
Multi- and many-core computing for
Physics applications

S. F. Schifano

University of Ferrara and INFN-Ferrara

X Seminar on Nuclear, Subnuclear and Applied Physics

June 2-8, 2013

Porto Conte, Alghero, Italy

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 1 / 101

Outline

Efficient programming of high-performance processors for physics
applications.

1 aspects of parallel computing (in short)

2 multi- and many-core architectures:
“classic” CPUs, GP-GPUs, Xeon-Phi

3 programming issues and performance results:
Lattice-Boltzmann as case study

4 Multicore and FPGA-based systems for L0-trigger processors

the one million dollar question
which is the best computing system to use ?

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 2 / 101

Background: Let me introduce myself

Development of computing systems optimized for computational physics:

APEmille and apeNEXT: LQCD-machines

AMchip: pattern matching processor, installed at CDF

Janus: FPGA-based system for spin-glass simulations

QPACE: Cell-based machine, mainly LQCD

AuroraScience: multi-core based machine

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 3 / 101

APEmille e apeNEXT (2000 and 2004)

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 4 / 101

Janus (2007)

256 FPGAs

16 boards

8 host PC

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 5 / 101

From custom to commodity computing systems

making the own processor is not a easy job

commodity system have evolved in the right directions

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 6 / 101

Designing an ideal LQCD-machine
Assuming computation and I/O can be performed in parallel, an ideal
LQCD-machine should satisfy the equation:

w(n)/F = I(n,m)/b

where:

w(n) is the number of floating point operations performed by the
processor when execute a computation of size n (i.e. when execute the
Dirac operator on a sublattice size of n)

F is the number of floating point operations performed by the processor
per clock cycle

I(n,m) is the information exchange function

b is the number of bits exchanged by the processor with the rest of the
system per clock cycle

G. Bilardi, A. Pietracaprina, G. Pucci, F. Schifano, R. Tripiccione,
The Potential of On-Chip Multiprocessing for QCD Machines, HiPC 2005, LNCS vol.
3769.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 7 / 101

Information Exchange Function
The I(n,m) function is the information exchange function which defines:

the amount of of bit echanged by the processor with the rest of the
system, assuming it has on board a storage element of m bits
(register file, memory on-chip, cache, . . .) and performs a
computation of size n.

On a parallel machine the I(n,m) function is composed by two parts:

I(n,m) = Ilc(n,m) + Inb(n,m)

Ilc(n,m): the quantity of bits exchanged with the local memory

Inb(n,m): the quantity of bits exchanged with the remote memories
accessed via network

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 8 / 101

Processors Comparison
Using the balance equation we have evaluated different processor
architecture

apeNEXT BG/L Cell ITANIUM2
frequency 200Mhz 700Mhz 3.2Ghz 1.6Ghz

λ 180nm 130nm 90nm 90nm
Lw 64 32/64 32/64 64
F 8 4 64/8 4
m 32kb 32Mb 20Mb 72Mb
blc 128 62.85 64 x
bnb 48 24 192 32− x
ξLM n.a. 6.07/2.28 2.27/6.06 4.04
ξMM 0.76 9.53/4.77 0.61/2.42 2.20

ξ is a measure of how well the processor is balanced between computing and
I/O for QCD application

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 9 / 101

QPACE Machine (2008)

8 backplanes per rack

256 nodes (2048 cores)

16 root-cards

8 cold-plates

26 Tflops peak
double-precision

35 KWatt maximum
power consumption

750 MFLOPS / Watt

TOP-GREEN 500 in
Nov.’09 and July’10

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 10 / 101

Use of recent processors

QPACE has been the first attempt (in our community) to use a
commodity processor interconnected by a custom network

what I would like to discuss now is how and how well we can use recent
developed processors for our applications

which issues we have to face out ?

how to program them ?

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 11 / 101

A “modern” CPU architecture: my point of view !

. . . YES . . . (the core of) a modern CPU is still based on the 1950 Von
Neumann model !!

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 12 / 101

The Von-Neumann Architecture

1 instruction fetch: obtain instruction from program-storage

2 instruction decode: identify the operation to execute

3 operand fetch: locate and get operand-data

4 execute: compute result value (or status)

5 result store: write result into storage (for later use)

6 next instruction: identify next instruction to fetch

7 go to step 1

J. Backus
. . . thus programming is basically planning and detailing the enormous traffic
of words through the von Neumann bottleneck, and much of that traffic
concerns not significant data itself, but where to find it.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 13 / 101

CPU performances

At beginning, CPU performances have heavily relied on hardware:

clock frequency

supports to optimized memory time access: e.g. levels of caches, ROB,
. . .

supports to increase ILP: brach-predictors, out-of-order execution, . . .

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 14 / 101

Hardware Evolution

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 15 / 101

The Multi-core processors era begins !

