


•   G4VUserPrimaryGeneratorAction 

•   G4VUserDetectorConstruction 

•   G4VUserPhysicsList 

Mandatory user classes in a Geant4: 

Particles, physics processes and cut-off parameters to be used in 
the simulation must be defined in the G4VUserPhysicsList class 



•  “Physics is physics – shouldn't Geant4 provide, as a default, a 
complete set of physics that everyone can use?” 

•  NO: 
–  Software can only capture Physics through a modelling 

•  No unique Physics modelling 
–  Very much the case for hadronic physics 
–  But also the electromagnetic physics 
–  Existing models still evolve and new models are created 

•  Some modellings are more suited to some energy ranges 
–  Medical applications not interested in multi-GeV physics in general 
–  HEP experiments not interested in effects due to atomic shell structure 

–  computation speed is an issue 
•  a user may want a less-detailed, but faster approximation 



•  For this reason Geant4 takes an atomistic, rather than an integral 
approach to physics 
–  provide many physics components (processes) which are de-coupled 

from one another  
–  user selects these components in custom-designed physics lists 

•  This physics environment is built by the user in a flexible way: 
–  picking up the particles he wants 
–  picking up the physics to assign to each particle 

•  User must have a good understanding of the physics required 
–  omission of particles or physics could cause errors or poor simulation 

User may also use some provided “ready-to-use” physics list 



 ConstructParticle(): 
–  choose the particles you need in your simulation, define all of them here                                             

 ConstructProcess() : 
–  for each particle, assign all the physics processes relevant to your 

simulation 
•  What's a process ? 

–  a class that defines how a particle should interact with matter, or 
decays 

»  it's where the physics is! 
 SetCuts() : 

–  set the range cuts for secondary production  
•  What's a range cut ? 

–  a threshold on particle production 
»  Particle unable to travel at least the range cut value are not 

produced 



There are three levels of class to describe particles in Geant4: 

•  G4ParticleDefinition 
–  define a particle 
aggregates information to characterize a particle’s properties (name, 
mass, spin, etc…) 

•  G4VDynamicParticle 
–  describe a particle interacting with materials  
aggregates information to describe the dynamic of particles (energy, 
momentum, polarization, etc…) 

•  G4VTrack 
–  describe a particle travelling in space and time  
includes all the information for tracking in a detector simulation 
(position, step, current volume, track ID, parent ID, etc…) 



Geant4 provides the G4ParticleDefinition definition class to 
represent a large number of elementary particles and nuclei, 

organized in six major categories: 
lepton, meson, baryon, boson, shortlived and ion 

•  Each particle is represented by its own class, which is derived from 
G4ParticleDefinition 

•  Proprieties characterizing individual particles are “read only” and can 
not be changed directly 

User must define all particles type which are used in the application: 
not only primary particles but also all other particles which may 

appear as secondaries generated by the used physics processes 



    void MyPhysicsList::ConstructParticle
() 

    { 
         G4Electron::ElectronDefinition(); 
         G4Proton::ProtonDefinition(); 
         G4Neutron::NeutronDefinition(); 
         G4Gamma::GammaDefinition(); 
         .... 
    } 

Due to the large number of 
particles can be necessary to 

define, this method sometimes 
can be not so comfortable 

It is possible to define all 
the particles belonging to a 

Geant4 category: 

•  G4LeptonConstructor 
•  G4MesonContructor 
•  G4BarionConstructor 
•  G4BosonConstructor 
•  G4ShortlivedConstructor 
•  G4IonConstructor 

    void 
MyPhysicsList::ConstructBaryons() 

    { 
         // Construct all baryons 

 G4BaryonConstructor pConstructor;                                                              
pConstructor.ConstructParticle(); 

    } 



G4Track 

G4ParticleDefinition 

G4DynamicParticle 

G4ProcessManager 

•   Propagated by the tracking, 
•   Snapshot of the particle state. 

