
Databases in experimental Physics:
theory and practice
L. Tomassetti
University of Ferrara and INFN

X SEMINAR ON SOFTWARE FOR NUCLEAR, SUBNUCLEAR AND APPLIED PHYSICS
2 – 8 JUNE 2013, PORTO CONTE, ALGHERO

1
mercoledì 5 giugno 13

Notice!

I’m teaching the course
“Databases and Laboratory”
to Computer Science Bachelor's students

and “Advanced Databases”
to Computer Science Master’s students

2
mercoledì 5 giugno 13

Summary
Introduction

Why Databases are important for Physicists

A 1-semester database course in half-an-hour

Some applications/use cases/examples:

Good design (?)

Problems arising from database design issues

!!!

3
mercoledì 5 giugno 13

Introduction
Database System are widely used in several fields

We are interested in how they can make our work easier:

Administrative tasks

Organizational tasks

Data store and management

Metadata store and management

Backend for services in use by experiments

4
mercoledì 5 giugno 13

Introduction
Please, let me ask you a couple of questions:

How many of you are working in HEP experiments?

How many of you have ever used the Grid Infrastructure (directly)?

... ever used the Grid Infrastructure through a ‘custom’ service?

... ever used (a query, for example) a database management system
(directly)?

... ever used a Wiki, Tracking software, ...?

No, I’ll not ask you:

... ever used Amazon/eBay/AppStores/...?

... ever used Facebook/Twitter/...?

5
mercoledì 5 giugno 13

Introduction
Just a few examples to start with:

Publications databases (WoS, Scopus, INFN, ...)

Organizational databases (experiments, ...)

Bookkeeping databases

Conditions databases

Grid access services (Dirac, ...)

6
mercoledì 5 giugno 13

Introduction
As ‘simple’ users we may consider services as
black-boxes and ignore the internals

As soon as we need something more (in Physics
applications of course) it can be useful to know
some details...

As soon our supervisors ask for writing analysis/
core software/utility code we have to know
(almost) all details...

7
mercoledì 5 giugno 13

Introduction

Database are relatively (maybe too) simple,
we just need to understand a few concepts and
apply them correctly

We do not need to be database experts (unless we
have to develop core software tightly connected to
dbms)

I’ll limit the discussion to Relational Databases

8
mercoledì 5 giugno 13

DATABASE IN THEORY
9

mercoledì 5 giugno 13

Content
Introduction & Conceptual Modeling

Database System: Concepts and Architecture

Entity–Relationship Model

Relational Model

E–R to Relational Model Mapping

Relational Algebra

SQL

10

You can decide:
(a) my speed
(b) which parts we should discuss

I would suggest at least:
- Relational Model + SQL
- E–R + Algebra

mercoledì 5 giugno 13

Introduction &
Conceptual Modeling

11
mercoledì 5 giugno 13

Basic Definitions

Database: A collection of related data.

Data: Known facts that can be recorded and have an implicit meaning.

Mini-world: Some part of the real world about which data is stored in a
database. For example, student grades and transcripts at a university.

Database Management System (DBMS): A software package/ system
to facilitate the creation and maintenance of a computerized database.

Database System: The DBMS software together with the data itself.
Sometimes, the applications are also included.

12
mercoledì 5 giugno 13

Typical DBMS
Functionality
Define a database: in terms of data types, structures
and constraints

Construct or Load the Database on a secondary
storage medium

Manipulating the database: querying, generating
reports, insertions, deletions and modifications to its
content

Concurrent Processing and Sharing by a set of users
and programs – yet, keeping all data valid and consistent

13
mercoledì 5 giugno 13

Typical DBMS
Functionality

Other features:

Protection or Security measures to prevent
unauthorized access

“Active” processing to take internal actions on data

Presentation and Visualization of data

14
mercoledì 5 giugno 13

Main Characteristics of
the Database Approach
Self-describing nature of a database system: A DBMS
catalog stores the description of the database (the
description is called meta-data). This allows the
DBMS software to work with different databases.

Insulation between programs and data: Called
program-data independence. Allows changing data
storage structures and operations without having to
change the DBMS access programs.

15
mercoledì 5 giugno 13

Main Characteristics of
the Database Approach

Data Abstraction: A data model is used to hide
storage details and present the users with a
conceptual view of the database.

Support of multiple views of the data: Each user may
see a different view of the database, which describes
only the data of interest to that user.

16
mercoledì 5 giugno 13

Main Characteristics of
the Database Approach

Sharing of data and multiuser transaction processing :
allowing a set of concurrent users to retrieve and to
update the database. Concurrency control within the
DBMS guarantees that each transaction is correctly
executed or completely aborted. OLTP (Online
Transaction Processing) is a major part of database
applications.

17
mercoledì 5 giugno 13

Advantages of Using the
Database Approach
Controlling redundancy in data storage and in
development and maintenence efforts.

Sharing of data among multiple users.

Restricting unauthorized access to data.

Providing persistent storage for program Objects

Providing Storage Structures for efficient Query
Processing

18
mercoledì 5 giugno 13

Advantages of Using the
Database Approach
Providing backup and recovery services.

Providing multiple interfaces to different classes of
users.

Representing complex relationships among data.

Enforcing integrity constraints on the database.

Drawing Inferences and Actions using rules

19
mercoledì 5 giugno 13

Additional Implications of
Using the Database Approach

Potential for enforcing standards: this is very crucial
for the success of database applications in large
organizations Standards refer to data item names,
display formats, screens, report structures, meta-data
(description of data) etc.

Reduced application development time: incremental
time to add each new application is reduced.

20
mercoledì 5 giugno 13

Additional Implications of
Using the Database Approach
Flexibility to change data structures: database
structure may evolve as new requirements are
defined.

Availability of up-to-date information – very important
for on-line transaction systems such as airline, hotel,
car reservations.

Economies of scale: by consolidating data and
applications across departments wasteful overlap of
resources and personnel can be avoided.

21
mercoledì 5 giugno 13

When not to use a DBMS

When no DBMS may suffice:

If the database system is not able to handle the
complexity of data because of modeling limitations

If the database users need special operations not
supported by the DBMS.

22
mercoledì 5 giugno 13

Database System:
Concepts and Architecture

23
mercoledì 5 giugno 13

Data Models

Data Model: A set of concepts to describe the
structure of a database, and certain constraints that
the database should obey.

Data Model Operations: Operations for specifying
database retrievals and updates by referring to the
concepts of the data model. Operations on the data
model may include basic operations and user-defined
operations.

24
mercoledì 5 giugno 13

Categories of data
models
Conceptual (high-level, semantic) data models: Provide
concepts that are close to the way many users perceive
data. (Also called entity-based or object-based data
models.)

Physical (low-level, internal) data models: Provide
concepts that describe details of how data is stored in
the computer.

Implementation (representational) data models: Provide
concepts that fall between the above two, balancing user
views with some computer storage details.

25
mercoledì 5 giugno 13

History of Data Models
Relational Model: proposed in 1970 by E.F. Codd (IBM), first
commercial system in 1981-82. Now in several commercial products
(DB2, ORACLE, SQL Server, SYBASE, INFORMIX) and several open-
source products (MySQL, PostgreSQL, ...).

Network Model: the first one to be implemented by Honeywell in
1964-65 (IDS System). Adopted heavily due to the support by
CODASYL (CODASYL - DBTG report of 1971). Later implemented in a
large variety of systems - IDMS (Cullinet - now CA), DMS 1100 (Unisys),
IMAGE (H.P.), VAX -DBMS (Digital Equipment Corp.).

Hierarchical Data Model: implemented in a joint effort by IBM and
North American Rockwell around 1965. Resulted in the IMS family of
systems. The most popular model. Other system based on this model:
System 2k (SAS inc.)

26
mercoledì 5 giugno 13

History of Data Models
Object-oriented Data Model(s): several models have been
proposed for implementing in a database system. One set
comprises models of persistent O-O Programming
Languages such as C++ (e.g., in OBJECTSTORE or
VERSANT), and Smalltalk (e.g., in GEMSTONE).
Additionally, systems like O2, ORION (at MCC - then
ITASCA), IRIS (at H.P.- used in Open OODB).

Object-Relational Models: Most Recent Trend. Started
with Informix Universal Server. Exemplified in the latest
versions of Oracle-10i, DB2, and SQL Server etc. systems.

27
mercoledì 5 giugno 13

Schemas versus Instances
Database Schema: The description of a database. Includes
descriptions of the database structure and the constraints
that should hold on the database.

Schema Diagram: A diagrammatic display of (some aspects
of) a database schema.

Schema Construct: A component of the schema or an
object within the schema, e.g., STUDENT, COURSE.

Database Instance: The actual data stored in a database at
a particular moment in time. Also called database state (or
occurrence).

28
mercoledì 5 giugno 13

Database Schema Vs.
Database State
Database State: Refers to the content of a database at a moment in
time.

Initial Database State: Refers to the database when it is loaded

Valid State: A state that satisfies the structure and constraints of the
database.

Distinction:

The database schema changes very infrequently. The database
state changes every time the database is updated.

Schema is also called intension, whereas state is called extension.

29
mercoledì 5 giugno 13

Three-Schema
Architecture

Proposed to support DBMS characteristics of:

Program-data independence.

Support of multiple views of the data.

30
mercoledì 5 giugno 13

Three-Schema
Architecture
Defines DBMS schemas at three levels:	

Internal schema at the internal level to describe physical storage
structures and access paths. Typically uses a physical data
model.

Conceptual schema at the conceptual level to describe the
structure and constraints for the whole database for a
community of users. Uses a conceptual or an implementation
data model.

External schemas at the external level to describe the various
user views. Usually uses the same data model as the conceptual
level.

31
mercoledì 5 giugno 13

Three-Schema
Architecture

Mappings among schema levels are needed to
transform requests and data. Programs refer to an
external schema, and are mapped by the DBMS to
the internal schema for execution.

32
mercoledì 5 giugno 13

Data Independence

Logical Data Independence: The capacity to change
the conceptual schema without having to change the
external schemas and their application programs.

Physical Data Independence: The capacity to change
the internal schema without having to change the
conceptual schema.

33
mercoledì 5 giugno 13

Data Independence

When a schema at a lower level is changed, only the
mappings between this schema and higher-level
schemas need to be changed in a DBMS that fully
supports data independence. The higher-level
schemas themselves are unchanged. Hence, the
application programs need not be changed since they
refer to the external schemas.

34
mercoledì 5 giugno 13

DBMS Languages

Data Definition Language (DDL): Used by the DBA
and database designers to specify the conceptual
schema of a database. In many DBMSs, the DDL is
also used to define internal and external schemas
(views). In some DBMSs, separate storage definition
language (SDL) and view definition language (VDL) are
used to define internal and external schemas.

35
mercoledì 5 giugno 13

DBMS Languages

Data Manipulation Language (DML): Used to specify
database retrievals and updates.

DML commands (data sublanguage) can be
embedded in a general-purpose programming
language (host language), such as COBOL, C or an
Assembly Language.

Alternatively, stand-alone DML commands can be
applied directly (query language).

36
mercoledì 5 giugno 13

DBMS Languages

High Level or Non-procedural Languages: e.g., SQL,
are set-oriented and specify what data to retrieve than
how to retrieve. Also called declarative languages.

Low Level or Procedural Languages: record-at-a-time;
they specify how to retrieve data and include
constructs such as looping.

37
mercoledì 5 giugno 13

Entity – Relationship Model

38
mercoledì 5 giugno 13

ER Model
Example Database Application (COMPANY)

ER Model Concepts

Entities and Attributes

Entity Types, Value Sets, and Key Attributes

Relationships and Relationship Types

Weak Entity Types

Roles and Attributes in Relationship Types

ER Diagrams - Notation

ER Diagram for COMPANY Schema

39
mercoledì 5 giugno 13

Example COMPANY Database
Requirements of the Company (oversimplified for illustrative purposes)

The company is organized into DEPARTMENTs. Each department has a name,
number and an employee who manages the department. We keep track of the
start date of the department manager.