Multi-core architecture allows CPU performances to scale according to
Moore’s law.

increase frequency beyond
≈ 3 GHz is not possible

assembly more CPUs in a
single silicon device 4

great impact on application
performance and design 8

move challenge to exploit
high-performance computing
from HW to SW 8

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 16 / 101

Many Different Cores

all large core: multi-core Intel x86 CPUs

many small core: NVIDIA GPUs accelerators

all small cores: MIC architectures, Intel Xeon Phi accellerator

mixed large and small cores: Cell, AMD-Fusion, NVIDIA-Denver

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 17 / 101

“Classic” CPU Architectures
The most recent Intel classic CPU micro-architectures is the Sandybridge:

8 cores, 1 shared L3-cache
S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 18 / 101

“Classic” CPU Architectures

Main features:

6-10 (and soon more) cores

frequency ≈ 3 GHz

3 levels of caches, 2 withing a core and 1 shared

support for SIMD execution: AVX 256-bits

e.g.: Xeon E5-2680 Sandybridge: 691.2/345.6 GFlops SP/DP

Programming issues:

core parallelism

data parallelism

cache optimizations

Non Uniform Memory Architecture (NUMA)

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 19 / 101

“Classic” CPU Architectures: Performances
c = 8 cores

SIMD instructions on 256-bit operands:
each vector register can pack n = 4(8) double (single) precision
numbers

each core can execute two operations per clock-cycle:
one add and one mul

P = f × 2× n × c

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 20 / 101

Numa SMP Multi-socket Multi-core Systems

Symmetric Multi-processor Architecture (SMP)

Non Uniform Memory Architecture (NUMA)

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 21 / 101

Accelerator: Is this a really new concept ?

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 22 / 101

Accelerator: today they appear much better !

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 23 / 101

Accelerator-based systems: hardware view

At top-level a PCIe accelarator-card (GP-GPU, . . .) sits inside a standard
commodity server with one or two multi-core CPUs.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 24 / 101

The Sausage Machine Model
A computer is like a sausage machine:

. . . no input-meat . . . no output-sausage !!

. . . it produces results if you provide enough input-data !!

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 25 / 101

Are accellerators good sausage machines ?
FPS-164 and VAX (1976):

Floating Point: F = 11 Mflop/s, IO Rate: B = 44 MB/s

Ratio of flops to bytes of data movement: R = 0.25 Flops / Byte

Host-device latency: O(1) clock-cycle

Nvidia Kepler K20 and PciE (2012):

Floating Point: F = 1170 Gflop/s (DP), IO Rate: B = 8 GB/s

Ratio of flops to bytes of data movement: R = 146.25 Flops / Byte

Host-device latency: O(10− 100) clock-cycles

Flop/s are cheap, so are provisioned in excess,

data needs to be re-used and processed several times by the FPUs,

smart programming techniques to hide data movement latency, e.g.
recompute data instead of access memory.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 26 / 101

Performance Evaluation: Amdhal’s Law

How much can I accelerate my application ?

Amdahl’s Law approximately states:

Suppose a car is traveling between two cities 60 miles apart, and
has already spent one hour traveling half the distance at 30 mph.
No matter how fast you drive the last half, it is impossible to achieve
90 mph average before reaching the second city. Since it has
already taken you 1 hour and you only have a distance of 60 miles
total; going infinitely fast you would only achieve 60 mph.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 27 / 101

Accelerator and the Amdahl’s Law

Amdahl’s Law
The speedup of an accelerated program is limited by the time needed for the
host fraction of the program.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 28 / 101

Accelerator Issues: the Amdahl’s law
Let assume that:

a computation has a execution time:

Ts = tA + tB, tA = P · Ts, tB = (1− P) · Ts

execution time of portion A can be improved by a factor N using an
accelerated version of the code

execution time of portion B is run on the host and remain un-parallelized.

Under this assumptions the execution time of the new code is

Tp = tA/N + tB = (P · Ts)/N + (1− P) · Ts

Then the speedup (a measure of how fast is the new code) is:

S(n) = Ts/Tp = Ts
((P·Ts)/N+(1−P)·Ts)

= 1
(P

N +(1−P))

where P is the fraction of code accelerated, and N is the improving factor.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 29 / 101

Accelerator Issues: the Amdahl’s law
Plotting the speed-up as function of N:

even if I improve the 3/4 of my code by large values of N the maximum
speedup I can achieve is limited to 4 !!!

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 30 / 101

Accelerator Issues: Host-Device Latency

. . . bandwidth problems can be cured with money. Latency
problems are harder because the speed of light is fixed - you can’t
bribe God.

Anonymous

Moving data between Host and GPU is limited by bandwidth and latency:

T (n) = l + n/B

accelerator processor clock period is O(1)ns

PciE latency is O(1)µs

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 31 / 101

So ... what’s better ? Multi-core CPUs or Accelerators

what’s better to plow a ground ?

It depends on what do we need. As rule of thumb:

low-latency and reasonable throughput: left

high-througput and reasonable-latency: right

Better if you can use both !!! May be hard to program and get good efficiency !

