X SEMINAR ON SOFTWARE FOR NUCLEAR, SUBNUCLEAR AND APPLIED PHISICS

Porto Conte, Alghero, Italy 3 - 7 June 2013

How to install Geant 4 and build an application

Geant 4 tutorial course

Outline

- Supported platforms & compilers
- Required software
- Where to download the packages
- Geant4 toolkit installation (release 9.6)
 - Configuring the environment manually
 - Using CMake
- CLHEP full version installation (optional)
- Building a Geant4 application with Cmake
- Example of a Geant4 application

Supported platforms & compilers

- Linux systems
 - Scientific Linux CERN SLC5, with gcc 4.1.2 or 4.3.X, 32/64bit
 - Scientific Linux CERN 6 with gcc 4.6.X, 64bit

Geant4 has also been successfully compiled on other Linux distributions, including Debian, Ubuntu and openSUSE (not officially supported)

- MacOSX systems
 - Mac OS X 10.7 (Lion) and 10.8 (Mountain Lion) with gcc 4.2.1 (Apple), 64bit

Geant4 has also been successfully compiled on Mac OS X 10.6.8 (Snow Leopard) with gcc 4.2.1 (Apple), (not officially supported)

- Windows systems
 - Windows 7 with Visual Studio 10 (VS2010).

Required software

- A UNIX shell and related basic UNIX commands
- C++ compiler
 - It is usually installed on your Linux. If not, you need to install it (*not shown here*)
- Cmake 2.6.4 or higher
- The Geant4 toolkit source code
- CLHEP library
 - an internal version is now supplied with the geant4 source (since 9.5 version)
- The Geant4 data files
 - an automatic procedure can retrieve them (with cmake)

External software packages I

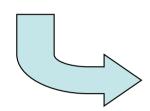
Visualization/GUI tools (optional):

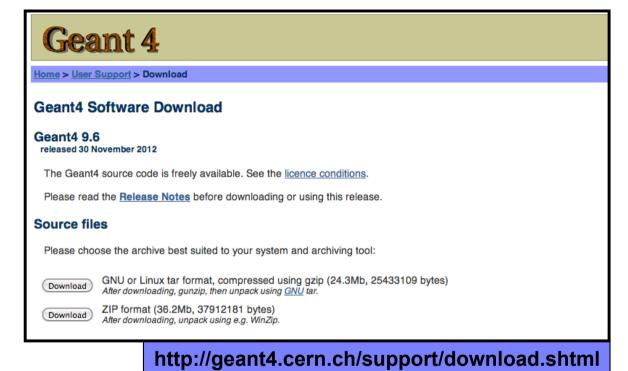
- X11 OpenGL Visualization (Linux and Mac OS X)
 Requires: X11, OpenGL or MesaGL (headers and libraries).
- Qt4 User Interface and Visualization (All Platforms)
 Requires: Qt4, OpenGL or MesaGL (headers and libraries).
- Motif User Interface and Visualization (Linux and Mac)
 Requires: Motif and X11, OpenGL or MesaGL headers and libraries.
- Open Inventor Visualization (All Platforms)
- X11 RayTracer Visualization (Linux and Mac OS X)
- GDML Support (All Platforms)
- DAWN postscript renderer
- HepRApp Browser
- VRML browser
- WIRED4 JAS Plug-In

External software packages II

Software for analysis and histogramming (optional):