Each department controls a number of PROJECTs. Each project has a name,
number and is located at a single location.

We store each EMPLOYEE’s social security number, address, salary, sex, and
birthdate. Each employee works for one department but may work on several
projects. We keep track of the number of hours per week that an employee
currently works on each project. We also keep track of the direct supervisor of
each employee.

Each employee may have a number of DEPENDENTs. For each dependent, we
keep track of their name, sex, birthdate, and relationship to employee.

40
mercoledì 5 giugno 13

ER Model Concepts
Entities and Attributes

Entities are specific objects or things in the mini-world that are
represented in the database. For example the EMPLOYEE John Smith,
the Research DEPARTMENT, the ProductX PROJECT

Attributes are properties used to describe an entity. For example an
EMPLOYEE entity may have a Name, SSN, Address, Sex, BirthDate

A specific entity will have a value for each of its attributes. For example a
specific employee entity may have Name='John Smith',
SSN='123456789', Address ='731, Fondren, Houston, TX', Sex='M',
BirthDate='09-JAN-55‘

Each attribute has a value set (or data type) associated with it – e.g.
integer, string, subrange, enumerated type, …

41
mercoledì 5 giugno 13

Types of Attributes (1)
Simple

Each entity has a single atomic value for the attribute. For example, SSN or
Sex.

Composite

The attribute may be composed of several components. For example, Address
(Apt#, House#, Street, City, State, ZipCode, Country) or Name (FirstName,
MiddleName, LastName). Composition may form a hierarchy where some
components are themselves composite.

Multi-valued

An entity may have multiple values for that attribute. For example, Color of a
CAR or PreviousDegrees of a STUDENT. Denoted as {Color} or
{PreviousDegrees}.

42
mercoledì 5 giugno 13

Types of Attributes (2)

In general, composite and multi-valued attributes may
be nested arbitrarily to any number of levels although
this is rare. For example, PreviousDegrees of a
STUDENT is a composite multi-valued attribute
denoted by {PreviousDegrees (College, Year, Degree,
Field)}.

43
mercoledì 5 giugno 13

Entity Types and Key
Attributes
Entities with the same basic attributes are grouped or typed into an entity
type. For example, the EMPLOYEE entity type or the PROJECT entity type.

An attribute of an entity type for which each entity must have a unique
value is called a key attribute of the entity type. For example, SSN of
EMPLOYEE.

A key attribute may be composite. For example, VehicleTagNumber is a key
of the CAR entity type with components (Number, State).

An entity type may have more than one key. For example, the CAR entity
type may have two keys:

VehicleIdentificationNumber (popularly called VIN) and

VehicleTagNumber (Number, State), also known as license_plate number.

44
mercoledì 5 giugno 13

Meaning

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

IDENTIFYING RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION OF E2 IN R

CARDINALITY RATIO 1:N FOR E1:E2 IN R

STRUCTURAL CONSTRAINT (min, max) ON PARTICIPATION
OF E IN R

Symbol

E1 R E2

E1 R E2

R (min,max) E

N

SUMMARY OF ER-DIAGRAM
NOTATION FOR ER SCHEMAS

45
mercoledì 5 giugno 13

ER DIAGRAM – Entity Types are:
EMPLOYEE, DEPARTMENT,
PROJECT, DEPENDENT

46
mercoledì 5 giugno 13

Relationships and
Relationship Types (1)
A relationship relates two or more distinct entities with a specific
meaning. For example, EMPLOYEE John Smith works on the
ProductX PROJECT or EMPLOYEE Franklin Wong manages the
Research DEPARTMENT.

Relationships of the same type are grouped or typed into a
relationship type. For example, the WORKS_ON relationship type in
which EMPLOYEEs and PROJECTs participate, or the MANAGES
relationship type in which EMPLOYEEs and DEPARTMENTs
participate.

The degree of a relationship type is the number of participating entity
types. Both MANAGES and WORKS_ON are binary relationships.

47
mercoledì 5 giugno 13

e1 

e2 

e3 

e4 

e5 

e6 

e7 

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

 d1

 d2

 d3

DEPARTMENT

Example relationship instances of the
WORKS_FOR relationship between
EMPLOYEE and DEPARTMENT

48
mercoledì 5 giugno 13

Example relationship instances of
the WORKS_ON relationship
between EMPLOYEE and PROJECT

e1 

e2 

e3 

e4 

e5 

e6 

e7 

r1

r2

r3

r4

r5

r6

r7

 p1

 p2

 p3

r8

r9

49
mercoledì 5 giugno 13

Relationships and
Relationship Types (2)

More than one relationship type can exist with the
same participating entity types. For example,
MANAGES and WORKS_FOR are distinct
relationships between EMPLOYEE and
DEPARTMENT, but with different meanings and
different relationship instances.

50
mercoledì 5 giugno 13

ER DIAGRAM – Relationship Types are:
WORKS_FOR, MANAGES, WORKS_ON,
CONTROLS,
SUPERVISION, DEPENDENTS_OF

51
mercoledì 5 giugno 13

Weak Entity Types
An entity that does not have a key attribute

A weak entity must participate in an identifying relationship type with an owner
or identifying entity type

Entities are identified by the combination of:

A partial key of the weak entity type

The particular entity they are related to in the identifying entity type

Example:

Suppose that a DEPENDENT entity is identified by the dependent’s first
name and birhtdate, and the specific EMPLOYEE that the dependent is
related to. DEPENDENT is a weak entity type with EMPLOYEE as its
identifying entity type via the identifying relationship type DEPENDENT_OF

52
mercoledì 5 giugno 13

Weak Entity Type is: DEPENDENT
Identifying Relationship is:
DEPENDENTS_OF

53
mercoledì 5 giugno 13

Constraints on
Relationships
Constraints on Relationship Types

(Also known as ratio constraints)

 Maximum Cardinality

 One-to-one (1:1)

 One-to-many (1:N) or Many-to-one (N:1)

 Many-to-many

Minimum Cardinality (also called participation constraint or existence
dependency constraints)

 zero (optional participation, not existence-dependent)

 one or more (mandatory, existence-dependent)

54
mercoledì 5 giugno 13

Many-to-one (N:1)
RELATIONSHIP

e1 

e2 

e3 

e4 

e5 

e6 

e7 

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

 d1

 d2

 d3

DEPARTMENT

55
mercoledì 5 giugno 13

Many-to-many (M:N)
RELATIONSHIP

e1 

e2 

e3 

e4 

e5 

e6 

e7 

r1

r2

r3

r4

r5

r6

r7

 p1

 p2

 p3

r8

r9

56
mercoledì 5 giugno 13

Relationships and
Relationship Types (3)
We can also have a recursive relationship type.

Both participations are same entity type in different roles.

For example, SUPERVISION relationships between
EMPLOYEE (in role of supervisor or boss) and (another)
EMPLOYEE (in role of subordinate or worker).

In following figure, first role participation labeled with 1 and
second role participation labeled with 2.

In ER diagram, need to display role names to distinguish
participations.

57
mercoledì 5 giugno 13

A RECURSIVE RELATIONSHIP
SUPERVISION

e1 

e2 

e3 

e4 

e5 

e6 

e7 

EMPLOYEE

r1

r2

r3

r4

r5

r6

SUPERVISION

2
1

1 2

2

1

1

1
2

1

2

2

58
mercoledì 5 giugno 13

Recursive Relationship Type is:
SUPERVISION
(participation role names are shown)

59
mercoledì 5 giugno 13

Attributes of Relationship
types

A relationship type can have attributes; for example,
HoursPerWeek of WORKS_ON; its value for each
relationship instance describes the number of hours
per week that an EMPLOYEE works on a PROJECT.

60
mercoledì 5 giugno 13

Attribute of a Relationship Type is:
Hours of WORKS_ON

61
mercoledì 5 giugno 13

Structural Constraints –
one way to express semantics
of relationships
Structural constraints on relationships:

Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or M:N

SHOWN BY PLACING APPROPRIATE NUMBER ON THE
LINK.

Participation constraint (on each participating entity type): total
(called existence dependency) or partial.

SHOWN BY DOUBLE LINING THE LINK

NOTE: These are easy to specify for Binary Relationship Types.

62
mercoledì 5 giugno 13

Alternative (min, max) notation for
relationship structural constraints:
Specified on each participation of an entity type E in a relationship type R

Specifies that each entity e in E participates in at least min and at most max relationship instances in R

Default(no constraint): min=0, max=n

Must have min≤max, min≥0, max ≥1

Derived from the knowledge of mini-world constraints

Examples:

A department has exactly one manager and an employee can manage at most one department.

Specify (0,1) for participation of EMPLOYEE in MANAGES

Specify (1,1) for participation of DEPARTMENT in MANAGES

An employee can work for exactly one department but a department can have any number of
employees.

Specify (1,1) for participation of EMPLOYEE in WORKS_FOR

Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

63
mercoledì 5 giugno 13

(1,1) (0,1)

(1,N) (1,1)

(min,max) notation

64
mercoledì 5 giugno 13

COMPANY ER Schema Diagram
 using (min, max) notation

65
mercoledì 5 giugno 13

Relationships of Higher
Degree

Relationship types of degree 2 are called binary

Relationship types of degree 3 are called ternary and
of degree n are called n-ary

In general, an n-ary relationship is not equivalent to n
binary relationships

66
mercoledì 5 giugno 13

PROBLEM with ER notation

THE ENTITY RELATIONSHIP MODEL IN ITS
ORIGINAL FORM DID NOT SUPPORT THE
SPECIALIZATION/GENERALIZATION
ABSTRACTIONS

67
mercoledì 5 giugno 13

Extended Entity-
Relationship (EER) Model

Incorporates Set-subset relationships

Incorporates Specialization/Generalization Hierarchies

68
mercoledì 5 giugno 13

Relational Model

69
mercoledì 5 giugno 13

Relational Model

Relational Model Concepts

Relational Model Constraints and Relational Database
Schemas

Update Operations and Dealing with Constraint
Violations

70
mercoledì 5 giugno 13

Concepts
The relational Model of Data is based on the concept of
a Relation.

A Relation is a mathematical concept based on the ideas
of sets.

The strength of the relational approach to data
management comes from the formal foundation provided
by the theory of relations.

We review the essentials of the relational approach in the
next slides.

71
mercoledì 5 giugno 13

Concepts

The model was first proposed by Dr. E.F. Codd of IBM
in 1970 in the following paper:
"A Relational Model for Large Shared Data Banks,"
Communications of the ACM, June 1970.

The above paper caused a major revolution in the field
of Database management and earned Ted Codd the
coveted ACM Turing Award.

72
mercoledì 5 giugno 13

INFORMAL
DEFINITIONS
RELATION: A table of values

A relation may be thought of as a set of rows.

A relation may alternately be though of as a set of columns.

Each row represents a fact that corresponds to a real-world entity or
relationship.

Each row has a value of an item or set of items that uniquely identifies that
row in the table.

Sometimes row-ids or sequential numbers are assigned to identify the rows
in the table.

Each column typically is called by its column name or column header or
attribute name.

73
mercoledì 5 giugno 13

FORMAL DEFINITIONS
A Relation may be defined in multiple ways.

The Schema of a Relation: R (A1, A2, ..., An)

Relation schema R is defined over attributes A1, A2, ..., An

For Example:
CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four
attributes Cust-id, Cust-name, Address, Phone#, each of
which has a domain or a set of valid values.
For example, the domain of Cust-id is 6 digit numbers.

74
mercoledì 5 giugno 13

FORMAL DEFINITIONS
A tuple is an ordered set of values

Each value is derived from an appropriate domain.

Each row in the CUSTOMER table may be referred to as a tuple
in the table and would consist of four values.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332",
"(404) 894-2000">
is a tuple belonging to the CUSTOMER relation.

A relation may be regarded as a set of tuples (rows).

Columns in a table are also called attributes of the relation.

75
mercoledì 5 giugno 13

FORMAL DEFINITIONS
A domain has a logical definition: e.g.,
“USA_phone_numbers” are the set of 10 digit phone
numbers valid in the U.S.