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 32 / 101

Let’s look on GPUs in more detail: GPU evolution

GPUs evolve much faster in terms of raw-computing power

Fast-growing video-game market forces innovation

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 33 / 101

GPUs vs CPUs architecture

GPUs specialized for highly data-parallel and intensive computation
(exactly what rendering is about)

more transistors devoted to data-processing rather than
data caching and flow-control

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 34 / 101

Architecture of GP-GPU: NVIDIA GT200

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 35 / 101

NVIDIA GT200: SM Architecture

64KB register file (2KB for each SP)

16KB shared memory

8KB constant cache

8 32-bit ALU/FPU

1 64-bit FMAD

8 branch units

1 SM executes in parallel up to 8 thread and manages up to 1024 threads

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 36 / 101

NVIDIA GT200: SM Architecture

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 37 / 101

NVIDIA GT200 Specs
Processor:

1.3 GHz, 936 Gflops SP, 78 Gflops DP

10 Texture Processor Cluster (TPC)

1 TPC includes 3 Streaming Multiprocessor (SM) + 1 Texture Memory

1 SM include 8 Streaming Processor (SP)
loosely corresponding to a modern CPU-core with 8-way SIMD
computing-unit

a total of 10× 3× 8 = 240 threads

Memory:

4GB Global Memory, 512-bit, 102.4 GB/s, 400 . . . 600 cycles of latency

Constant memory 64 KB (RO)

Texture memory 256 KB (RO, two dimensional locality)

160 Watt (typical, w/Memory), < 6 Gflops/Watt (SP, w/MUL), 1.5 K e

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 38 / 101

NVIDIA GPU Architecture Evolution

GT200 GF100 GK110
#SM 15 14 14
#cuda-core 240 448 2688
GHz 1.2 1.15 800
GF/s (SP/DP) 936 / 78 1030 / 515 3950 / 1320
mem. bits 512 384 384
mem. MHz 1107 1500 1500
mem. GB/s (ECC-off) 141.7 144 250
Watt 160 215 235

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 39 / 101

GPU Programming Model

execution has an hierarchical structure:

I a grid of blocks
I each block is a 1-2-3 D array of threads

host launches a grid of thread-blocks

a CUDA kernel (program executed on the device) is executed by an
array of threads

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 40 / 101

Vector sum example
/ / device code
__global__ void vadd (double ∗ A , double ∗ B , double ∗ C) {

int i = threadIdx .x + blockIdx .x ∗ blockDim .x ;
C [i] = A [i] + B [i] ;

}

int main () {
double A_h [N] , B_h [N] , C_h [N] ;
double ∗ A_d , ∗ B_d , ∗ C_d ;

srand48 () ;
vinit (double ∗A , double ∗B , double ∗C) ;

/ / a l l o c a t e and copy data on the device
cudaMalloc ((void∗∗) &A_d) ; cudaMalloc ((void∗∗) &B_d) ; cudaMalloc ((void∗∗) &C_d) ;
cudaMemcpy (A_d , A_h , N , H2D) ; cudaMemcpy (B_d , B_h , N , H2D) ; cudaMemcpy (C_d , C_h , N , H2D) ;

dim3 dimBlock (64 , 1) ; / / s i ze o f thread−block
dim3 dimGrid (N /64 , 1) ; / / s i ze o f block−g r i d

/ / run kerne l
vadd <<< dimGrid , dimBlock >>> (A ,B ,C) ;

cudaThreadSynchronize () ; / / wa i t u n t i l ke rne l te rmina tes ! ! ! !

/ / copy r e s u l t s back to host
cudaMemcpy (C_h , C_d , N , D2H) ;

/ / feee memory device
cudaFree (A_d) ; cudaFree (B_d) ; cudaFree (C_d) ;

}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 41 / 101

GPU Programming Issues

host-to-device latency:
Amdhal’s law

memory access latency:
O(103) processor cycles, run many threads to hide memory-latency

high-data parallelism:
many threads-per-block and many blocks-per-grid

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 42 / 101

Where we are going ?

. . . towards a convergence between CPU and GPU architectures

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 43 / 101

First attempt to merge GPU and CPU concepts:
MIC architectures
MIC: Many Integrated Core Architecture

Knights Ferry: development board

Knights Corners: production board

Intel Xeon-Phi: commercial board

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 44 / 101

Intel MIC Systems: Knights Corners

Yet another accelerator board

PCIe interface

Knights Corners: 61 x86 core @ 1.2 GHz

each core has 32KB L1 instruction cache,
32KB L1 data cache, and 256KB L2 cache

512-bit SIMD unit: 16 SP, 8 DP

multithreading: 4 threads / core

8 MB L3 shared coherent cache

4-6 GB GDDR5

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 45 / 101

MIC Architectures

cores based on Pentium architecures

≈ 60 cores

in-order architecture

wide SIMD instructions
S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 46 / 101

Core Architectures

Scalar pipeline derived from the dual-issue
Pentium processor

Fully coherent cache structure

4 execution threads per core

Separate register sets per thread

Fast access to its 256KB local subset of a
coherent L2 cache.

