-042

Heavy Quarkonia Production in Pythia. (II)

LHCb tuning of Pythia to fit the CDF measurements of $J/\psi \rightarrow \mu + \mu - p_{\perp}$ differential cross section. CDF Collaboration, Phys. ReV. D71 032001, 2005 CSM and COM and leading order regularization $p_{\perp min}$ cut-off tuned simultaneously. Matrix elements values (*) extracted from: Nason P. et al. arXiv: hep-ph/0003142 $\langle Q\overline{Q} \left[{}^{2S+1}L_{I}^{(C)} \right] \rangle$ (*) 20

Physics with MB Events.

Minimum Bias data taking can be performed at 2 kHz rate.

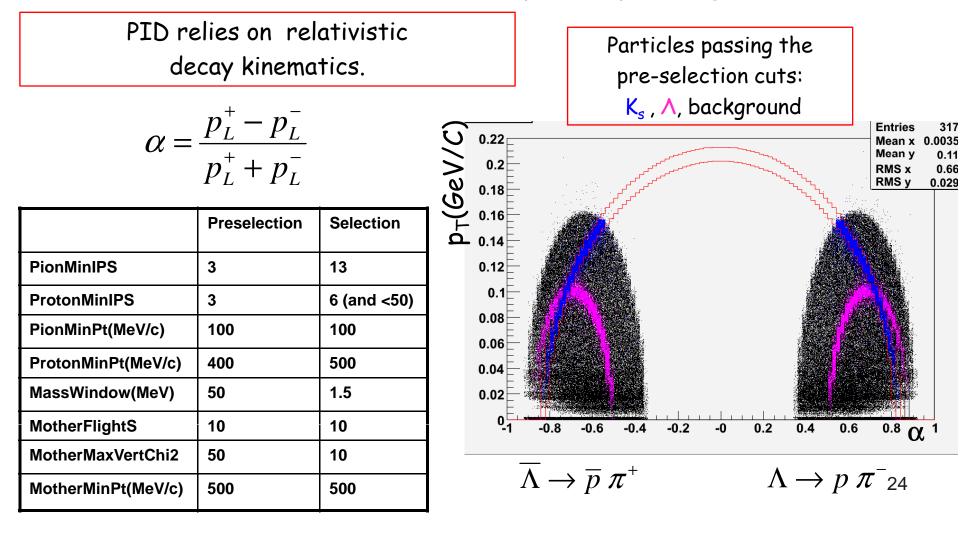

Measurements of Particle Ratios.

• Observables: pseudo-rapidity η , transverse momentum p_T , azimuthal angle ϕ .

$$R_{\eta} = \frac{dn^{+} / d\eta}{dn^{-} / d\eta} \qquad R_{p_{T}} = \frac{dn^{+} / dp_{T}^{2}}{dn^{-} / dp_{T}^{2}} \qquad R_{\phi} = \frac{dn^{+} / d\phi}{dn^{-} / d\phi}$$

- Can be done even with very low integrated luminosity.
- Important for tuning of the Monte Carlo.
- Of high interest in HEP community: cosmic rays shower development.
- No data available on pp collision beyond $\sqrt{s} = 200$ GeV.

Distributions in the LHCb acceptance.

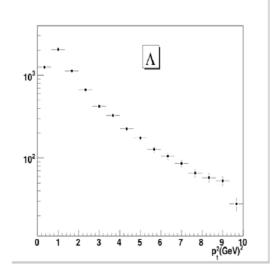


No PID on tracks requested.

Measurements with Strangeness.

Armenteros Podolansky Method to select Λ

Plot: transverse momentum versus asymmetry of longitudinal momenta.



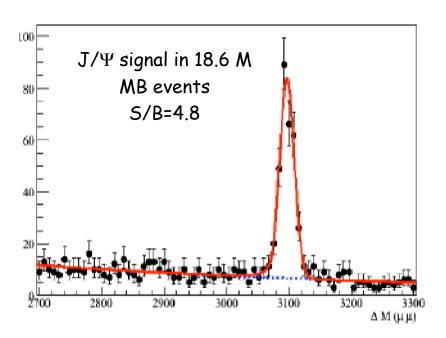
Measurements with Strangeness. (II)