A domain may have a data-type or a format defined for it. The
USA_phone_numbers may have a format: (ddd)-ddd-dddd
where each d is a decimal digit. E.g., Dates have various
formats such as monthname, date, year or yyyy-mm-dd, or
dd mm,yyyy etc.

An attribute designates the role played by the domain. E.g.,
the domain Date may be used to define attributes “Invoice-
date” and “Payment-date”.

76
mercoledì 5 giugno 13

FORMAL DEFINITIONS
The relation is formed over the cartesian product of the sets; each set has
values from a domain; that domain is used in a specific role which is conveyed
by the attribute name.

For example, attribute Cust-name is defined over the domain of strings of 25
characters. The role these strings play in the CUSTOMER relation is that of the
name of customers.

Formally,

Given R(A1, A2,, An)

 r(R) ⊂ dom (A1) X dom (A2) X X dom(An)

R: schema of the relation

r of R: a specific "value" or population of R.

77
mercoledì 5 giugno 13

FORMAL DEFINITIONS
Let S1 = {0,1}

Let S2 = {a,b,c}

Let R ⊂ S1 X S2

Then for example: r(R) = {<0,a> , <0,b> , <1,c> }

is one possible “state” or “population” or “extension” r of the
relation R, defined over domains S1 and S2. It has three tuples.

78
mercoledì 5 giugno 13

DEFINITION SUMMARY
Informal Terms Formal Terms

Table Relation

Column Attribute/Domain

Row Tuple

Values in a column Domain

Table Definition Schema of a Relation

Populated Table Extension

79
mercoledì 5 giugno 13

Example

80
mercoledì 5 giugno 13

CHARACTERISTICS OF
RELATIONS
Ordering of tuples in a relation r(R): The tuples are not considered
to be ordered, even though they appear to be in the tabular form.

Ordering of attributes in a relation schema R (and of values within
each tuple): We will consider the attributes in R(A1, A2, ..., An) and
the values in t=<v1, v2, ..., vn> to be ordered.

(However, a more general alternative definition of relation does
not require this ordering). But... Physical level may rely on order!

Values in a tuple: All values are considered atomic (indivisible). A
special null value is used to represent values that are unknown or
inapplicable to certain tuples.

81
mercoledì 5 giugno 13

CHARACTERISTICS OF
RELATIONS
Notation:

We refer to component values of a tuple t by t[Ai] = vi
(the value of attribute Ai for tuple t).

Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t
containing the values of attributes Au, Av, ..., Aw,
respectively.

82
mercoledì 5 giugno 13

Relational Integrity
Constraints
Constraints are conditions that must hold on all valid
relation instances. There are three main types of
constraints:

Key constraints

Entity integrity constraints

Referential integrity constraints

83
mercoledì 5 giugno 13

Key Constraints
Superkey of R: A set of attributes SK of R such that no two tuples in any
valid relation instance r(R) will have the same value for SK. That is, for any
distinct tuples t1 and t2 in r(R), t1[SK] ≠ t2[SK].

Key of R: A "minimal" superkey; that is, a superkey K such that removal of
any attribute from K results in a set of attributes that is not a superkey.

Example: The CAR relation schema:

CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys, Key1 = {State, Reg#}, Key2 = {SerialNo}, which are also
superkeys. {SerialNo, Make} is a superkey but not a key.

If a relation has several candidate keys, one is chosen arbitrarily to be the
primary key. The primary key attributes are underlined.

84
mercoledì 5 giugno 13

Key Constraints

85
mercoledì 5 giugno 13

Entity Integrity
Relational Database Schema: A set S of relation schemas that
belong to the same database. S is the name of the database.

S = {R1, R2, ..., Rn}

Entity Integrity: The primary key attributes PK of each relation
schema R in S cannot have null values in any tuple of r(R). This is
because primary key values are used to identify the individual
tuples.

t[PK] ≠ null for any tuple t in r(R)

Note: Other attributes of R may be similarly constrained to disallow
null values, even though they are not members of the primary key.

86
mercoledì 5 giugno 13

Referential Integrity
A constraint involving two relations (the previous constraints
involve a single relation).

Used to specify a relationship among tuples in two relations:
the referencing relation and the referenced relation.

Tuples in the referencing relation R1 have attributes FK (called
foreign key attributes) that reference the primary key attributes
PK of the referenced relation R2. A tuple t1 in R1 is said to
reference a tuple t2 in R2 if t1[FK] = t2[PK].

A referential integrity constraint can be displayed in a relational
database schema as a directed arc from R1.FK to R2.

87
mercoledì 5 giugno 13

Referential Integrity
Constraint
Statement of the constraint

The value in the foreign key column (or columns) FK of the
the referencing relation R1 can be either:

1.a value of an existing primary key value of the
corresponding primary key PK in the referenced relation
R2, or

2.a null.

In case (2), the FK in R1 should not be a part of its own
primary key.

88
mercoledì 5 giugno 13

Other Types of
Constraints
Semantic Integrity Constraints:

based on application semantics and cannot be expressed by
the model per se

E.g., “the max. no. of hours per employee for all projects he
or she works on is 56 hrs per week”

A constraint specification language may have to be used to
express these

SQL-99 allows TRIGGERS and ASSERTIONS to allow for
some of these

89
mercoledì 5 giugno 13

90
mercoledì 5 giugno 13

Update Operations on
Relations
INSERT a tuple.

DELETE a tuple.

MODIFY a tuple.

Integrity constraints should not be violated by the update
operations.

Several update operations may have to be grouped together.

Updates may propagate to cause other updates automatically.
This may be necessary to maintain integrity constraints.

91
mercoledì 5 giugno 13

Update Operations on
Relations
In case of integrity violation, several actions can be taken:

Cancel the operation that causes the violation (REJECT
option)

Perform the operation but inform the user of the
violation

Trigger additional updates so the violation is corrected
(CASCADE option, SET NULL option)

Execute a user-specified error-correction routine

92
mercoledì 5 giugno 13

Conceptual – Relational
model Mapping

93
mercoledì 5 giugno 13

ER – Relational Mapping
ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types

Step 2: Mapping of Weak Entity Types

Step 3: Mapping of Binary 1:1 Relation Types

Step 4: Mapping of Binary 1:N Relationship Types.

Step 5: Mapping of Binary M:N Relationship Types.

Step 6: Mapping of Multivalued attributes.

Step 7: Mapping of N-ary Relationship Types.

Mapping EER Model Constructs to Relations

Step 8: Options for Mapping Specialization or Generalization.

Step 9: Mapping of Union Types (Categories).

94
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 1: Mapping of Regular Entity Types.

For each regular (strong) entity type E in the ER schema, create
a relation R that includes all the simple attributes of E.

Choose one of the key attributes of E as the primary key for R. If
the chosen key of E is composite, the set of simple attributes
that form it will together form the primary key of R.

Example: We create the relations EMPLOYEE, DEPARTMENT,
and PROJECT in the relational schema corresponding to the
regular entities in the ER diagram. SSN, DNUMBER, and
PNUMBER are the primary keys for the relations EMPLOYEE,
DEPARTMENT, and PROJECT as shown.

95
mercoledì 5 giugno 13

96
mercoledì 5 giugno 13

97
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 2: Mapping of Weak Entity Types

For each weak entity type W in the ER schema with owner entity type E, create a
relation R and include all simple attributes (or simple components of composite
attributes) of W as attributes of R.

In addition, include as foreign key attributes of R the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s).

The primary key of R is the combination of the primary key(s) of the owner(s) and the
partial key of the weak entity type W, if any.

Example: Create the relation DEPENDENT in this step to correspond to the weak
entity type DEPENDENT. Include the primary key SSN of the EMPLOYEE relation
as a foreign key attribute of DEPENDENT (renamed to ESSN).

The primary key of the DEPENDENT relation is the combination {ESSN,
DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

98
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 3: Mapping of Binary 1:1 Relation Types

For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that
correspond to the entity types participating in R. There are three possible approaches:

1. Foreign Key approach: Choose one of the relations-S, say-and include a foreign key in S
the primary key of T. It is better to choose an entity type with total participation in R in the
role of S.

Example: 1:1 relation MANAGES is mapped by choosing the participating entity type
DEPARTMENT to serve in the role of S, because its participation in the MANAGES
relationship type is total.

2. Merged relation option: An alternate mapping of a 1:1 relationship type is possible by
merging the two entity types and the relationship into a single relation. This may be
appropriate when both participations are total.

3. Cross-reference or relationship relation option: The third alternative is to set up a third
relation R for the purpose of cross-referencing the primary keys of the two relations S and T
representing the entity types.

99
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 4: Mapping of Binary 1:N Relationship Types.

For each regular binary 1:N relationship type R, identify the relation S
that represent the participating entity type at the N-side of the
relationship type.

Include as foreign key in S the primary key of the relation T that
represents the other entity type participating in R.

Include any simple attributes of the 1:N relation type as attributes of S.

Example: 1:N relationship types WORKS_FOR, CONTROLS, and
SUPERVISION in the figure. For WORKS_FOR we include the
primary key DNUMBER of the DEPARTMENT relation as foreign key
in the EMPLOYEE relation and call it DNO.

100
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 5: Mapping of Binary M:N Relationship Types.

For each regular binary M:N relationship type R, create a new relation S to represent R.

Include as foreign key attributes in S the primary keys of the relations that represent the
participating entity types; their combination will form the primary key of S.

Also include any simple attributes of the M:N relationship type (or simple components
of composite attributes) as attributes of S.

Example: The M:N relationship type WORKS_ON from the ER diagram is mapped
by creating a relation WORKS_ON in the relational database schema. The primary
keys of the PROJECT and EMPLOYEE relations are included as foreign keys in
WORKS_ON and renamed PNO and ESSN, respectively.

Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation
type. The primary key of the WORKS_ON relation is the combination of the foreign
key attributes {ESSN, PNO}.

101
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 6: Mapping of Multivalued attributes.

For each multivalued attribute A, create a new relation R. This relation
R will include an attribute corresponding to A, plus the primary key
attribute K-as a foreign key in R-of the relation that represents the
entity type of relationship type that has A as an attribute.

The primary key of R is the combination of A and K. If the multivalued
attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created. The attribute
DLOCATION represents the multivalued attribute LOCATIONS of
DEPARTMENT, while DNUMBER-as foreign key-represents the
primary key of the DEPARTMENT relation. The primary key of R is
the combination of {DNUMBER, DLOCATION}.

102
mercoledì 5 giugno 13

ER-to-Relational
Mapping Algorithm
Step 7: Mapping of N-ary Relationship Types.

For each n-ary relationship type R, where n>2, create a new
relationship S to represent R.

Include as foreign key attributes in S the primary keys of the relations
that represent the participating entity types.

Also include any simple attributes of the n-ary relationship type (or
simple components of composite attributes) as attributes of S.

Example: The relationship type SUPPY in the ER below. This can
be mapped to the relation SUPPLY shown in the relational schema,
whose primary key is the combination of the three foreign keys
{SNAME, PARTNO, PROJNAME}

103
mercoledì 5 giugno 13

104
mercoledì 5 giugno 13

105
mercoledì 5 giugno 13

Summary of Mapping
constructs and constraints

ER Model Relational Model

Entity type “Entity” Relation

1:1 or 1:N Relationship type Foreign Key (or “Relationship” relation)

M:N Relationship type “Relationship” relation and two Foreign Keys

N-ary Relationship type “Relationship” relation and N Foreign Keys

Simple Attribute Attribute

Composite Attribute Set of simple component attributes

Multivalued attribute Relation and Foreign Key

Value set Domain

Key Attribute Primary Key (or Key)

106
mercoledì 5 giugno 13

Relational Algebra

107
mercoledì 5 giugno 13

Relational Algebra
Example Database Application (COMPANY)

Relational Algebra

Unary Relational Operations

Relational Algebra Operations From Set Theory

Binary Relational Operations

Additional Relational Operations

Examples of Queries in Relational Algebra

108
mercoledì 5 giugno 13

Database State for
COMPANY

109
mercoledì 5 giugno 13

Relational Algebra
The basic set of operations for the relational model is known
as the relational algebra. These operations enable a user to
specify basic retrieval requests.