•    Momentum, pre-assigned decay… 

•   The « particle type »: 
  G4Electron, ... 

•   Holds physics sensitivity 

•   … i.e. the processes 

Process_2 

Process_1 

Process_3 
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Geant4 provides seven major categories of processes: 
•  Electromagnetic 
•  Hadronic 
•  Decay 
•  Optical 
•  Photolepton_hadron 
•  Parameterization 
•  Transportation 

A process does two things: 
•  decides when and where an interaction will occur 

•  method: GetPhysicalInteractionLength()  limit the step 
•  this requires a cross section 
•  for the transportation process, the distance to the nearest object 

•  generates the final state of the interaction (changes momentum, 
generates secondaries, etc.) 

•  method: DoIt() 
•  this requires a model of the physics  

Physics processes describe how particles interact with materials 



Physics processes are derived from the G4VProcess base class 

–  PostStep actions: 
•  For describing point-like (inter)actions, like decay in flight, 

hadronic interactions … 

•  Abstract class defining the common interface of all 
processes in Geant4: 
–  Used by all physics processes (also by the transportation, etc… 
–  Defined in source/processes/management 

•  Define three kinds of actions: 

–  AlongStep actions: 
•  To describe continuous (inter)actions, 
    occurring along the path of the particle, 
    like ionisation; 

–  AtRest actions: 
•  Decay, e+ annihilation … 

AlongStep 

PostStep 

+ 
- + + + 

+ 

- 
- - - 

A process can implement a combination of them (decay = AtRest + PostStep) 



•  STAGE 1: a particle is shot and “transported” 
•  STAGE 2: all processes associated to the particle propose a geometrical 

step length (depends on process cross-section) 
•  STAGE 3: The process proposing the shortest step “wins” and the particle 

is moved to destination (if shorter than “Safety”) 
•  STAGE 4: All processes “along the step” are executed (e.g. ionization) 
•  STAGE 5: “post step” phase of the process that limited the step is executed 

New tracks are “pushed” to the stack 
•  STAGE 6: If Ekin=0 all “at rest” processes are executed; if particle is stable 

the track is killed. Else: 
•  STAGE 7: A new step starts and sequence repeats... 
Processes return a “true path length”. The multiple scattering “virtually folds up” this 
true path length into a shorter ”geometrical” path length. Based on this new length, 
the transportation can geometrically limits the step. 

+++++++++++ 
----------------- 



•  Discrete process: Compton Scattering, hadronic inelastic, ... 
  step determined by cross section, interaction at end of step 

  PostStepGPIL(), PostStepDoIt() 

•  Continuous process: Cerenkov effect 
  photons created along step, roughly proportional to step length 

  AlongStepGPIL(), AlongStepDoIt() 
•  At rest process: mu- capture at rest  

  interaction at rest 
  AtRestGPIL(), AtRestDoIt() 

•  Rest + discrete: positron annihilation, decay, ... 
  both in flight and at rest 

•  Continuous + discrete: ionization 
  energy loss is continuous 
  knock-on electrons (δ-ray) are discrete 

pure 

combined 



 Each simulation developer must answer the question: 
how low can you go? 
–  should I produce (and track) everything or consider thresholds?                                                 

the best compromise 

Maximize the 
simulation time 
performances 

maximise the 
accuracy 

need to go low enough to 
get the physics you're 

interested in 

can't go too low because some 
processes have infrared divergence 
causing huge CPU time 

This is a balancing act: 



   The traditional Monte Carlo solution is to impose an absolute 
cutoff in energy: 
–  particles are stopped when this energy is reached 
–  remaining energy is dumped at that point 

●  But, such a cut may cause imprecise stopping location and 
deposition of energy                                                                        

●  There is also a particle dependence 
–  range of 10 keV γ in Si is different from range of 10 keV e- in Si is 

a few microns                                                                 
●  And a material dependence 

–  suppose you have a detector made of alternating sheets of Pb 
and plastic scintillator 

–  if the cutoff is OK for Pb, it will likely be wrong for the scintillator 
which does the actual energy deposition measurement 



•  In Geant4 there are no tracking cuts 

–  particles are tracked down to a zero range/kinetic energy 

•  Only production cuts exist 
–  i.e. cuts allowing a particle to be born or not 

–  Applied to: gamma, electron, positron, proton 

•  Why are production cuts needed ? 