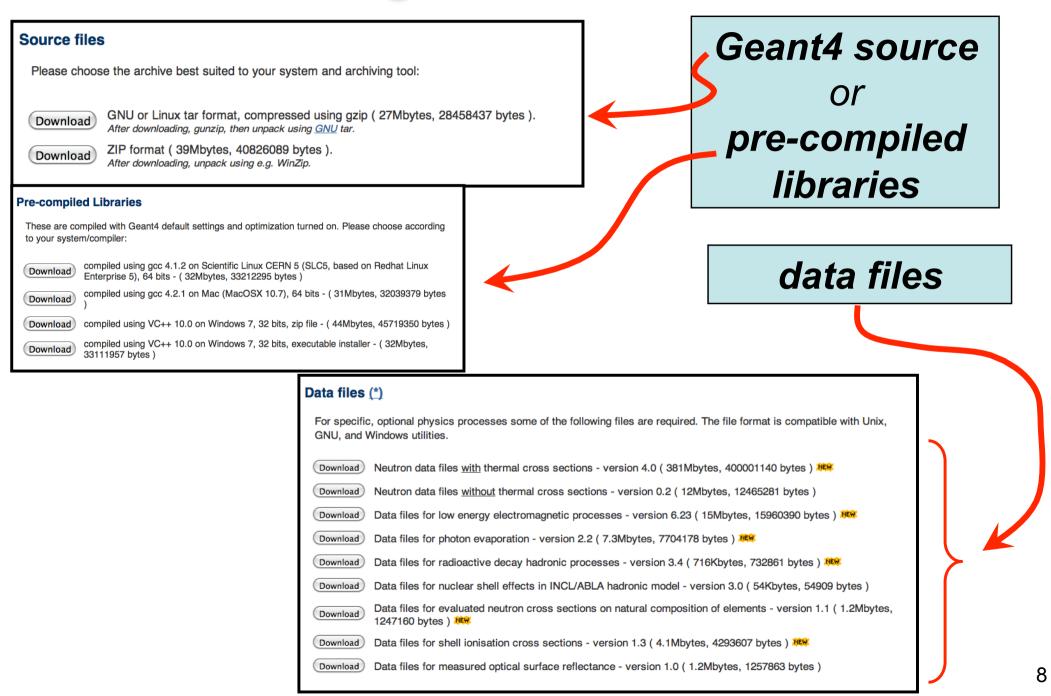
- AIDA (Abstract Interfaces for Data Analysis)
 - iAIDA (an implementation of AIDA in C++)
 - JAS3 (Java Analysis Studio)
 - Open Scientist (Interactive Analysis Environment)
 - rAIDA (a Root implementation of AIDA)


	AIDA • Home	AIDA Abstract Interfaces for Data Analysis
	 <u>Documentation</u> <u>Source Code</u> <u>Download</u> <u>Release Notes</u> AIDA Compliant 	 Recent News September 2005 - AIDA Workshop in St Malo, France. October 2003 - AIDA 3.2.1 is has been released to patch version 3.2.0. The <u>documentation</u> has been updated. Check the <u>release notes</u> for an or an or a section of the sec
http://aida.freehep.org/	Tools	 September 2003 - AIDA 3.2 is <u>now released</u> with updated <u>documentation</u>. Check the <u>release notes</u> for an overview of the new features. June 2003 - <u>AIDA Workshop at CERN</u>.

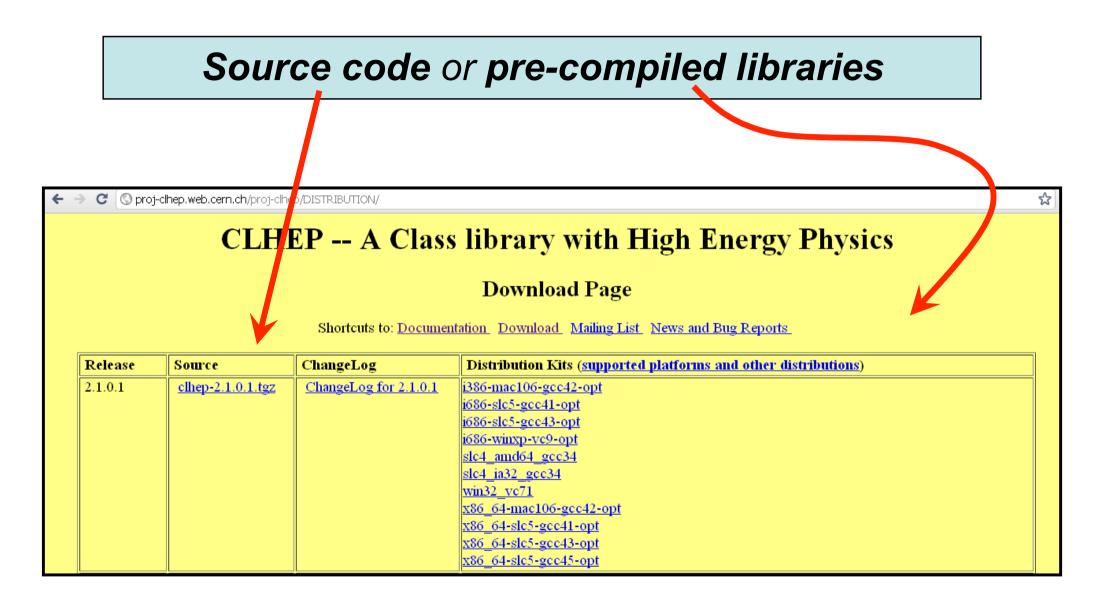

• ROOT (a data analysis framework)