The result of a retrieval is a new relation, which may have
been formed from one or more relations. The algebra
operations thus produce new relations, which can be further
manipulated using operations of the same algebra.

A sequence of relational algebra operations forms a relational
algebra expression, whose result will also be a relation that
represents the result of a database query (or retrieval
request).

110
mercoledì 5 giugno 13

Unary Relational
Operations
SELECT Operation

SELECT operation is used to select a subset of the tuples from a relation that satisfy
a selection condition. It is a filter that keeps only those tuples that satisfy a qualifying
condition – those satisfying the condition are selected while others are discarded.

Example: To select the EMPLOYEE tuples whose department number is four or
those whose salary is greater than $30,000 the following notation is used:

σDNO = 4 (EMPLOYEE)

σSALARY > 30,000 (EMPLOYEE)

In general, the select operation is denoted by σ <selection condition>(R) where the

symbol σ (sigma) is used to denote the select operator, and the selection condition is
a Boolean expression specified on the attributes of relation R

111
mercoledì 5 giugno 13

Unary Relational
Operations
SELECT Operation Properties

The SELECT operation σ <selection condition>(R) produces a relation S that has
the same schema as R

The SELECT operation σ is commutative; i.e.,

σ<condition1>(σ<condition2> (R)) = σ<condition2> (σ<condition1> (R))

A cascaded SELECT operation may be applied in any order; i.e.,

σ<condition1>(σ<condition2>(σ<condition3>(R)) = σ<condition2>(σ<condition3>(σ<condition1>(R)))

A cascaded SELECT operation may be replaced by a single selection with a
conjunction of all the conditions; i.e.,

σ<condition1>(σ<condition2>(σ<condition3>(R)) = σ<condition1> AND <condition2> AND <condition3> (R)

112
mercoledì 5 giugno 13

113
mercoledì 5 giugno 13

Unary Relational
Operations (cont.)
PROJECT Operation

This operation selects certain columns from the table and discards the other columns.
The PROJECT creates a vertical partitioning – one with the needed columns
(attributes) containing results of the operation and other containing the discarded
Columns.

Example: To list each employee’s first and last name and salary, the following is
used:

πLNAME, FNAME,SALARY (EMPLOYEE)

The general form of the project operation is π<attribute list>(R) where π (pi) is the symbol
used to represent the project operation and <attribute list> is the desired list of
attributes from the attributes of relation R.

The project operation removes any duplicate tuples, so the result of the project
operation is a set of tuples and hence a valid relation.

114
mercoledì 5 giugno 13

Unary Relational
Operations (cont.)
PROJECT Operation Properties

The number of tuples in the result of projection π
<list> (R)is always less or equal to the number of
tuples in R.

If the list of attributes includes a key of R, then the
number of tuples is equal to the number of tuples in R.

π <list1> (π <list2> (R)) = π <list1> (R)
as long as <list2> contains the attributes in <list2>

115
mercoledì 5 giugno 13

116
mercoledì 5 giugno 13

Unary Relational
Operations (cont.)
Rename Operation

We may want to apply several relational algebra operations one after the other. Either we
can write the operations as a single relational algebra expression by nesting the operations,
or we can apply one operation at a time and create intermediate result relations. In the latter
case, we must give names to the relations that hold the intermediate results.

Example: To retrieve the first name, last name, and salary of all employees who work in
department number 5, we must apply a select and a project operation. We can write a
single relational algebra expression as follows:

πFNAME, LNAME, SALARY(σDNO=5 (EMPLOYEE))

OR We can explicitly show the sequence of operations, giving a name to each
intermediate relation:

DEP5_EMPS ← σ DNO=5 (EMPLOYEE)

RESULT ← π FNAME, LNAME, SALARY (DEP5_EMPS)

117
mercoledì 5 giugno 13

Unary Relational
Operations (cont.)
Rename Operation (cont.)

The rename operator is ρ

The general Rename operation can be expressed by any of the following forms:

ρ S (B1, B2, …, Bn) (R)
 is a renamed relation S based on R with column

 names B1, B1, …, Bn.

ρ S (R)
 is a renamed relation S based on R

 (which does not specify column names).

ρ (B1, B2, …, Bn) (R)
 is a renamed relation with column names B1, B1, …, Bn

 which does not specify a new relation name.

118
mercoledì 5 giugno 13

Relational Algebra
Operations From Set Theory
UNION Operation

The result of this operation, denoted by R ∪ S, is a relation that includes all tuples that
are either in R or in S or in both R and S. Duplicate tuples are eliminated.

Example: To retrieve the social security numbers of all employees who either work
in department 5 or directly supervise an employee who works in department 5, we
can use the union operation as follows:

DEP5_EMPS ← σDNO=5 (EMPLOYEE)

RESULT1 ← π SSN (DEP5_EMPS)

RESULT2(SSN) ← π SUPERSSN(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2

The union operation produces the tuples that are in either RESULT1 or RESULT2 or
both. The two operands must be “type compatible”.

119
mercoledì 5 giugno 13

Relational Algebra
Operations From Set Theory
Type Compatibility

The operand relations R1(A1, A2, ..., An) and R2(B1,
B2, ..., Bn) must have the same number of
attributes, and the domains of corresponding
attributes must be compatible; that is,
dom(Ai)=dom(Bi) for i=1, 2, ..., n.

The resulting relation for R1∪R2,R1 ∩ R2, or R1-R2
has the same attribute names as the first operand
relation R1 (by convention).

120
mercoledì 5 giugno 13

121
mercoledì 5 giugno 13

Relational Algebra Operations
From Set Theory (cont.)
CARTESIAN (or cross product) Operation

This operation is used to combine tuples from two relations in a combinatorial fashion. In
general, the result of R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm) is a relation Q with degree n
+ m attributes Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order. The resulting relation Q
has one tuple for each combination of tuples—one from R and one from S.

Hence, if R has nR tuples (denoted as |R| = nR), and S has nS tuples, then

 | R x S | will have nR * nS tuples.

The two operands do NOT have to be "type compatible”

Example:

FEMALE_EMPS ← σ SEX=’F’(EMPLOYEE)

EMPNAMES ← π FNAME, LNAME, SSN (FEMALE_EMPS)

EMP_DEPENDENTS ← EMPNAMES x DEPENDENT

122
mercoledì 5 giugno 13

123
mercoledì 5 giugno 13

Binary Relational
Operations
JOIN Operation

The sequence of cartesian product followed by select is used quite
commonly to identify and select related tuples from two relations, a special
operation, called JOIN. It is denoted by a

This operation is very important for any relational database with more than a
single relation, because it allows us to process relationships among relations.

The general form of a join operation on two relations R(A1, A2, ..., An) and
S(B1, B2, ..., Bm) is:

R <join condition> S

where R and S can be any relations that result from general relational
algebra expressions.

124
mercoledì 5 giugno 13

Binary Relational
Operations (cont.)
Example: Suppose that we want to retrieve the name of
the manager of each department. To get the manager’s
name, we need to combine each DEPARTMENT tuple
with the EMPLOYEE tuple whose SSN value matches
the MGRSSN value in the department tuple. We do this
by using the join operation.

DEPT_MGR ← DEPARTMENT

 MGRSSN=SSN EMPLOYEE

125
mercoledì 5 giugno 13

Binary Relational
Operations (cont.)
EQUIJOIN Operation

The most common use of join involves join conditions with equality comparisons only. Such a join,
where the only comparison operator used is =, is called an EQUIJOIN. In the result of an EQUIJOIN
we always have one or more pairs of attributes (whose names need not be identical) that have
identical values in every tuple.

The JOIN seen in the previous example was EQUIJOIN.

NATURAL JOIN Operation

Because one of each pair of attributes with identical values is superfluous, a new operation called

natural join—denoted by *—was created to get rid of the second (superfluous) attribute in an
EQUIJOIN condition.

The standard definition of natural join requires that the two join attributes, or each pair of
corresponding join attributes, have the same name in both relations. If this is not the case, a
renaming operation is applied first.

126
mercoledì 5 giugno 13

Binary Relational
Operations (cont.)
Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

127
mercoledì 5 giugno 13

Recap of Relational Algebra
Operations

128
mercoledì 5 giugno 13

Additional Relational
Operations
Aggregate Functions and Grouping

A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate functions
on collections of values from the database.

Examples of such functions include retrieving the average or
total salary of all employees or the total number of employee
tuples. These functions are used in simple statistical queries that
summarize information from the database tuples.

Common functions applied to collections of numeric values
include SUM, AVERAGE, MAXIMUM, and MINIMUM. The
COUNT function is used for counting tuples or values.

129
mercoledì 5 giugno 13

Additional Relational
Operations (cont.)

130
mercoledì 5 giugno 13

Use of the Functional operator ℱ

ℱMAX Salary (Employee) retrieves the maximum salary value from
the Employee relation

ℱMIN Salary (Employee) retrieves the minimum Salary value from
the Employee relation

ℱSUM Salary (Employee) retrieves the sum of the Salary from the
Employee relation

DNO ℱCOUNT SSN, AVERAGE Salary (Employee) groups
employees by DNO (department number) and computes the count
of employees and average salary per department.[Note: count just
counts the number of rows, without removing duplicates]

Additional Relational
Operations (cont.)

131
mercoledì 5 giugno 13

Additional Relational
Operations (cont.)
The OUTER JOIN Operation

In NATURAL JOIN tuples without a matching (or related) tuple are eliminated from the join
result. Tuples with null in the join attributes are also eliminated. This amounts to loss of
information.

A set of operations, called outer joins, can be used when we want to keep all the tuples in
R, or all those in S, or all those in both relations in the result of the join, regardless of
whether or not they have matching tuples in the other relation.

The left outer join operation keeps every tuple in the first or left relation R in R S; if
no matching tuple is found in S, then the attributes of S in the join result are filled or
“padded” with null values.

A similar operation, right outer join, keeps every tuple in the second or right relation S in the
result of R S.

A third operation, full outer join, denoted by keeps all tuples in both the left and the
right relations when no matching tuples are found, padding them with null values as
needed.

132
mercoledì 5 giugno 13

Additional Relational
Operations (cont.)

133
mercoledì 5 giugno 13

SQL

134
mercoledì 5 giugno 13

Data Definition, Constraints,
and Schema Changes

Used to CREATE, DROP, and ALTER the descriptions
of the tables (relations) of a database

135
mercoledì 5 giugno 13

CREATE TABLE
Specifies a new base relation by giving it a name, and
specifying each of its attributes and their data types
(INTEGER, FLOAT, DECIMAL(i,j), CHAR(n), VARCHAR(n))

A constraint NOT NULL may be specified on an attribute

CREATE TABLE DEPARTMENT

 (
 DNAME
 VARCHAR(10)
 NOT NULL,

 DNUMBER
 INTEGER
NOT NULL,

 MGRSSN
 CHAR(9),

 MGRSTARTDATE
 CHAR(9));

136
mercoledì 5 giugno 13

CREATE TABLE
In SQL2, can use the CREATE TABLE command for specifying the
primary key attributes, secondary keys, and referential integrity
constraints (foreign keys).

Key attributes can be specified via the PRIMARY KEY and UNIQUE
phrases

CREATE TABLE DEPT
(
 DNAME

 VARCHAR(10)
 NOT NULL,

 DNUMBER
 INTEGER
 NOT NULL,

 MGRSSN
 CHAR(9),

 MGRSTARTDATE
 CHAR(9),

 PRIMARY KEY (DNUMBER),

 UNIQUE (DNAME),

 FOREIGN KEY (MGRSSN) REFERENCES EMP);

137
mercoledì 5 giugno 13

DROP TABLE

Used to remove a relation (base table) and its
definition

The relation can no longer be used in queries,
updates, or any other commands since its description
no longer exists

Example:

DROP TABLE DEPENDENT;

138
mercoledì 5 giugno 13

ALTER TABLE
Used to add an attribute to one of the base relations

The new attribute will have NULLs in all the tuples of the relation
right after the command is executed; hence, the NOT NULL
constraint is not allowed for such an attribute

Example:

ALTER TABLE EMPLOYEE ADD JOB VARCHAR(12);

The database users must still enter a value for the new attribute
JOB for each EMPLOYEE tuple. This can be done using the
UPDATE command.

