
X Seminar on Software for Nuclear, Subnuclear and Applied Physics

Annagrazia Varisano

INFN-LNS

Generation of a primary event

Geant4 simulation code: theory and practical session

Goal

• Learn how to use the G4ParticleGun and the General Particle
Source interfaces to generate primary particles in an event
(particle type, energy, position, direction…)

• The relevant class/method to look at are:

– the class constructor
G4VUserPrimaryGeneratorAction::G4VUserPrimaryGeneratorAction

– the method

 G4VUserPrimaryGeneratorAction::GeneratePrimaries(G4Event*)

• Learn G4ParticleGun and GPS macro commands

Geant4 User Classes

Initialisation classes
Invoked at the initialization via

G4RunManager::SetUserInitialization()

 G4VUserDetectorConstruction

 G4VUserPhysicsList

Action classes
Invoked during the execution loop via

G4RunManager::SetUserAction()

 G4VUserPrimaryGeneratorAction

 G4UserRunAction

 G4UserEventAction

 G4UserTrackingAction

 G4UserStackingAction

 G4UserSteppingAction

 The PrimaryGeneratorAction.cc class file is an ‘Action’ that must be defined.

• Geant4 does not provide the main().
• In our main, we have to:

• Construct G4RunManager
• Register User mandatory classes to RunManager

Three mandatory
classes

G4VUserPrimaryGeneratorAction
• It Is one of the mandatory user classes, available for deriving your own concrete class:

• it controls the generation of primary particles

 - This class does not directly generate primaries but invokes the
 GeneratePrimaryVertex() method of a generator to create the primary

 - It registers the primary particles to the G4Event container

• Constructor

 - Instantiate primary generator (i.e. G4ParticleGun())

 particleGun = new G4ParticleGun(n_particle);

 - Set the default values (optional but advisable)

 particleGun -> SetParticleEnergy(1.0*GeV);

• It has GeneratePrimaries(G4Event* anEvent) method which is purely virtual, so it must be
implemented in the user class

 - Randomise particle-by-particle value, if required

 - Set these values to primary generator

 - Invoke GeneratePrimaryVertex() method of primary generator

 particleGun -> GeneratePrimaryVertex(anEvent);

G4VUserPrimaryGeneratorAction (base class)

• A pure virtual method is an interface for
concrete classes that inherit the base class.

 -> Then the concrete class must make the
redefinition of the inherited methods(overriding)

.... its concrete implementation

inheritance symbol

If G4VUserPrimaryGeneratorAction class is abstract and MyPrimaryGeneratorAction
class inherits from it, then the MyPrimaryGeneratorAction class must do the overriding
of the virtual methods not implemented in G4VUserPrimaryGeneratorAction

G4VUserPrimaryGeneratorAction

MyPrimaryGeneratorAction

in
h

er
it

an
ce

MyPrimaryGeneratorAction

Constructor

GeneratePrimaries()

•Constructor
- Instantiate primary

generator
- Set the default values

The G4VPrimaryGenerator
concrete class is instantiated
via the
GeneratePrimaryVertex()
method

G4VUserPrimaryGeneratorAction

MyPrimaryGeneratorAction

in
h

er
it

an
ce

G4VPrimaryGenerator instantiated
via the GeneratePrimaryVertex()
 G4VPrimaryGenerator is the base class for particle generators, that are invoked via

the method GeneratePrimaries(G4Event* aEvent) to produce an initial state.

- We can instantiate more than one generator and/or invoke one generator more
than once

- the logical step are: In G4VUserPrimaryGeneratorAction the
GeneratePrimaryVertex() (pubblic method of G4ParticleGun) is invoked inside the
GeneratePrimaries(G4Event* aEvent)

- Derived class from G4VPrimaryGenerator must implement the purely virtual
method GeneratePrimaryVertex()

- Geant4 provides two concrete class derived by G4VPrimaryGenerators

• G4ParticleGun

• G4GeneralParticleSource

G4ParticleGun()
• Concrete implementation of G4VPrimaryGenerator, it is used to simulate a

particles beam

 class G4ParticleGun:public G4VPrimaryGenerator

• It is provided by Geant4

• It does not provide any sort of randomisation

• Such randomisation can be achieved by the user, by invoking the ‘Set’
methods provided by G4ParticleGun

• It shoots one primary particle of a certain energy from a certain point at a
certain time to a certain direction

 - Various “Set” methods are available
 (see../source/event/include/G4ParticleGun.hh)

• The methods must be invoked inside GeneratePrimaries() of
G4VUserPrimarygeneratorActions before invoking
GeneratePrimaryVertex()

Pubblic methods of G4ParticleGun
• void SetParticleDefinition(G4ParticleDefinition*)

• void SetParticleMomentum(G4ParticleMomentum)

• void SetParticleMomentumDirection(G4ThreeVector)

• void SetParticleEnergy(G4double)

• void SetParticleTime(G4double)

• void SetParticlePosition(G4ThreeVector)

• void SetParticlePolarization(G4ThreeVector)

• void SetNumberOfParticles(G4int)

You can repeat this
for generating more

than one primary
particles

G4GeneralParticleSource()
• Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public G4VPrimaryGenerator

• It is designed to replace the G4ParticleGun class

• It is designed to allow specification of multiple particle sources each with independent
definition of particle type, position, direction and energy distribution
– Primary vertex can be randomly chosen on the surface of a certain volume

– Momentum direction and kinetic energy of the primary particle can also be randomised

• Distribution defined by UI commands
 /gps main command

 /gps/pos/type (Sets the source positional distribution type: planar, point, etc.)

 /gps/ang/type (Sets the angular distribution type to either isotropic, cosine-law or

 user-defined)

 /gps/ene/type (Sets the energy distribution type: monoenergetic, linear, User

 defined)

•Source: point-like source, 100 MeV proton, along z

– /gps/pos/type point

– /gps/particle proton

– /gps/energy 100 MeV

– /gps/direction 0 0 1

On line manual:

http://reat.space.qinetiq.com/gps/new
_gps_sum_files/gps_sum.htm

http://reat.space.qinetiq.com/gps/new_gps_sum_files/gps_sum.htm
http://reat.space.qinetiq.com/gps/new_gps_sum_files/gps_sum.htm

ParticleGun vs. GPS

• G4ParticleGun
– Simple and native

– Shoots one track at a time

– Easy to handle

• G4GeneralParticleSource
– Powerful

– Controlled by UI commands (G4GeneralParticleSourceMessenger.hh)

• Almost impossible to control with set method

– Capability of shooting particles from a surface of a volume

– Capability of randomizing kinetic energy, position, direction
following a user-specified distribution (histogram)

GPS is the choice if:
• If you need to shot primary particles

from a surface of a complicated
volume (outward or inward)

• If you need a complicated distribution

Examples

• examples/novice/N02 for G4ParticleGun

• examples/extended/analysis/A01/src/A01Prima
ryGeneratorAction.cc is a good example to start

• Examples also exist for GPS
examples/extended/eventgenerator/ exgps

A summary: what to do and where to do

• In the constructor of our UserPrimaryGeneratorAction
– Instantiate G4ParticleGun
– Set default values by Set methods of G4ParticleGun:

• Particle type, kinetic energy, position and direction

• In your macro file or from your interactive terminal session
– Set values for a run

• In the GeneratePrimaries() method
– Shoot random numbers and prepare the values of

• kinetic energy, position, direction

– Use set methods of G4ParticleGun to set such values
– Then invoke GeneratePrimaryVertex() method of G4ParticleGun
– If you need more than one primary track per event, loop over

randomisation and GeneratePrimaryVertex()