32KB instruction-cache and 32KB data-cache
per core

3-operand, 16-wide vector processing unit (VPU)

VPU executes integer, single-precision float, and
double precision

1024 bits wide, bi-directional (512 bits in each
direction)

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 47 / 101

MIC Programming Model

native:
icc -mmic pippo.c -o pippo

offload:
using approriate pragmas to mark code that will be transparently
executed onto the MIC board

Programming is well integrated with many languages:

openMP

TBB

Cilk

. . .

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 48 / 101

Parallelism management

offload a code that spanws threads

use openMP

for (t = 0; t < NTHREAD ; t++) {
pthread_create(&threads [t] , NULL , threadFunc , (void ∗) &tData [t]) ;

}

for (t = 0; t < NTHREAD ; t++) {
pthread_join (threads [t] , NULL) ;

}

#pragma omp p a r a l l e l p r i v a t e (t i d)
{
tid = omp_get_thread_num () ;
theadFunc ((void ∗) &targv [tid]) ;

}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 49 / 101

Example: saxpy

C = s × A + B

#define N 1717

void vinit (double ∗A , double ∗C) {
int i ;
for (i=0; i<N ; i++){
A [i] = drand48 () ; B [i] = drand48 () ; C [i]= 0 . 0 ;

}
}

int main () {
double A [N] , B [N] , C [N] ;
double s ;
srand48 () ;
vinit (double ∗A , double ∗B , double ∗C) ;
s = rand48 () ;

#pragma offload target (mic:−1) in (A ,B :lenght (N)) in (s) inout (C :lenght (N))
{

#pragma omp parallel for private (i)
for (i=0; i < N ; i++)

C [i] = s∗ A [i] + B [i]
}

. . .

}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 50 / 101

Example: vector sum
#define N 1717

void __attribute__ ((target (mic))) vadd (double ∗A , double ∗B , double ∗C)

void vinit (double ∗A , double ∗B , double ∗C) {
int i ;
for (i=0; i<N ; i++){
A [i] = drand48 () ; B [i] = drand48 () ; C [i]= 0 . 0 ;

}
}

int main () {
double A [N] , B [N] , C [N] ;
srand48 () ;
vinit (double ∗A , double ∗B , double ∗C) ;
. . . .
#pragma offload target (mic : 0) in (A ,B :lenght (N)) inout (C :lenght (N))
{
vadd (A ,B ,C) ;

}
. . . .

}

void vadd (double ∗A , double ∗B , double ∗C) {
#ifdef __MIC__

int i ;
for (i=0; i<N ; i++)
C [i] = A [i] + B [i] ;

#else
fprint (stderr , "This code is running on the host\n") ;

#endif
}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 51 / 101

MIC Programming Issues

core parallelism:

I keep all 60 cores (1 reserver for OS) busy
I runs 2-3 (up-to) 4 threads/core is necessary to hide memory

latency

vector parallelism:

I enable data-parallelism
I enable use of 512-bit vector instructions

Amdhal’s law:

I transfer time between host and MIC-board not negligible
I hide transfer time overlapping computation and processing

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 52 / 101

Case Study

Lattice Boltzmann application

“classic” multi-core: Sandybridge

GP-GPU

Xeon-Phi

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 53 / 101

The Lattice Boltzmann Method

Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods.

Simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations.

The key idea:

I a set of virtual particles called populations arranged at edges of
a discrete and regular grid

I interacting by propagation and collision reproduce – after
appropriate averaging – the dynamics of fluids.

Relevant features:

“Easy” to implement complex physics.

Good computational efficiency on MPAs.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 54 / 101

The D2Q37 Lattice Boltzmann Model

Correct treatment of:

I Navier-Stokes equations of motion

I heat transport equations

I perfect gas state equation (P = ρT)

D2 model with 37 components of velocity

Suitable to study behaviour of compressible gas and fluids

optionally in presence of combustion1 effects.

1chemical reactions turning cold-mixture of reactants into hot-mixture of
burnt product.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 55 / 101

Simulation of the Rayleigh-Taylor (RT) Instability
Instability at the interface of two fluids of different densities triggered by
gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 56 / 101

LBM Computational Scheme

foreach time−step
foreach lattice−point

propagate () ;

collide () ;

endfor
endfor

Embarrassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Efficient implementation on computing systems to exploit a large fraction of
peak performance.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 57 / 101

D2Q37 propagation scheme

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 58 / 101

D2Q37 propagation scheme

Gather 37 populations from 37 different lattice-sites.
S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 59 / 101

D2Q37 propagation

applies to each lattice-cell,

requires to access cells at distance 1,2, and 3,

gathers populations at the edges of the arrows at the center point,

performs memory accesses with sparse addressing patterns.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 60 / 101

D2Q37: boundary-conditions

we simulate a 2D lattice with periodic-boundaries along x-direction

top and the bottom boundary conditions are enforced:

I to adjust some values at sites y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1
I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 61 / 101

D2Q37 collision

collision is computed to each lattice-cell

computational intensive: for the D2Q37 model, and
requires > 7600 DP operations

completely local: arithmetic operations require only the populations
associate to the site

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 62 / 101

D2Q37: version 1 and 2

We have developed two versions of the code:

Version 1:

I computes propagation and collision in two separate steps;

I is used if reactive dynamics is enable

I requires computing of the divergence of the velocity field between
the two steps; to do so, we need a further step in which data is
gathered from memory.