 Some electromagnetic processes involve infrared divergences 

–  this leads to a huge number of smaller and smaller energy photons/
electrons (such as in Bremsstrahlung, d-ray production) 

–  production cuts limit this production to particles above the threshold 

–  the remaining, divergent part is treated as a continuous effect (i.e. 
AlongStep action) 



●   Geant4 solution: impose a “range” production threshold 
–  this threshold is a distance, not an energy 
–  default = 1 mm 
–  the primary particle loses energy by producing secondary 

electrons or gammas 
–  if primary no longer has enough energy to produce secondaries 

which travel at least 1mm, two things happen: 
•  discrete energy loss ceases (no more secondaries produced) 
•  the primary is tracked down to zero energy using continuous 

energy loss 

●  Stopping location is therefore correct 
●  Only one value of production threshold distance is needed for 

all materials because it corresponds to different energies 
depending on material. 



Cut = 2 MeV Cut = 455 keV 
(range in LAr = 1.5 mm) 

 Production range =1.5 mm 

500 MeV p in 
LAr-Pb sampling 

calorimeter  

Threshold in range: 1.5 mm 
455 keV electron energy in liquid Ar 

2 MeV electron energy in Pb 

LAr LAr LAr 

LAr LAr 

Pb LAr 

Pb 

Pb 

Pb 

Pb Pb 



●  In a complex detector there may be many different types of 
sub-detectors involving  
–  finely segmented volumes 
–  very sensitive materials 
–  large, undivided volumes 
–  inert materials 

●  The same value of the secondary production threshold may 
not be appropriate for all of these  
–  user must define regions of similar sensitivity and granularity and 

assign a different set of production thresholds (cuts) for each                    
●  Warning: this feature is for users who are 

–  simulating complex detectors 
–  experienced at simulating EM showers in matter 



Philosophy of physics 
definition  



•  Provide a general model framework that allows the  
implementation of complementary/alternative models to 
describe the same process (e.g. Compton scattering)  
–  A certain model could work better in a certain energy range 

•  Decouple modeling of cross sections and of final state 
generation  

•  Provide processes containing 

–  Many possible models and cross sections 

–  Default cross sections for each model 

Models under continuous development 



•  Different ways to implement the physics models 

1. Explicitly associating a given model to a given particle 
for a given energy range 
–  Error prone 
–  Done at code level (requires C++ coding) 

2. Use of BUILDER and REFERENCE PHYSICS LISTS 
–  The BUILDERS are process-related (standard, 

lowenergy, Bertini, etc.) 
•  Building blocks to be used in a physics list 
•  Allows mix-and-match done by the user 

–  THE REF PHYSICS LISTS are complete physics lists 
•  Can be instantiated by UI (macro files) 



•  It is used to build a realistic physics list which would be too long 
and complicated with the previous approach 

•  It is derived from G4VUserPhysicsList 
•  AddTransportation() automatically called 
•  Allows the definition of “physics modules” for a given process 

–  Electromagnetic, Hadronic, Decay, Optical physics, Ion 
physics 

void myList::ConstructProcess() 
{ 
  AddTransportation(); 
  //Em physics 
  G4VPhysicsConstructor* emList = new G4EmStandardPhysics(); 
  emList->ConstructProcess(); 
  //Inelastic physics for protons  
  G4VPhysicsConstructor* pList = new G4QGSPProtonBuilder(); 
  pList->ConstructProcess(); 