139
mercoledì 5 giugno 13

REFERENTIAL
INTEGRITY OPTIONS
We can specify RESTRICT, CASCADE, SET NULL or SET
DEFAULT on referential integrity constraints (foreign keys)

CREATE TABLE DEPT
 (
 DNAME
 VARCHAR(10)
 NOT NULL,

 DNUMBER
 INTEGER
NOT NULL,

 MGRSSN
CHAR(9),

 MGRSTARTDATE
 CHAR(9),

 PRIMARY KEY (DNUMBER),

 UNIQUE (DNAME),

 FOREIGN KEY (MGRSSN) REFERENCES EMP
ON DELETE SET DEFAULT ON UPDATE CASCADE);

140
mercoledì 5 giugno 13

REFERENTIAL INTEGRITY
OPTIONS (continued)

CREATE TABLE EMP

 (
 ENAME
 VARCHAR(30)
 NOT NULL,

 ESSN
CHAR(9),

 BDATE
 DATE,

 DNO
 INTEGER DEFAULT 1,

 SUPERSSN
 CHAR(9),

 PRIMARY KEY (ESSN),

 FOREIGN KEY (DNO) REFERENCES DEPT
 ON DELETE SET DEFAULT ON UPDATE CASCADE,

 FOREIGN KEY (SUPERSSN) REFERENCES EMP
 ON DELETE SET NULL ON UPDATE CASCADE);

141
mercoledì 5 giugno 13

Additional Data Types in
SQL2 and SQL-99
Has DATE, TIME, and TIMESTAMP data types

DATE:

Made up of year-month-day in the format yyyy-mm-dd

TIME:

Made up of hour:minute:second in the format hh:mm:ss

TIME(i):

Made up of hour:minute:second plus i additional digits specifying fractions of a second

format is hh:mm:ss:ii...i

TIMESTAMP:

Has both DATE and TIME components

142
mercoledì 5 giugno 13

Additional Data Types in
SQL2 and SQL-99 (cont.)
INTERVAL:

Specifies a relative value rather than an absolute
value

Can be DAY/TIME intervals or YEAR/MONTH
intervals

Can be positive or negative when added to or
subtracted from an absolute value, the result is an
absolute value

143
mercoledì 5 giugno 13

Retrieval Queries in SQL
SQL has one basic statement for retrieving information from a
database; the SELECT statement

This is not the same as the SELECT operation of the relational algebra

Important distinction between SQL and the formal relational model;
SQL allows a table (relation) to have two or more tuples that are
identical in all their attribute values

Hence, an SQL relation (table) is a multi-set (sometimes called a bag)
of tuples; it is not a set of tuples

SQL relations can be constrained to be sets by specifying PRIMARY
KEY or UNIQUE attributes, or by using the DISTINCT option in a query

144
mercoledì 5 giugno 13

Retrieval Queries in SQL
(cont.)
Basic form of the SQL SELECT statement is called a mapping or a SELECT-FROM-
WHERE block

SELECT 	 <attribute list>

FROM 	 <table list>

WHERE	 <condition>

<attribute list> is a list of attribute names whose values are to be retrieved by the query

<table list> is a list of the relation names required to process the query

<condition> is a conditional (Boolean) expression that identifies the tuples to be
retrieved by the query

145
mercoledì 5 giugno 13

146
mercoledì 5 giugno 13

147
mercoledì 5 giugno 13

Simple SQL Queries
Basic SQL queries correspond to using the SELECT, PROJECT, and JOIN operations of the
relational algebra

All subsequent examples use the COMPANY database

Example of a simple query on one relation

Query 0: Retrieve the birthdate and address of the employee whose name is 'John B. Smith'.

Q0:
SELECT
 BDATE, ADDRESS

 FROM
 EMPLOYEE

 WHERE
 FNAME='John' AND MINIT='B‘

 AND

 LNAME='Smith’

Similar to a SELECT-PROJECT pair of relational algebra operations; the SELECT-clause
specifies the projection attributes and the WHERE-clause specifies the selection
condition

However, the result of the query may contain duplicate tuples

148
mercoledì 5 giugno 13

Simple SQL Queries
(cont.)
Query 1: Retrieve the name and address of all employees who work for the
'Research' department.

Q1:
 SELECT
FNAME, LNAME, ADDRESS

 FROM
 EMPLOYEE, DEPARTMENT

 WHERE
 DNAME='Research' AND DNUMBER=DNO

Similar to a SELECT-PROJECT-JOIN sequence of relational algebra operations

(DNAME='Research') is a selection condition (corresponds to a SELECT
operation in relational algebra)

(DNUMBER=DNO) is a join condition (corresponds to a JOIN operation in
relational algebra)

149
mercoledì 5 giugno 13

Simple SQL Queries
(cont.)
Query 2: For every project located in 'Stafford', list the project number, the controlling
department number, and the department manager's last name, address, and
birthdate.

Q2:
 SELECT
PNUMBER, DNUM, LNAME, BDATE, ADDRESS

 FROM

 PROJECT, DEPARTMENT, EMPLOYEE

 WHERE
DNUM=DNUMBER AND MGRSSN=SSN

 AND
 PLOCATION='Stafford'

In Q2, there are two join conditions

The join condition DNUM=DNUMBER relates a project to its controlling department

The join condition MGRSSN=SSN relates the controlling department to the
employee who manages that department

150
mercoledì 5 giugno 13

Aliases, * and DISTINCT,
Empty WHERE-clause
In SQL, we can use the same name for two (or more)
attributes as long as the attributes are in different
relations
A query that refers to two or more attributes with the
same name must qualify the attribute name with the
relation name by prefixing the relation name to the
attribute name

Example:

EMPLOYEE.LNAME, DEPARTMENT.DNAME

151
mercoledì 5 giugno 13

ALIASES
Some queries need to refer to the same relation twice

In this case, aliases are given to the relation name

Query 8: For each employee, retrieve the employee's name, and the name of his or
her immediate supervisor.

Q8:
 SELECT
 E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM
 EMPLOYEE E S

 WHERE
 E.SUPERSSN=S.SSN

In Q8, the alternate relation names E and S are called aliases or tuple variables for
the EMPLOYEE relation

We can think of E and S as two different copies of EMPLOYEE; E represents
employees in role of supervisees and S represents employees in role of supervisors

152
mercoledì 5 giugno 13

ALIASES (cont.)

Aliasing can also be used in any SQL query for convenience
Can also use the AS keyword to specify aliases

Q8:
 SELECT
 E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM
EMPLOYEE AS E, EMPLOYEE AS S

 WHERE
 E.SUPERSSN=S.SSN

153
mercoledì 5 giugno 13

UNSPECIFIED
WHERE-clause
A missing WHERE-clause indicates no condition; hence, all tuples
of the relations in the FROM-clause are selected

This is equivalent to the condition WHERE TRUE

Query 9: Retrieve the SSN values for all employees.

Q9:
 SELECT
 SSN

 FROM
EMPLOYEE

If more than one relation is specified in the FROM-clause and
there is no join condition, then the CARTESIAN PRODUCT of
tuples is selected

154
mercoledì 5 giugno 13

UNSPECIFIED
WHERE-clause (cont.)
Example:

Q10:
 SELECT
SSN, DNAME

 FROM
 EMPLOYEE, DEPARTMENT

It is extremely important not to overlook specifying
any selection and join conditions in the WHERE-
clause; otherwise, incorrect and very large relations
may result

155
mercoledì 5 giugno 13

USE OF *
To retrieve all the attribute values of the selected tuples, a *
is used, which stands for all the attributes
Examples:

Q1C:
 SELECT
 *

 FROM
EMPLOYEE

 WHERE
 DNO=5

Q1D:
 SELECT
 *

 FROM
EMPLOYEE, DEPARTMENT

 WHERE
 DNAME='Research' AND

 DNO=DNUMBER

156
mercoledì 5 giugno 13

USE OF DISTINCT
SQL does not treat a relation as a set; duplicate tuples can appear

To eliminate duplicate tuples in a query result, the keyword
DISTINCT is used

For example, the result of Q11 may have duplicate SALARY
values whereas Q11A does not have any duplicate values

Q11:

 SELECT
 SALARY

 FROM

 EMPLOYEE
Q11A:
 SELECT
 DISTINCT SALARY

 FROM

 EMPLOYEE

157
mercoledì 5 giugno 13

SET OPERATIONS
SQL has directly incorporated some set operations

There is a union operation (UNION), and in some
versions of SQL there are set difference (MINUS) and
intersection (INTERSECT) operations

The resulting relations of these set operations are sets of
tuples; duplicate tuples are eliminated from the result

The set operations apply only to union compatible
relations; the two relations must have the same attributes
and the attributes must appear in the same order

158
mercoledì 5 giugno 13

SET OPERATIONS
(cont.)
Query 4: Make a list of all project numbers for projects that
involve an employee whose last name is 'Smith' as a worker or
as a manager of the department that controls the project.

Q4:
 (SELECT PNAME

 FROM

 PROJECT, DEPARTMENT, EMPLOYEE

 WHERE
 DNUM=DNUMBER AND MGRSSN=SSN

 AND LNAME='Smith')

 UNION

 (SELECT PNAME

 FROM

 PROJECT, WORKS_ON, EMPLOYEE

 WHERE
 PNUMBER=PNO AND ESSN=SSN

 AND LNAME='Smith')

159
mercoledì 5 giugno 13

NESTING OF QUERIES
A complete SELECT query, called a nested query, can be specified
within the WHERE-clause of another query, called the outer query

Many of the previous queries can be specified in an alternative form
using nesting

Query 1: Retrieve the name and address of all employees who work
for the 'Research' department.

Q1:
 SELECT
 FNAME, LNAME, ADDRESS

 FROM

 EMPLOYEE

 WHERE
 DNO IN (SELECT DNUMBER

 FROM

 DEPARTMENT

 WHERE
 DNAME='Research')

160
mercoledì 5 giugno 13

NESTING OF QUERIES
(cont.)
The nested query selects the number of the 'Research' department

The outer query select an EMPLOYEE tuple if its DNO value is in the
result of either nested query

The comparison operator IN compares a value v with a set (or multi-
set) of values V, and evaluates to TRUE if v is one of the elements in V

In general, we can have several levels of nested queries

A reference to an unqualified attribute refers to the relation declared in
the innermost nested query

In this example, the nested query is not correlated with the outer query

161
mercoledì 5 giugno 13

CORRELATED NESTED
QUERIES
If a condition in the WHERE-clause of a nested query references an attribute of
a relation declared in the outer query, the two queries are said to be correlated

The result of a correlated nested query is different for each tuple (or
combination of tuples) of the relation(s) in the outer query

Query 12: Retrieve the name of each employee who has a dependent with the
same first name as the employee.

Q12: SELECT
 E.FNAME, E.LNAME

 FROM

 EMPLOYEE AS E

 WHERE

 E.SSN IN
 (SELECT ESSN

 FROM
 DEPENDENT

 WHERE
ESSN=E.SSN AND

 E.FNAME=DEPENDENT_NAME)

162
mercoledì 5 giugno 13

CORRELATED NESTED
QUERIES (cont.)