Version 2:

I merges computation of propagation and collision in just one single
step;

I saves to access memory twice and improves performances.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 63 / 101

Implementation on Sandybridge CPUs
N. sockets 2
CPU family Xeon E5-2680
frequency 2.7 GHz
cores/socket 8
L3-cache/socket 20 MB
Peak Perf. DP 345.6 GFlops
Peak Memory Bw 85.3 GBytes

Advanced Vector Extensions (256-bit)

Symmetric Multi-Processor (SMP) system:

I programming view: single processor with 16-24 cores
I memory address space shared among cores

Non Uniform Memory Access (NUMA) system:
memory access time depends on relative position of thread and data allocation.

Texe ≥ max
(

W
F
,

I
B

)
= max

(
7666
345.2

,
592

85.312

)
ns = max(22.2,6.94) ns

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 64 / 101

Relevant Optimization
Applications approach peak performance if hardware features are exploited
by the code:

core parallelism: all cores has to work in parallel, e.g. running different
functions or working on different data-sets (MIMD/multi-task or SPMD
parallelism);

vector programming: each core has to process data-set using vector
(streaming) instructions (SIMD parallelism);

cache data reuse: data loaded into cache has to be reused as long as
possible to save memory access;

NUMA control: time to access memory depends on the relative
allocation of data and threads.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 65 / 101

Memory layout for LB : AoS vs SoA
lattice stored as AoS:

typedef struct {
double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice2D [SIZEX∗SIZEY] ;

lattice stored as SoA:

typedef struct {
double p1 [SIZEX∗SIZEY] ; / / popu la t ion 1 ar ray
double p2 [SIZEX∗SIZEY] ; / / popu la t ion 2 ar ray
. . .
double p37 [SIZEX∗SIZEY] ; / / popu la t ion 37 ar ray

} pop_t ;

pop_t lattice2D ;

AoS exploits cache-locality of populations of as site: relevant for computing collision

SoA exploits data locality of corresponding populations of sites: suitable for GPUs.

Two copies of the lattice are kept in memory: each step read from prv and write onto nxt.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 66 / 101

Code Optimizations

core parallelism:

I lattice split over the cores

I pthreads library to handle parallelism

I NUMA library to control allocations of data and threads

instruction parallelism:

I exploiting vector instructions (AVX)

I process 4 lattice-sites in parallel

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 67 / 101

Core Parallelism

Standard POSIX Linux pthread library is used to manage parallelism:

for (step = 0; step < MAXSTEP ; step++) {

if (tid == 0 | | tid == 1) {
comm () ; / / exchange borders
propagate () ; / / apply propagate to l e f t− and r i g h t−border

} else {
propagate () ; / / apply propagate to the inne r pa r t

}

pthread_barrier_wait (. . .) ;

if (tid == 0)
bc () ; / / apply bc () to the three upper row−c e l l s

if (tid == 1)
bc () ; / / apply bc () to the three lower row−c e l l s

pthread_barrier_wait (. . .) ;

collide () ; / / compute c o l l i d e ()

pthread_barrier_wait (. .) ;
}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 68 / 101

Vector Programming

Components of 4 cells are combined/packed in a AVX vector of 4-doubles

GCC and ICC vectorization by

enabling auto-vectorization flags,
e.g. -mAVX, -mavx

using the _mm256 vector type and
intrinsics functions
(_mm256_add_pd(), . . .)

using the vector_size attribute
(only GCC)

typedef double fourD __attribute__ ((vector_size(4∗sizeof (double)))) ;

typedef struct {
fourD p1 ; / / popu la t ion 1
fourD p2 ; / / popu la t ion 2
. . .
fourD p37 ; / / popu la t ion 37

} v_pop_type ;

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 69 / 101

Collide Performance

GCC no-autovec: 18% of peak

GCC autovec: 31% of peak

GCC intrinsics: 62% of peak

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 70 / 101

Propagate Performance

memcopy: 80% of peak

GCC autovec: 22% of peak

GCC intrinsics: 40% of peak

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 71 / 101

Optimization of Propagate

cache data-reuse: reordering of populations allows a better CACHE-reuse and improves
performances of propagate;

NUMA control: using the NUMA library to control data and thread allocation avoids
overheads in accessing memory;

cache blocking: load the cache with a small data-subset and work on it as long as
possible;

non-temporal instructions: store data directly to memory without request of
read-for-ownership, and save time.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 72 / 101