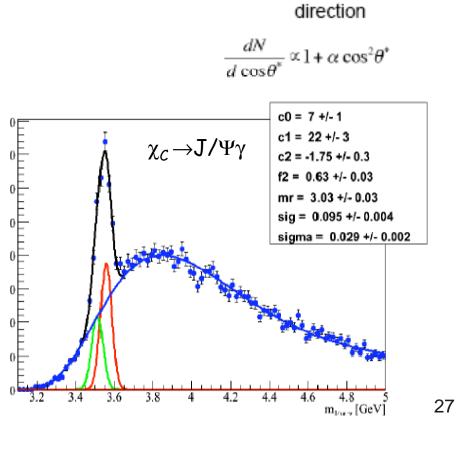
- (1) Purity after selection
- (2) Purity after selection and AP selection
- (3) Purity after selection and AP selection and higher track quality.

	Mother of	No MC	^	K _s ⁰	π^+	Ŷ	ρ	ρ ^ο (770) ρ [·]		(770)	P	ω
(1)	π (%)	5.39	88.45	4.97	0.56	0.05	0	0.06 0.0)5	0.04	0.04
	p (%)	5.06	88.35	5.27	0.36	0.05	0	0.12		10	0.08	0.07
	Mother of	No MC	^	K _s ⁰	π+	Ŷ	ρ ⁰ (^o (770)		770)	P	ω
(2)	π(%)	4.77	94.08	0.94	0.59	0.04	0.0	0.06)5	0.05	0.05
	p(%)	4.62	92.78	1.06	0.40	0.05	0.1	.12		2	0.09	0.07
	Mother of	No MC	٨	K _s ⁰	π+	Υ		ρ ⁰ (770)		ρ⁺(770)	р	ω
(3)												
	π(%)	1.72	96.58	0.74	4 0.4	3 0.	03	0.05		0.05	0.05	0.04
	p(%)	2.01	96.21	0.7	0.3	2 0.	02	0.09		0.07	0.06	0.04

Measurements with Strangeness. (IIII)

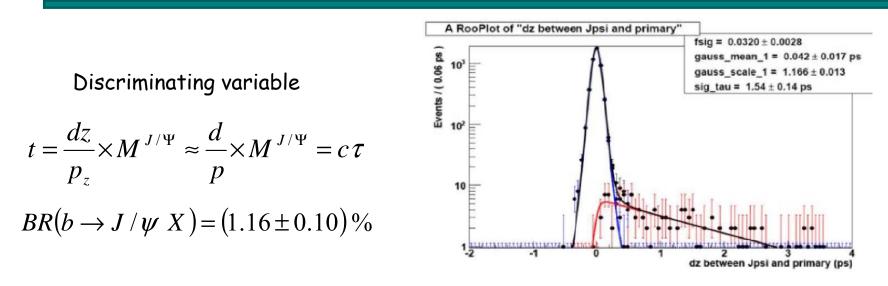
For 10⁸ MB events we expect ~ 10⁵ Λ sample of 95% purity for Λ polarization studies. Source of p and π for detector calibration.


Measure cross section ratios, which don't require luminosity.


$$\frac{d\sigma(\Lambda)}{d\sigma(\overline{\Lambda})}(y,p_T)$$

- Possible extension:
 - Hyperon production: $\Xi^- \rightarrow \Lambda \pi^-$, $\Omega^- \rightarrow \Lambda K^-$
 - Vector meson production : e. g. ϕ and K^*

J/Ψ Production


- J/Y production is an important building block for many decays analysis.
- Prompt (direct & indirect) J/Ψ physics
 - pT spectra.
 - Polarization (spin alignment).
 - χ_C and $\Psi(2s)$ productions.

lab

Prompt over Retarded J/\Psi Ratio.

- Retarded J/Ψ from B decays can be disentangled from prompt J/Ψ
- Estimates of the $\sigma_{J/\Psi}$ cross section in within the LHCb acceptance:

$$\sigma_{prompt} = (3101.0 \pm 5.5) nb \quad \sigma_{retarded} = (235.7 \pm 1.6) nb$$

Expected statistical error at the level of 10% in 1 month of data taking.

Conclusions.

- The LHCb detector is ready for data taking.
- LHCb relies on Pythia and the MPI model implemented therein for its simulations and feasibility studies.
- LHCb will take data at 2 KHz. Large MB data samples, collected in the forward region covered by the LHCb detector, will be therefore available as soon as LHC provides collisions.
- In the early phase efforts of the collaboration will be dedicated to Minimum Bias events analysis, for calibrations, MC tuning and for first physics measurements.