In Q12, the nested query has a different result for each
tuple in the outer query

A query written with nested SELECT... FROM... WHERE...
blocks and using the = or IN comparison operators can
always be expressed as a single block query. For
example, Q12 may be written as in Q12A

Q12A:
 SELECT
E.FNAME, E.LNAME

 FROM

 EMPLOYEE E, DEPENDENT D

 WHERE

 E.SSN=D.ESSN AND

 E.FNAME=D.DEPENDENT_NAME

163
mercoledì 5 giugno 13

THE EXISTS FUNCTION
EXISTS is used to check whether the result of a correlated nested query
is empty (contains no tuples) or not

We can formulate Query 12 in an alternative form that uses EXISTS as
Q12B below

Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

Q12B:
 SELECT FNAME, LNAME

 FROM
 EMPLOYEE

 WHERE
 EXISTS
 (SELECT
 *

 FROM

 DEPENDENT

 WHERE

 SSN=ESSN AND

 FNAME=DEPENDENT_NAME)

164
mercoledì 5 giugno 13

THE EXISTS FUNCTION
(cont.)
Query 6: Retrieve the names of employees who have no dependents.

Q6:

 SELECT
 FNAME, LNAME

 FROM

 EMPLOYEE

 WHERE
 NOT EXISTS (SELECT
 *

 FROM DEPENDENT

 WHERE SSN=ESSN)

In Q6, the correlated nested query retrieves all DEPENDENT tuples
related to an EMPLOYEE tuple. If none exist , the EMPLOYEE tuple
is selected

EXISTS is necessary for the expressive power of SQL

165
mercoledì 5 giugno 13

EXPLICIT SETS

It is also possible to use an explicit (enumerated) set
of values in the WHERE-clause rather than a nested
query

Query 13: Retrieve the social security numbers of all
employees who work on project number 1, 2, or 3.

Q13:
SELECT
 DISTINCT ESSN

 FROM

 WORKS_ON

 WHERE

 PNO IN (1, 2, 3)

166
mercoledì 5 giugno 13

NULLS IN SQL
QUERIES
SQL allows queries that check if a value is NULL (missing or undefined
or not applicable)

SQL uses IS or IS NOT to compare NULLs because it considers each
NULL value distinct from other NULL values, so equality comparison is
not appropriate .

Query 14: Retrieve the names of all employees who do not have
supervisors.
Q14:
SELECT
 FNAME, LNAME

 FROM

 EMPLOYEE

 WHERE
SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL values for the join
attributes are not included in the result

167
mercoledì 5 giugno 13

Joined Relations Feature
in SQL2

Can specify a "joined relation" in the FROM-clause

Looks like any other relation but is the result of a join

Allows the user to specify different types of joins
(regular "theta" JOIN, NATURAL JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, CROSS JOIN, etc)

168
mercoledì 5 giugno 13

Joined Relations Feature
in SQL2 (cont.)
Examples:

Q8:
 SELECT

 E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM

 EMPLOYEE E S

 WHERE

 E.SUPERSSN=S.SSN

can be written as:

Q8:
 SELECT

 E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM

 (EMPLOYEE E LEFT OUTER JOIN EMPLOYEES

 ON E.SUPERSSN=S.SSN)

169
mercoledì 5 giugno 13

Joined Relations Feature
in SQL2 (cont.)
Q1:
 SELECT

 FNAME, LNAME, ADDRESS

 FROM

 EMPLOYEE, DEPARTMENT

 WHERE

 DNAME='Research' AND DNUMBER=DNO

could be written as:

Q1:
 SELECT
 FNAME, LNAME, ADDRESS

 FROM
 (EMPLOYEE JOIN DEPARTMENT

 ON DNUMBER=DNO)

 WHERE
 DNAME='Research’

or as:

Q1:
 SELECT
 FNAME, LNAME, ADDRESS

 FROM
 (EMPLOYEE NATURAL JOIN DEPARTMENT

 AS DEPT(DNAME, DNO, MSSN, MSDATE)

 WHERE
 DNAME='Research’

170
mercoledì 5 giugno 13

Joined Relations Feature
in SQL2 (cont.)

Another Example;

Q2 could be written as follows; this illustrates multiple joins in the joined
tables

Q2:
 SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

 FROM
 (PROJECT JOIN
DEPARTMENT ON DNUM=DNUMBER)

 JOIN EMPLOYEE ON MGRSSN=SSN

 WHERE
 PLOCATION='Stafford’

171
mercoledì 5 giugno 13

AGGREGATE
FUNCTIONS
Include COUNT, SUM, MAX, MIN, and AVG

Query 15: Find the maximum salary, the minimum salary, and
the average salary among all employees.

Q15:
 SELECT
MAX(SALARY), MIN(SALARY), AVG(SALARY)

 FROM

 EMPLOYEE

Some SQL implementations may not allow more than one
function in the SELECT-clause

172
mercoledì 5 giugno 13

AGGREGATE
FUNCTIONS (cont.)

Query 16: Find the maximum salary, the minimum salary, and
the average salary among employees who work for the
'Research' department.

Q16: SELECT
MAX(SALARY), MIN(SALARY), AVG(SALARY)

 FROM
 EMPLOYEE, DEPARTMENT

 WHERE
 DNO=DNUMBER AND DNAME='Research'

173
mercoledì 5 giugno 13

AGGREGATE
FUNCTIONS (cont.)
Queries 17 and 18: Retrieve the total number of
employees in the company (Q17), and the number of
employees in the 'Research' department (Q18).

Q17:
 SELECT
 COUNT (*)

 FROM

 EMPLOYEE

Q18:
 SELECT
 COUNT (*)

 FROM

 EMPLOYEE, DEPARTMENT

 WHERE

 DNO=DNUMBER AND

 DNAME='Research’

174
mercoledì 5 giugno 13

GROUPING
In many cases, we want to apply the aggregate
functions to subgroups of tuples in a relation

Each subgroup of tuples consists of the set of tuples
that have the same value for the grouping attribute(s)

The function is applied to each subgroup independently

SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in the
SELECT-clause

175
mercoledì 5 giugno 13

GROUPING (cont.)
Query 20: For each department, retrieve the department number, the number of
employees in the department, and their average salary.

Q20:
 SELECT

 DNO, COUNT (*), AVG (SALARY)

 FROM

 EMPLOYEE

 GROUP BY
 DNO

In Q20, the EMPLOYEE tuples are divided into groups--each group having the same
value for the grouping attribute DNO

The COUNT and AVG functions are applied to each such group of tuples separately

The SELECT-clause includes only the grouping attribute and the functions to be
applied on each group of tuples

A join condition can be used in conjunction with grouping

176
mercoledì 5 giugno 13

GROUPING (cont.)
Query 21: For each project, retrieve the project number,
project name, and the number of employees who work on
that project.

Q21:
 SELECT

 PNUMBER, PNAME, COUNT (*)

 FROM

 PROJECT, WORKS_ON

 WHERE

 PNUMBER=PNO

 GROUP BY
 PNUMBER, PNAME

In this case, the grouping and functions are applied after
the joining of the two relations

177
mercoledì 5 giugno 13

THE HAVING-CLAUSE

Sometimes we want to retrieve the values of these
functions for only those groups that satisfy certain
conditions

The HAVING-clause is used for specifying a selection
condition on groups (rather than on individual tuples)

178
mercoledì 5 giugno 13

THE HAVING-CLAUSE
(cont.)
Query 22: For each project on which more than two
employees work, retrieve the project number, project name,
and the number of employees who work on that project.

Q22:
SELECT

 PNUMBER, PNAME, COUNT(*)

 FROM

 PROJECT, WORKS_ON

 WHERE

 PNUMBER=PNO

 GROUP BY
 PNUMBER, PNAME

 HAVING

 COUNT (*) > 2

179
mercoledì 5 giugno 13

SUBSTRING
COMPARISON

The LIKE comparison operator is used to compare
partial strings

Two reserved characters are used: '%' (or '*' in some
implementations) replaces an arbitrary number of
characters, and '_' replaces a single arbitrary
character

180
mercoledì 5 giugno 13

SUBSTRING
COMPARISON (cont.)

Query 25: Retrieve all employees whose address is in
Houston, Texas. Here, the value of the ADDRESS
attribute must contain the substring 'Houston,TX'.

Q25:
 SELECT
FNAME, LNAME

 FROM
 EMPLOYEE

 WHERE
 ADDRESS LIKE '%Houston,TX%’

181
mercoledì 5 giugno 13

SUBSTRING
COMPARISON (cont.)
Query 26: Retrieve all employees who were born
during the 1950s. Here, '5' must be the 8th character
of the string (according to our format for date), so the
BDATE value is '_______5_', with each underscore as
a place holder for a single arbitrary character.

Q26:
 SELECT
FNAME, LNAME

 FROM
 EMPLOYEE

 WHERE
 BDATE LIKE
 '_______5_’

182
mercoledì 5 giugno 13

ARITHMETIC
OPERATIONS
The standard arithmetic operators '+', '-'. '*', and '/' (for
addition, subtraction, multiplication, and division,
respectively) can be applied to numeric values in an SQL
query result

Query 27: Show the effect of giving all employees who
work on the 'ProductX' project a 10% raise.

Q27:
 SELECT
 FNAME, LNAME, 1.1*SALARY

 FROM

 EMPLOYEE, WORKS_ON, PROJECT

 WHERE
 SSN=ESSN AND PNO=PNUMBER

 AND PNAME='ProductX’

183
mercoledì 5 giugno 13

ORDER BY
The ORDER BY clause is used to sort the tuples in a query result
based on the values of some attribute(s)

Query 28: Retrieve a list of employees and the projects each works
in, ordered by the employee's department, and within each
department ordered alphabetically by employee last name.

Q28:
 SELECT

 DNAME, LNAME, FNAME, PNAME

 FROM

 DEPARTMENT, EMPLOYEE,
WORKS_ON,

 PROJECT

 WHERE

 DNUMBER=DNO AND SSN=ESSN

 AND PNO=PNUMBER

 ORDER BY
 DNAME, LNAME

184
mercoledì 5 giugno 13

ORDER BY (cont.)

The default order is in ascending order of values

We can specify the keyword DESC if we want a
descending order; the keyword ASC can be used to
explicitly specify ascending order, even though it is
the default

185
mercoledì 5 giugno 13

Summary of SQL
Queries
A query in SQL can consist of up to six clauses, but
only the first two, SELECT and FROM, are mandatory.
The clauses are specified in the following order:

SELECT

 <attribute list>
FROM

 <table list>
[WHERE

 <condition>]
[GROUP BY
 <grouping attribute(s)>]
[HAVING

 <group condition>]
[ORDER BY
 <attribute list>]

186
mercoledì 5 giugno 13

Summary of SQL
Queries (cont.)
The SELECT-clause lists the attributes or functions to be retrieved

The FROM-clause specifies all relations (or aliases) needed in the query
but not those needed in nested queries

The WHERE-clause specifies the conditions for selection and join of
tuples from the relations specified in the FROM-clause

GROUP BY specifies grouping attributes

HAVING specifies a condition for selection of groups

ORDER BY specifies an order for displaying the result of a query

A query is evaluated by first applying the WHERE-clause, then GROUP BY
and HAVING, and finally the SELECT-clause

187
mercoledì 5 giugno 13

Specifying Updates in
SQL

There are three SQL commands to modify the
database; INSERT, DELETE, and UPDATE

188
mercoledì 5 giugno 13

INSERT

In its simplest form, it is used to add one or more
tuples to a relation

Attribute values should be listed in the same order as
the attributes were specified in the CREATE TABLE
command

189
mercoledì 5 giugno 13

INSERT (cont.)
Example:

U1:
 INSERT INTO EMPLOYEE

 VALUES ('Richard','K','Marini', '653298653', '30-DEC-52',

 '98 Oak Forest,Katy,TX', 'M', 37000,'987654321', 4)

An alternate form of INSERT specifies explicitly the attribute names that
correspond to the values in the new tuple

Attributes with NULL values can be left out

Example: Insert a tuple for a new EMPLOYEE for whom we only know the
FNAME, LNAME, and SSN attributes.

U1A: INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)

 VALUES ('Richard', 'Marini', '653298653')

190
mercoledì 5 giugno 13

INSERT (cont.)