Optimization of Propagate

Sandybridge Execution Time (ms)
Lx × Ly Size (GB) Base +NUMA Ctrl +New-Labelling +Cache-Blocking +NT
256× 8000 0.56 116.08 47.84 36.22 27.54 20.86
256× 16000 1.13 234.44 95.90 72.14 55.16 41.62
256× 32000 2.26 414.32 190.95 143.13 110.34 82.97
480× 8000 1.06 215.92 89.83 67.76 51.42 39.04
480× 16000 2.12 338.96 178.34 134.77 103.18 77.99
480× 32000 4.23 711.62 356.87 269.64 205.28 156.23
1680× 16000 7.41 1376.55 625.31 472.54 372.34 279.16

Sandybridge Bandwidth (GB/s))
Lx × Ly Size (GB) Base +NUMA Ctrl +New-Labelling +Cache-Blocking +NT
256× 8000 0.56 10.44 25.34 33.48 44.16 58.31
256× 16000 1.13 10.34 25.29 33.61 44.02 58.35
256× 32000 2.26 11.71 25.40 33.88 43.99 58.49
480× 8000 1.06 10.53 25.31 33.55 44.34 58.40
480× 16000 2.12 13.41 25.49 33.73 44.13 58.38
480× 32000 4.23 12.78 25.48 33.72 44.33 58.25
1680× 16000 7.41 11.56 25.45 33.68 43.83 58.46

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 73 / 101

Optimization of Propagate

version including all optimizations performs at ≈ 58 MB/s, ≈ 67% of peak and
very close to memory-copy (68.5 MB/s).

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 74 / 101

Full Code Performance Version 1
Lattice size: ≈ 250× 16000 cells

NVIDIA C2050 2-WS 2-SB
propagate 29.11 ms 140.00 ms 42.12 ms
collide 154.10 ms 360.00 ms 146.00 ms
propagate 84 GB/s 17.5 GB/s 60 GB/s
collide 205.4 GF/s 88 GF/s 220 GF/s
T /site 44 ns 130 ns 46 ns
MLUps 22 7.7 21.7
P 172 GF/s 60 GF/s 166 GF/s
Rmax 33% 38% 48%
ξ (collide) – 1.19 1.27

NVIDIA Tesla C2050, ≈ 500 GF DP, ≈ 144 GB/s peak (PARCFD’11)

2-WS: Intel dual 6-core (Westmere), ≈ 160 GF DP, ≈ 60 GB/s peak (ICCS’11)

2-SB: Intel dual 8-core (Sandybridge), ≈ 345 GF DP, ≈ 85.3 GB/s peak

ξ =
P

Nc × v × f

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 75 / 101

Full Code Performance Version 2

Execution of propagate and collide performed in a single step.

Lattice size: ≈ 250× 16000 cells.

NVIDIA C2050 2-WS 2-SB
propagateCollide 167.2 ms 410.0 ms 144.0 ms
propagateCollide 190 GF/s 77 GF/s 224 GF/s
T /site 40 ns 110 ns 35 ns
MLUps 25 9.3 28.2
P 188 GF/s 72 GF/s 216 GF/s
Rmax 36% 45% 62%
ξ (propColl) – 1.05 1.29

NVIDIA Tesla C2050, ≈ 500 GF DP, ≈ 144 GB/s peak (PARCFD’11)

2-WS: Intel dual 6-core (Westmere), ≈ 160 GF DP, ≈ 60 GB/s peak (ICCS’11)

2-SB: Intel dual 8-core (Sandybridge), ≈ 345 GF DP, ≈ 85.3 GB/s peak

Difference of ξ might be accounted to different speed of memory-controllers.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 76 / 101

Results

LBM code on CPUs supporting the new AVX instructions carefully exploiting:

core parallelism

vector/streaming parallelism

cache blocking, cache data-reuse and not-temporal instruction

Results:

AVX version improves performances of collide and propagate by a
factor ≈ 2X w.r.t. the SSE

efficiency is high: 45%− 62% for the dual-socket

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 77 / 101

GPU Implementation

JUDGE - JÜlich Dedicated Gpu Environment

PLX system at CINECA

Compute Nodes:

I 54 Compute nodes IBM System x iDataPlex dx360 M3
I node: 2 Intel Xeon X5650(Westmere) 6-core processor 2,66 GHz
I Main memory: 96 GB
I Network: IB QDR HBA
I GPU: 2 NVIDIA Tesla M2050 (Fermi) 1,15 GHz (448 cores),

3 GB memory

Complete System:

I 648 CPU cores
I 108 GPU cards
I 5,1 TB main memory
I 62,5 Teraflops peak performance

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 78 / 101

Node Parallelism

lattice Lx × Ly is split into sub-lattices Lx
Np

× Ly along X-direction

on each node borders of neighbor sub-lattices are replicated (ghost borders)

on each node the sub-lattice is further split on GPUs

nodes have been logically arranged in a ring

X-splitting requires to exchange Y-borders with neighbours

make easy parallelization w/o bad impacts on performance

... other splitting can be used.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 79 / 101

Host Program

typedef struct {
double p1 [NSITES] ; / / popu la t ion 1 ar ray
double p2 [NSITES] ; / / popu la t ion 2 ar ray
. . .
double p37 [NSITES] ; / / popu la t ion 37 ar ray

} pop_type ;

foreach (timestep=0; timestep < MAX_STEP ; timestep++) {
comm () ; / / exchange Y borders
propagate <<< grid , threads >>> () ; / / run propagate
bc <<< grid , threads >>> () ; / / run bc
collide <<< grid , threads >>> () ; / / run c o l l i d e

}

The lattice is stored as a Structure of Arrays (SOA) to exploit data-coalescing.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 80 / 101

CUDA Grids Layouts

Physical lattice of 8× 16 sites: each CUDA-thread process a lattice-point.

propagate() and collide() bc().