•  Provide a complete and realistic physics with 
ALL models of interest 

•  Provided according to some use-cases 
•  Few choices are available for EM physics 
•  Several possibilities for hadronic 
•  They are intended as starting point and their 

builders can be reused 
– They are made up of builders, so easy to 

change/replace each given block 



•  In your main(), just register an instance of 
the physics list to the G4RunManager 

#include "QGSP_BERT.hh" 
int main() 
{ 
  // Run manager 
  G4RunManager * runManager = new G4RunManager();  

  … 
 G4VUserPhysicsList* physics = new QGSP_BERT(); 
  runManager-> SetUserInitialization(physics); 
} 



......./source/physics_lists/lists 



Electromagnetic physics 



•  The same physics processes (e.g. Compton scattering) can be 
described by different models, that can be alternative or 
complementary in a given energy range 

•  For instance: Compton scattering can be described by 
•  G4KleinNishinaCompton 
•  G4LivermoreComptonModel (specialized low-energy, based on the 

Livermore database) 
•  G4PenelopeComptonModel (specialized low-energy, based on the 

Penelope analytical model) 
•  G4LivermorePolarizedComptonModel (specialized low-energy, 

Livermore database with polarization) 
•  G4PolarizedComptonModel (Klein-Nishina with polarization) 

•  Different models can be combined, so that the appropriate one is 
used in each given energy range ( performance optimization) 
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•  A physical interaction or process is described by a process 
class 
–  Naming scheme : « G4ProcessName » 
–  Eg. : « G4Compton » for photon Compton scattering 

•  A physical process can be simulated according to several 
models, each model being described by a model class 
–  The usual naming scheme is: « G4ModelNameProcessNameModel 

» 
–  Eg. : « G4LivermoreComptonModel » for the Livermore Compton 

model 
–  Models can be alternative and/or complementary on certain energy 

ranges 
–  Refer to the Geant4 manual for the full list of available models 



•  Models and processes for the description of the EM 
interactions in Geant4 have been grouped in several 
packages 

Package Description 

Standard γ-rays, e± up to 100 TeV, Hadrons, ions up to 100 TeV 

Muons Muons up to 1 PeV 

X-rays X-rays and optical photon production 

Optical Optical photons interactions 

High-Energy Processes at high energy (> 10 GeV). Physics for exotic 
particles 

Low-Energy Specialized processes for low-energy (down to 250 eV), 
including atomic effects 

Polarization Simulation of polarized beams 



•  Use Low-Energy models (Livermore or Penlope), as an 
alternative to Standard models, when you: 
–  need precise treatment of EM showers and interactions 

at low-energy (keV scale) 
–  are interested in atomic effects, as fluorescence x-rays, 

Doppler broadening, etc. 
–  can afford a more CPU-intensive simulation 
–  want to cross-check an other simulation (e.g. with a 

different model) 
•  Do not use when you are interested in EM physics > 

MeV  
–  same results as Standard EM models, performance 

penalty 



G4ProcessManager* pmanager =  
   G4Gamma::GetProcessManager(); 
pmanager->AddDiscreteProcess(new G4PhotoElectricEffect); 
pmanager->AddDiscreteProcess(new G4ComptonScattering);              
pmanager->AddDiscreteProcess(new G4GammaConversion);  
pmanager->AddDiscreteProcess(new G4RayleighScattering); 

Only PostStep 

•  Use AddDiscreteProcess because γ-rays processes 
have only PostStep actions  

•  For each process, the default model is used among all 
the available ones (e.g. G4KleinNishinaCompton for 
G4ComptonScattering) 



G4EmStandardPhysics               – default  
G4EmStandardPhysics_option1  – HEP fast but not precise  
G4EmStandardPhysics_option2  – Experimental 
G4EmStandardPhysics_option3  – medical, space 
G4EmStandardPhysics_option4  – optimal mixture for precision 
G4EmLivermorePhysics 
G4EmLivermorePolarizedPhysics 
G4EmPenelopePhysics 
G4EmDNAPhysics 