Important Note: Only the constraints specified in the
DDL commands are automatically enforced by the
DBMS when updates are applied to the database

Another variation of INSERT allows insertion of
multiple tuples resulting from a query into a relation

191
mercoledì 5 giugno 13

INSERT (cont.)
Example: Suppose we want to create a temporary table that has the name,
number of employees, and total salaries for each department. A table
DEPTS_INFO is created by U3A, and is loaded with the summary information
retrieved from the database by the query in U3B.

U3A:
 CREATE TABLE DEPTS_INFO (

 DEPT_NAME

 VARCHAR(10),

 NO_OF_EMPS
 INTEGER,

 TOTAL_SAL

 INTEGER);

U3B:
 INSERT INTO
DEPTS_INFO (DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)

 SELECT

 DNAME, COUNT (*), SUM (SALARY)

 FROM

 DEPARTMENT, EMPLOYEE

 WHERE

 DNUMBER=DNO

 GROUP BY
 DNAME ;

192
mercoledì 5 giugno 13

INSERT (cont.)

Note: The DEPTS_INFO table may not be up-to-date
if we change the tuples in either the DEPARTMENT or
the EMPLOYEE relations after issuing U3B. We have
to create a view (see later) to keep such a table up to
date.

193
mercoledì 5 giugno 13

DELETE
Removes tuples from a relation

Includes a WHERE-clause to select the tuples to be deleted

Tuples are deleted from only one table at a time (unless
CASCADE is specified on a referential integrity constraint)

A missing WHERE-clause specifies that all tuples in the relation
are to be deleted; the table then becomes an empty table

The number of tuples deleted depends on the number of tuples
in the relation that satisfy the WHERE-clause

Referential integrity should be enforced

194
mercoledì 5 giugno 13

DELETE (cont.)
Examples:
U4A:
DELETE FROM
 EMPLOYEE

 WHERE

 LNAME='Brown’

U4B:
DELETE FROM
 EMPLOYEE

 WHERE

 SSN='123456789’

U4C:
DELETE FROM
 EMPLOYEE

 WHERE

 DNO IN (SELECT

 DNUMBER

 FROM

 DEPARTMENT

 WHERE
 DNAME='Research')

U4D:
DELETE FROM
 EMPLOYEE

195
mercoledì 5 giugno 13

UPDATE
Used to modify attribute values of one or more
selected tuples

A WHERE-clause selects the tuples to be modified

An additional SET-clause specifies the attributes to be
modified and their new values

Each command modifies tuples in the same relation

Referential integrity should be enforced

196
mercoledì 5 giugno 13

UPDATE (cont.)

Example: Change the location and controlling
department number of project number 10 to 'Bellaire'
and 5, respectively.

U5:
UPDATE
 PROJECT

 SET

 PLOCATION = 'Bellaire', DNUM = 5

 WHERE

 PNUMBER=10

197
mercoledì 5 giugno 13

UPDATE (cont.)
Example: Give all employees in the 'Research' department a 10% raise in salary.

U6:
 UPDATE
EMPLOYEE

 SET

 SALARY = SALARY *1.1

 WHERE
 DNO IN (SELECT
DNUMBER

 FROM
 DEPARTMENT

 WHERE
 DNAME='Research')

In this request, the modified SALARY value depends on the original SALARY value
in each tuple

The reference to the SALARY attribute on the right of = refers to the old SALARY
value before modification

The reference to the SALARY attribute on the left of = refers to the new SALARY
value after modification

198
mercoledì 5 giugno 13

DATABASE IN PRACTICE
199

mercoledì 5 giugno 13

Examples

200

A suite for distributed execution of general
purpose applications on the Grid for small- and
mid-size VOs

Usage and performance analysis of Dirac
databases (just a few comments)

mercoledì 5 giugno 13

Submission system

201
mercoledì 5 giugno 13

Aim

202

Develop a flexible and dynamic model to manage
(simulation) data production on the Grid for small-
and medium VOs

Allow a easy, quick and customizable access to the
Grid Infrastructure to research groups/organizations

Successfully tested with SuperB Full- and Fast
Simulation Production

mercoledì 5 giugno 13

Distributed Architecture
and Infrastructure
The LHC Computing Grid (LCG)
architecture was adopted to provide the
minimum set of services and applications
upon which the distributed production
system has been built.

Authentication and authorization is
provided by VOMS service, LFC is the file
catalog, WMS is used for brokering
purpose and for Grid flavor interoperability
features, transfers are done via Lcg-Utility,
GANGA is the submitting interface.

203

Remote Site

VOMS

LFC

W
M

S

Central Site

SRM

UI

GANGA

SE

Jo
b

Su
bm

is
si

on

Output Transfer

Bookkeeping
Database

RESTful
interface

M
et

ad
at

a
up

da
te

mercoledì 5 giugno 13

System Design
The simulation production system heavily relies on a
bookkeeping database, storing both application-
specific and infrastructure metadata, which is tightly
coupled with a Web-based user-interface (WebUI).

The first makes available to the users information on
the execution status of jobs and their specific
meaning and parameters, and contributes in
orchestrating the submission mechanism.

The latter provides job submission management for
several simulation applications, bookkeeping
database interactions and basic monitoring
functionalities.

204

GANGA
LAUNCHER
GANGA
LAUNCHER

webui

Login

SESSION
(Fast simulation | Full simulation)

LDAP

Request

Submission

Site

SUBMISSION
SCRIPT (PHP)

GANGA
LAUNCHER

JOB WRAPPER
(PYTHON)

B
ookkeeping D

atabase

mercoledì 5 giugno 13

System Design

The bookkeeping database is implemented with
PostgreSQL rDBMS in a centralized way, the
WebUI in PHP and JQuery.

The database interactions with the submission
portal and the job in execution on the WNs are
managed by a direct interface to PostgreSQL or a
RESTful interface (with X509 proxy-certificate
cipher-encryption auths), respectively.

205
mercoledì 5 giugno 13

Job Workflow
The structure of services and job workflow follow a semi-centralized design:
job management service, bookkeeping database and default storage
repository are hosted in a central site.

Jobs executed into remote sites update the bookkeeping database with
status, logging and timing information and transfer their output back to central
repository or to a predefined site, discriminating on execution metadata.

The system requires a proper configuration of the remote Grid sites.

Bookkeeping metadata are integrated with Grid Logging & Bookkeeping
service (LB) information provided by the infrastructure.

In addition, the submission mechanism takes into account sites availability
data from Nagios monitoring service.

Simulation jobs are also exposed to the Grid dashboard for monitoring.

206
mercoledì 5 giugno 13

Job Workflow

207

Site

Site Remote Site

Submission Site
(INFN CNAF)

SE
(repository)

SE
(input file)

CE

WN

UI

GANGA

Job Submission

LFC

Job

DB
(bookkeeping)

st
at

us
, w

ct
 u

pd
at

e,

ou
tp

ut
 re

gi
st
ra

tio
n

an
d

lo
g

tra
ns

fe
r

WMS

Site

Site
Site

Production Tools

REST

Site

Site

Site

SiteTarget
Site

SE

LB

mercoledì 5 giugno 13

WebUI
The WebUI provides separate management for several type of simulation
productions. Both sections are divided in configuration, submission and a
monitor subsections. Their content is dynamically generated from the
bookkeeping database schema and state in order to include the simulation-
specific fields.

A production cycle consists of several requests (defined by a specific set of
job parameters values and events), which in turn are divided in several
submissions, each consisting of several jobs.

A configuration interface for requests definition per production cycle and
simulation type, is provided

Multi-site submissions based on requests and fine grain parametric
submission interfaces complete the set of available services permitting a shift
based scheduled session and a debugging specific console, respectively.

208
mercoledì 5 giugno 13

Sessions and status

209

SESSION (Fast Simulation | Full Simulation)

PRODUCTION PRODUCTION

REQUEST REQUEST

SUBMISSION SUBMISSION

JOB

JO
B

JO
B

JO
B

JO
B

Lo
g

O
ut

pu
t

O
ut

pu
t

JO
B

JO
B

PREPARED SUBMITTED RUNNING DONE

FAILED
SYS-FAILED

TIMEOUT

Submission script:
after job submission via Ganga

Job wrapper:
job goes running on WN

Job wrapper:
job ends its execution

without errors

ERROR

Job wrapper:
proxy expired

Manual or Grid LB:
change of status

WebUI:
insert job info into DB

mercoledì 5 giugno 13

Database schema
(simplified ER/Relational schema)

210

Production

Full_Job Fast_Job

Full_Input

Full_Output

Merge

Geometry

Generator

Fast_Output

Fast_Log

Full_Soft Fast_Soft

Full_Log

Machine

mercoledì 5 giugno 13

Database structure

211
mercoledì 5 giugno 13

in use...

212
mercoledì 5 giugno 13

in use...

213
mercoledì 5 giugno 13

in use...

214
mercoledì 5 giugno 13

in use...

215
mercoledì 5 giugno 13

in use...

216
mercoledì 5 giugno 13

in use...

217
mercoledì 5 giugno 13

in use...

218
mercoledì 5 giugno 13

in use...

219
mercoledì 5 giugno 13

Results

220

w8 w9 w10

10

210

310

410

time (weeks)

of

 jo
bs

mercoledì 5 giugno 13

Issues with “production
software”

221
mercoledì 5 giugno 13

MySQL
MySQL is one of the most used ‘open-source’ rDBMS

You may already know it has two main DB engines:

MyISAM
These tables have a small footprint. Table-level locking limits the performance
in read/write workloads, so it is often used in read-only or read-mostly
workloads in Web and data warehousing configurations.

InnoDB
A transaction-safe (ACID compliant) storage engine for MySQL that has
commit, rollback, and crash-recovery capabilities to protect user data. InnoDB
row-level locking (without escalation to coarser granularity locks) and Oracle-
style consistent nonlocking reads increase multi-user concurrency and
performance. InnoDB stores user data in clustered indexes to reduce I/O for
common queries based on primary keys. To maintain data integrity, InnoDB
also supports FOREIGN KEY referential-integrity constraints.

222
mercoledì 5 giugno 13

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_table_lock
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_table_lock

MySQL
To be able to use transactions + take advantage of referential integrity,
InnoDB must be used

If we use DBMS, we should trust them!
(I understand, sometimes we are paranoic):

If we defined a table as
CREATE TABLE T (ID INT PRIMARY KEY, ...);
why should we continuously do
SELECT ID FROM T WHERE ID=<some value>; (to check for existence)
before doing
UPDATE T SET ... WHERE ID=<some value>;?
or
INSERT INTO T2 (..., IDfk, ...) VALUES (..., <some value>,...);

 where IDfk is defined as Foreign Key referencing ID in T?