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 81 / 101

Execution Times

Lattice size: 252× 16384

#threads/block 32 64 128 256 512
ECC Enabled

propagate() ms 33.6 28.5 29.1 29.5 29.2
propagate() GB/s 72.7 85.8 84.0 82.8 83.6
collide() ms 196.4 157.0 156.0 157.4 164.7
collide() GFLOPS 161.1 201.6 202.9 201.0 192.1

ECC NOT Enabled
propagate() ms 30.6 21.4 22.1 22.5 22.3
propagate() GB/s 79.8 114.1 110.4 108.5 109.4
collide() ms 192.4 151.0 150.5 151.7 158.9
collide() GFLOPS 164.5 209.7 210.3 208.6 199.1

ECC is crucial for the reliability of large production runs.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 82 / 101

Flow Diagram

Host-CPU runs three threads:

T0 and T1 manage runs on GPUs

T2 executes communication with neighbour nodes

Each GPU runs three streams:

S0 applies propagate to the bulk

S1 and S2 copies borders to and from memory buffers

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 83 / 101

Results: Single GPU Performance

D2Q37 Version V1
GPU CPU-W CPU-S

GFLOPS 172 60 166
Rmax 33% 38% 48%
T /site ns 44 130 46
MLUps 22 7.7 21.7

D2Q37 Version V2
GPU CPU-W CPU-S

GFLOPS 188 72 216
Rmax 36% 45% 62%
T /site ns 40 110 35
MLUps 25 9.3 28.2

GPU: NVIDIA Tesla C2050 card, ≈ 500 Gflops DP peak-performance

CPU-W: dual six-core Westmere system, ≈ 160 Gflops DP peak-performance

CPU-S: dual eight-core Sandybridge system, ≈ 345 Gflops DP peak-performance

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 84 / 101

Results: Multi-GPU Performance

strong regime: code runs on a lattice size Lx × Ly = 1024× 7168

weak-regime: sub-lattice size on each node is Lx × Ly = 254× 14464

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 85 / 101

Results
performance: the single GPU-code performs

I a factor ≈ 2− 3 better than a dual-socket system based on 6-core
Westmere CPUs;

I equal to a just launched system based on 8-core Sandybridge
CPUs (Launch Date Q1’12).

efficiency: on GPUs is lower than CPUs, but still high for a production
ready code ≈ 30− 40% of peak performance.

strong-regime scalability: is good as the size of the local lattice is
large enough to hide communication and memory-copy overheads.

weak-regime scalability: is linear as the communications has been
hidden with computation of propagate phase.

programmability: fine-tuning CPU-program has required accurate
programming efforts while on GP-GPU CUDA allows to exploit
data-parallelism.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 86 / 101

Xeon-Phi 5110P co-processor

#cores 61
frequency 1090 MHz
memory 8 GB GDDR5
L1-cache / core 32 KB
L2-cache / core 512 KB
Peak Perf. SP/DP ≈ 2/1 TFlops
Peak Memory Bw 320 GBytes

PCIe 16x Gen2 card (8 GB/s)

240 threads

512-bit vector FPU

L2-cache blocks are shared among the cores

512-bit Advanced Vector Extensions (AVX)

Texe ≥ max
(

W
F ,

I
B

)
= max

(7666
1064 ,

592
320

)
ns = max(7.20,1.85) ns

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 87 / 101

Relevant Optimization

Xeon-Phi peak floating-point throughput:

P = f × #cores× NopPerCycle× NflopPerOp

In our case we have:

f = 1.090 GHz

#cores = 61

NopPerCycle = 2, one fused-multiply-add per cloc-cycle

NflopPerOp = 16 single-, 8 -double precision

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 88 / 101

Relevant Optimization
Applications running on Xeon-Phi can approach peak performance if codes
exploits relevant hardware features:

core parallelism:
all cores has to be kept active and working in parallel, e.g. running
different functions or working on different data-sets (MIMD/multi-task or
SPMD parallelism);

hyper-threading:
cores have to execute 2 or more threads (up-to 4) to keep hardware
pipelines busy and hide memory accesses latency;

vector programming:
each core has to process data-set using vector (streaming) instructions
(SIMD parallelism); in the case of Xeon-Phi up-to 8 double-precision
values can be processed by each vector instructions