•  $G4INSTALL/source/physics_list/builders 
•  Advantage of using of these classes – they are tested on 

regular basis and are used for regular validation  

Combined  Physics 
Standard > 1 GeV 

LowEnergy < 1 GeV 



Hadronic physics 



•  Data-driven models 
•  Parametrised models 
•  Theory-driven models 



•  Are part of the Geant4 code 
•  Four families of lists 

– LHEP, parameterised modelling of hadronic 
interactions  

•  Based on the old GEISHA package 
– QGS, or list based on a model that use the Quark 

Gluon String model for high energy hadronic 
interactions of protons, neutrons, pions and kaons 

– FTF, based on the FTF (FRITIOF like string model) 
for protons, neutrons, pions and kaons 

– Other specialized physics lists 



•  Default cross section sets are provided for each type of 
hadronic process: 
–  Fission, capture, elastic, inelastic  

•  Can be overridden or completely replaced  
•  Different types of cross section sets:  

–  Some contain only a few numbers to parameterize cross section  
–  Some represent large databases (data driven models)  

•  Cross section management 
–  GetCrossSection()  sees last set loaded for energy range 



http://geant4.cern.ch/support/proc_mod_catalog/models 





•  A dedicated web page 

•  Application fields are identified 
– High energy physics 
–  LHC neutron fluxes 
– Shielding 
– Medical 
– … 

Info to help users to choose the proper physics list: 

http://geant4.cern.ch/support/proc_mod_catalog/ 

physics_lists/physicsLists.shtml 





  G4ParticleDefinition* proton=     
 G4Proton::ProtonDefinition();  

  G4ProcessManager* protonProcessManager =                                                     
 proton->GetProcessManager(); 

  // Elastic scattering  
  G4HadronElasticProcess* protonElasticProcess =                                            

new G4HadronElasticProcess(); 

  G4LElastic* protonElasticModel =  
 new G4LElastic(); 

  protonElasticProcess-> 
 RegisterMe(protonElasticModel); 

  protonProcessManager-> 
 AddDiscreteProcess(protonElasticProcess);  

retrieve the 
process 

manager for 
proton 

create the 
process for 

elastic scattering 

get the LE parametrized model 
for elastic scattering 

register the model to the 
process 

attach the process to 
proton 



... 
// Inelastic scattering  
G4ProtonInelasticProcess* protonInelasticProcess  
  = new G4ProtonInelasticProcess(); 

G4LEProtonInelastic* protonLEInelasticModel 
 = new G4LEProtonInelastic();  
protonLEInelasticModel-> 
 SetMaxEnergy(20.0*GeV); 

protonInelasticProcess-> 
 RegisterMe(protonLEInelasticModel);  

G4HEProtonInelastic* protonHEInelasticModel =                                                                
new G4HEProtonInelastic();  

protonHEInelasticModel->SetMinEnergy(20.0*GeV);  
protonInelasticProcess 
 ->RegisterMe(protonHEInelasticModel); 

creates the 
process for 

inelastic 
scattering 

gets the LEP 
model up to 20 

GeV 

registers LEP model to 
the process 

gets the HEP 
model from 

20 GeV 

registers HEP model to 
the process 
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Quick overview of validation 



•  A website is available to collect relevant information for 
validation of Geant4 hadronic models (plots, tables, 
references to data and to models, etc.) 

http://geant4.fnal.gov/hadronic_validation/ 
validation_plots.htm 

•  Several physics lists and several use-cases have been 
considered (e.g. thick target, stopped particles, low-
energy) 

•  Includes final states and cross sections 





Bertini and Binary 
cascade models: 

neutron production vs. 
angle from 1.5 GeV 

protons on Lead  



Binary cascade model: 
double differential 
cross-section for 

neutrons produced 
by 256 MeV protons 

impinging on different 
targets 