223
mercoledì 5 giugno 13

DIRAC Transformation
System

224

AdditionalParameters

TransformationID INT(11)

ParameterName VARCHAR(32)

ParameterValue LONGBLOB

ParameterType VARCHAR(32)

Indexes

BkQueries

BkQueryID INT(11)

SimulationConditions VARCHAR(512)

DataTakingConditions VARCHAR(512)

ProcessingPass VARCHAR(512)

FileType VARCHAR(512)

EventType VARCHAR(512)

ConfigName VARCHAR(512)

ConfigVersion VARCHAR(512)

ProductionID VARCHAR(512)

DataQualityFlag VARCHAR(512)

StartRun INT(11)

EndRun INT(11)

Visible VARCHAR(8)

RunNumbers BLOB

TCK VARCHAR(512)

Indexes DataFiles

FileID INT(11)

LFN VARCHAR(255)

Status VARCHAR(32)

Indexes

Replicas

FileID INT(11)

PFN VARCHAR(255)

SE VARCHAR(32)

Status VARCHAR(32)

Indexes

RunsMetadata

RunNumber INT(11)

Name VARCHAR(256)

Value VARCHAR(256)

Indexes

TaskInputs

TransformationID INT(11)

TaskID INT(11)

InputVector BLOB

Indexes

TransformationFileTasks

TransformationID INT(11)

FileID INT(11)

TaskID INT(11)

Indexes

TransformationFiles

TransformationID INT(11)

FileID INT(11)

Status VARCHAR(32)

ErrorCount INT(4)

TaskID VARCHAR(32)

TargetSE VARCHAR(255)

UsedSE VARCHAR(255)

LastUpdate DATETIME

InsertedTime DATETIME

RunNumber INT(11)

Indexes

TransformationInputDataQuery

TransformationID INT(11)

ParameterName VARCHAR(512)

ParameterValue BLOB

ParameterType VARCHAR(8)

Indexes

TransformationLog

TransformationID INT(11)

Message VARCHAR(255)

Author VARCHAR(255)

MessageDate DATETIME

Indexes

TransformationRuns

TransformationID INT(11)

RunNumber INT(11)

SelectedSite VARCHAR(256)

Status CHAR(32)

LastUpdate DATETIME

Indexes

TransformationTasks

TaskID INT(11)

TransformationID INT(11)

ExternalStatus CHAR(16)

ExternalID CHAR(16)

TargetSE CHAR(255)

CreationTime DATETIME

LastUpdateTime DATETIME

RunNumber INT(11)

Indexes

Transformations

TransformationID INT(11)

TransformationName VARCHAR(255)

Description VARCHAR(255)

LongDescription BLOB

CreationDate DATETIME

LastUpdate DATETIME

AuthorDN VARCHAR(255)

AuthorGroup VARCHAR(255)

Type CHAR(32)

Plugin CHAR(32)

AgentType CHAR(32)

Status CHAR(32)

FileMask VARCHAR(255)

TransformationGroup VARCHAR(64)

TransformationFamily VARCHAR(64)

GroupSize INT(11)

InheritedFrom INT(11)

Body LONGBLOB

MaxNumberOfTasks INT(11)

EventsPerTask INT(11)

Indexes

mercoledì 5 giugno 13

SHOW TABLE STATUS
 Name: Transformations
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 102398
 Avg_row_length: 6303
 Data_length: 645447680
Max_data_length: 0
 Index_length: 4767744
 Data_free: 4194304
 Auto_increment: 24618
 Create_time: 2010-05-18 13:24:05
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

225
mercoledì 5 giugno 13

SHOW TABLE STATUS
 Name: TransformationTasks
 Engine: MyISAM
 Version: 10
 Row_format: Fixed
 Rows: 3244338
 Avg_row_length: 316
 Data_length: 1218232456
Max_data_length: 88946092640567295
 Index_length: 109328384
 Data_free: 193021648
 Auto_increment: 1
 Create_time: 2010-05-27 12:23:07
 Update_time: 2013-06-04 18:34:44
 Check_time: 2010-05-27 12:23:09
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

226
mercoledì 5 giugno 13

SHOW TABLE STATUS
 Name: TransformationFiles
 Engine: MyISAM
 Version: 10
 Row_format: Dynamic
 Rows: 16451371
 Avg_row_length: 91
 Data_length: 1511429528
Max_data_length: 281474976710655
 Index_length: 549894144
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2010-05-27 12:23:03
 Update_time: 2013-06-04 18:35:33
 Check_time: 2010-05-27 12:23:07
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

227
mercoledì 5 giugno 13

SHOW TABLE STATUS
 Name: TransformationFileTasks
 Engine: MyISAM
 Version: 10
 Row_format: Fixed
 Rows: 63564637
 Avg_row_length: 13
 Data_length: 826340281
Max_data_length: 3659174697238527
 Index_length: 1405467648
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2010-08-09 20:53:22
 Update_time: 2013-06-04 18:35:50
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

228
mercoledì 5 giugno 13

SHOW TABLE STATUS
 Name: DataFiles
 Engine: MyISAM
 Version: 10
 Row_format: Dynamic
 Rows: 50722343
 Avg_row_length: 90
 Data_length: 4581560000
Max_data_length: 281474976710655
 Index_length: 7016133632
 Data_free: 0
 Auto_increment: 50722344
 Create_time: 2010-02-15 22:55:18
 Update_time: 2013-06-04 18:35:10
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

229
mercoledì 5 giugno 13

Clean-up

230

AdditionalParameters

TransformationID INT(11)

ParameterName VARCHAR(32)

ParameterValue LONGBLOB

ParameterType VARCHAR(32)

Indexes

BkQueries

BkQueryID INT(11)

SimulationConditions VARCHAR(512)

DataTakingConditions VARCHAR(512)

ProcessingPass VARCHAR(512)

FileType VARCHAR(512)

EventType VARCHAR(512)

ConfigName VARCHAR(512)

ConfigVersion VARCHAR(512)

ProductionID VARCHAR(512)

DataQualityFlag VARCHAR(512)

StartRun INT(11)

EndRun INT(11)

Visible VARCHAR(8)

RunNumbers BLOB

TCK VARCHAR(512)

Indexes DataFiles

FileID INT(11)

LFN VARCHAR(255)

Status VARCHAR(32)

Indexes

Replicas

FileID INT(11)

PFN VARCHAR(255)

SE VARCHAR(32)

Status VARCHAR(32)

Indexes

RunsMetadata

RunNumber INT(11)

Name VARCHAR(256)

Value VARCHAR(256)

Indexes

TaskInputs

TransformationID INT(11)

TaskID INT(11)

InputVector BLOB

Indexes

TransformationFileTasks

TransformationID INT(11)

FileID INT(11)

TaskID INT(11)

Indexes

TransformationFiles

TransformationID INT(11)

FileID INT(11)

Status VARCHAR(32)

ErrorCount INT(4)

TaskID VARCHAR(32)

TargetSE VARCHAR(255)

UsedSE VARCHAR(255)

LastUpdate DATETIME

InsertedTime DATETIME

RunNumber INT(11)

Indexes

TransformationInputDataQuery

TransformationID INT(11)

ParameterName VARCHAR(512)

ParameterValue BLOB

ParameterType VARCHAR(8)

Indexes

TransformationLog

TransformationID INT(11)

Message VARCHAR(255)

Author VARCHAR(255)

MessageDate DATETIME

Indexes

TransformationRuns

TransformationID INT(11)

RunNumber INT(11)

SelectedSite VARCHAR(256)

Status CHAR(32)

LastUpdate DATETIME

Indexes

TransformationTasks

TaskID INT(11)

TransformationID INT(11)

ExternalStatus CHAR(16)

ExternalID CHAR(16)

TargetSE CHAR(255)

CreationTime DATETIME

LastUpdateTime DATETIME

RunNumber INT(11)

Indexes

Transformations

TransformationID INT(11)

TransformationName VARCHAR(255)

Description VARCHAR(255)

LongDescription BLOB

CreationDate DATETIME

LastUpdate DATETIME

AuthorDN VARCHAR(255)

AuthorGroup VARCHAR(255)

Type CHAR(32)

Plugin CHAR(32)

AgentType CHAR(32)

Status CHAR(32)

FileMask VARCHAR(255)

TransformationGroup VARCHAR(64)

TransformationFamily VARCHAR(64)

GroupSize INT(11)

InheritedFrom INT(11)

Body LONGBLOB

MaxNumberOfTasks INT(11)

EventsPerTask INT(11)

Indexes

Assuming all table InnoDB

All FK defined

To delete finished tasks
(+files+...)

is there some order in
the DELETE operations?

may we use the
CASCADE OPTION?

mercoledì 5 giugno 13

Slow queries

Some query may require long time to execute...

needs for indexes

modify db design or application logic?

Log analysis is crucial to figure out the problems

231
mercoledì 5 giugno 13

Slow queries
Files: 22_slow.log
Overall: 2.57M total, 176 unique, 206.73 QPS, 0.98x concurrency ________
Time range: 2013-04-16 18:31:40 to 21:59:14
Attribute total min max avg 95% stddev median
============ ======= ======= ======= ======= ======= ======= =======
Exec time 12224s 1us 114s 5ms 316us 386ms 16us
Lock time 6342s 0 96s 2ms 44us 345ms 0
Rows sent 11.49M 0 12.46k 4.68 0.99 94.10 0
Rows examine 754.03M 0 10.82M 307.09 0.99 20.90k 0
Query size 159.38M 6 79.15k 64.91 212.52 385.80 26.08

Profile
Rank Query ID Response time Calls R/Call V/M Item
==== ================== =============== ======= ======= ===== ==========
1 0xB6181EDD2FB888A8 6400.6257 52.4% 11330 0.5649 27.07 SELECT TransformationFiles
2 0x874051C92A574963 878.2083 7.2% 30592 0.0287 40.62 UPDATE TransformationFiles
3 0xAFA91D2D2DCA4EA4 804.9874 6.6% 9 89.4430 8.12 SELECT TransformationFiles
4 0xACF49C16D92EB3A8 642.1562 5.3% 9741 0.0659 27.56 SELECT TransformationFiles
5 0xA1FB762B8E26019C 479.3516 3.9% 3632 0.1320 42.20 SELECT TransformationFiles
6 0x32101DCF176F3EDA 423.3719 3.5% 29471 0.0144 0.06 SELECT TransformationTasks
7 0x12A6600A7E70CB2E 312.4006 2.6% 1411 0.2214 0.00 SELECT Transformations
8 0x2B26517093495FE9 292.0841 2.4% 1304 0.2240 0.01 SELECT Transformations
9 0x7E3A04D71EF9BF1B 255.9953 2.1% 217 1.1797 75.80 SELECT TransformationFiles
...

232
mercoledì 5 giugno 13

Slow queries
Query 3: 0.03 QPS, 2.55x concurrency, ID 0xAFA91D2D2DCA4EA4 at byte 313302282
This item is included in the report because it matches --limit.
Scores: V/M = 8.12
Time range: 2013-04-16 20:26:12 to 20:31:28
Attribute pct total min max avg 95% stddev median
============ === ======= ======= ======= ======= ======= ======= =======
Count 0 9
Exec time 6 805s 51s 114s 89s 113s 27s 102s
Lock time 2 157s 44us 53s 17s 52s 24s 134ms
Rows sent 0 56 1 18 6.22 17.65 6.24 3.89
Rows examine 12 97.38M 10.82M 10.82M 10.82M 10.76M 0 10.76M
Query size 0 2.53k 225 429 287.67 420.77 72.04 258.32
String:
Databases ProductionDB
Hosts volhcb19.c... (4/44%), volhcb29.c... (4/44%), volhcb24.c... (1/11%)
Users Dirac
Query_time distribution
10ms
100ms
1s
10s+
Tables
SHOW TABLE STATUS FROM `ProductionDB` LIKE 'TransformationFiles'\G
SHOW CREATE TABLE `ProductionDB`.`TransformationFiles`\G
EXPLAIN /*!50100 PARTITIONS*/
SELECT
TransformationID,FileID,Status,TaskID,TargetSE,UsedSE,ErrorCount,LastUpdate,InsertedTime,RunNumber
FROM TransformationFiles WHERE `Status` IN ("Processed", "Problematic") AND `FileID` IN
("29643136", "29643865", "35351500", "29826552", "35351597") LIMIT 10000\G

233

Filter with WHERE
+- Bookmark lookup
 +- Table
 | table TransformationFiles
 | possible_keys Status
 +- Index range scan
 key TransformationFiles->Status
 possible_keys Status
 key_len 35
 rows 11334650

mercoledì 5 giugno 13

Conclusions

Software for Physics is generally written by
physicists (also Experiment’s Core Software)

so... if you need to interface your software to or
base your software on databases: you must ‘learn’
databases, especially database design

Interaction with experts is recommended for both
db design and programming techniques

234
mercoledì 5 giugno 13

Credits

Elmasri and Navathe
Fundamentals of Database Systems, 5/6th Ed.
Pearson, Addison Wesley

E. Vianello, A. Fella, E. Luppi

DIRAC and LHCbDIRAC developers

235
mercoledì 5 giugno 13

Notice 2
I left out:

Relational Calculus

Functional Dependencies and Normalization

Transactions, Concurrency, Recovery, Physical
level, ...

all the emerging non-relational databases (NoSQL),
such as MongoDB, CouchDB, Hadoop-based, ...

236
mercoledì 5 giugno 13