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 89 / 101

Core Parallelism: Threads Management

for (t = 0; t < NTHREAD ; t++) {
pthread_create(&threads [t] , NULL , threadFunc , (void ∗) &tData [t]) ;

}

for (t = 0; t < NTHREAD ; t++) {
pthread_join (threads [t] , NULL) ;

}

#pragma omp p a r a l l e l p r i v a t e (t i d)
{
tid = omp_get_thread_num () ;
theadFunc ((void ∗) &targv [tid]) ;

}

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 90 / 101

Vector Parallelism

struct {
__m512d vp0 ;
__m512d vp1 ;
__m512d vp2 ;
. . .
__m512d vp36 ;

} vpop_t ;

vpop_t lattice [LX] [LY] ;

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 91 / 101

Lattice Boltzmann Propagate Benchmark

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 92 / 101

Lattice Boltzmann Collide Benchmark

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 93 / 101

Lattice Boltzmann Summary

C2050 2-WS 2-SB Xeon-Phi K20
propagate GB/s 84 17.5 60 94 160
ε 58% 29% 70% 29% 64%
collide GF/s 205.4 88 220 394 506
ε 41% 55% 63% 37% 38%
ξ (collide) – 1.19 1.27 0.76 –

ξ =
P

Nc × v × f

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 94 / 101

PC-based L0 Trigger
L0TP = FPGA + CPU

1 primitives⇒ to memory of the CPU

2 CPU elaborates primitives

3 CPU sends back L0 trigger signals

First Exercise
measure the distribution (and maximum) Round-Trip Time (RTT)
FPGA-CPU-FPGA (i.e. estimation of t(L0)).

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 95 / 101

Test Setup: PC

Intel Core i7 930 2.80 GHz

8 MB L3-cache

4 core

hyper threading disabled

northbridge X58 (rev. 13)

QPI @ 4.8 GT/s (≈ 22.5 GB/s)

memory 3 x 2 GB DDR3 1.067 GHz

OS Fedora core 12, kernel 2.6.32.26-175.fc12.x86_64

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 96 / 101

Test Setup: FPGA

devkit altera

Stratix IV GX 230 (EP4SGX230N) -C2 (fast) speed-grade

1 PCI Express 8X IP core

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 97 / 101

Max RTT Distribution: 20 sec. runs

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 98 / 101

Max Round-Trip Time (MRTT)
Average/Maximum MRTT over 100 runs of 20 seconds each.

CB NB 14.7 MHz 12.5 MHz 11.9 MHz 10.0 MHz 9.3 MHz
8192 32 16 / 313 17 / 380 11 / 118 11 / 74 9 / 12

64 12 / 39 15 / 131 12 / 88 13 / 75 15 / 44
128 17 / 45 17 / 82 16 / 80 18 / 63 18 / 42
256 25 / 193 26 / 54 27 / 52 32 / 60 33 / 96

16384 32 13 / 365 18 / 232 12 / 182 12 / 76 12 / 71
64 12 / 38 15 / 97 14 / 67 15 / 73 13 / 38
128 22 / 199 19 / 92 16 / 42 18 / 84 21 / 47
256 26 / 53 28 / 91 29 / 54 33 / 81 31 / 45

32768 64 20 / 275 17 / 150 14 / 78 19 / 74 18 / 76
128 22 / 209 17 / 54 22 / 79 23 / 81 23 / 85
256 29 / 209 28 / 54 31 / 90 34 / 93 38 / 90

65536 128 25 / 224 27 / 92 25 / 84 24 / 83 26 / 82
256 33 / 200 33 / 89 35 / 91 35 / 93 38 / 92

NB and CB in unit of packets (64 Bytes), data in microsec.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 99 / 101

Conclusions
Multi-core architectures have a big inpact on programming.

Efficient programming requires to exploit all features of hardware
systems:

I core parallelism

I data parallelism

I cache optimizations

I NUMA (Non Uniform Memory Architecture) system

Accelerators are not a panacea:

I good for desktop-applications

I hard to scale on large clusters

the one million dollar question
So . . . which is the best computing system to use ?

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 100 / 101

Acknowledgments: I would like to thank

Luca Biferale, Mauro Sbragaglia, Patrizio Ripesi
University of Tor Vergata and INFN Roma, Italy

Andrea Scagliarini, University of Barcelona, Spain

Filippo Mantovani, University of Regensburg, Germany

Marcello Pivanti, Sebastiano Fabio Schifano, Raffaele Tripiccione
University and INFN of Ferrara, Italy

Federico Toschi
Eindhoven University of Technology The Netherlands, and CNR-IAC, Roma Italy

Fabio Pozzati, Alessio Bertazzo, Gianluca Crimi
University of Ferrara

Results presented here are developed in the framework of the INFN COKA
and SUMA projects.

I would like to thank CINECA, INFN-CNAF and JSC for access to their
systems.

S. F. Schifano (Univ. and INFN of Ferrara) Multi- and many-core computing for Physics June 2-8, 2013 101 / 101