Where to download the packages

• Geant4



• CLHEP


C C projechep.web.cern.ch/projechep/ C C projechep.web.cern.ch/projechep/ C CLHEP - A Class Library for High Energy Physics CLHEP - A Class Library for High Energy Physics Shortcuts to: Documentation. Doxwload. CLHEP editors. Mailing List. CLHEP Workshops. News and Bug Reports. The CLHEP project was proposed by Left Loupblad at CHEP 92. It is intended to be a set of HEP-specific foundation and utility classes such as random generators, physics vectors, geometry and linear algebra. CLHEP is structured in a set of packages independent of any external package (interdependencies within CLHEP are allowed under certain conditions). A large fraction of contributions (mainly to the Random, Vector, Geometry and Matrix packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the Country of CLHEP is Structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Collaboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the Gegnetic Claboration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the table regeneration the country of CLHEP is structured in a set of packages) came from using CLHEP within (in alphabetical order): the table regeneration the country of CLHEP is structured in a set of packages independencies within CLHEP is structured in a set of packages independencies within

7

Downloading Geant4 and data files

Downloading CLHEP (optionally)

Geant4 installation (9.6 version)

Working area & installation area

- Why two different areas ?
 - To allow centralized installation of the Geant4 kernel libraries and related sources in a multi-user environment
 - To decouple user-developed code and applications from the kernel
 - To allow an easy integration of the Geant4 software in an existing software framework

Two ways to proceed:

- Manually installing by env variables (deprecated)
- <u>Using **CMake**</u> (recommended and officially supported)

Installing Geant4 with CMake

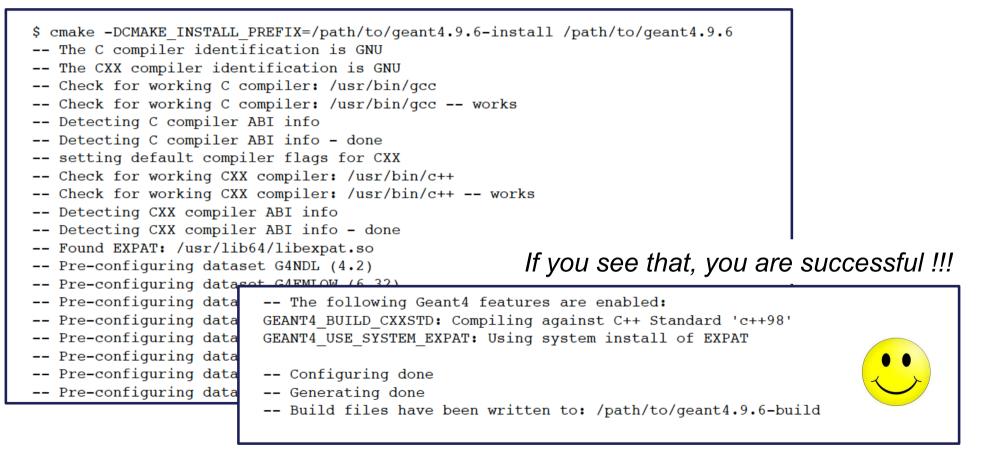
CMake installation (*if not provided*)

- Depending on the OS installation, CMake may not be installed by default. In that case you have to install it:
 - <u>On Linux</u>: it is recommended to use the CMake provided by the package management system of your distribution.

In case it does not meet the minimum version requirement:

- 1. download the latest version (*http://www.cmake.org/*)
- 2. unzip the tar-ball
- 3../bootstrap, make, make install
- <u>On Mac</u>: install it using the Darwin64 dmg installerpackage
- <u>On Windows</u>: install it using the Win32 exe installerpackage

- Unpack the geant4 source package geant4.9.6.tar.gz to a location of your choice:
 - ex.: /path/to/geant4.9.6 \rightarrow <u>source directory</u>
- Create a directory in which to configure and run the build and store the build products (not inside the source dir!)
 - ex.: /path/to/geant4.9.6-build → <u>build directory</u>

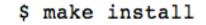

```
$ cd /path/to
$ mkdir geant4.9.6-build
$ ls
geant4.9.6 geant4.9.6-build
```

• To configure, change into the build directory and run CMake:

```
$ cd /path/to/geant4.9.6-build
$ cmake -DCMAKE_INSTALL_PREFIX=/path/to/geant4.9.6-install /path/to/geant4.9.6
```

- CMAKE_INSTALL_PREFIX option is used to set the *install directory*
- The second argument to CMake is the path to the source directory.

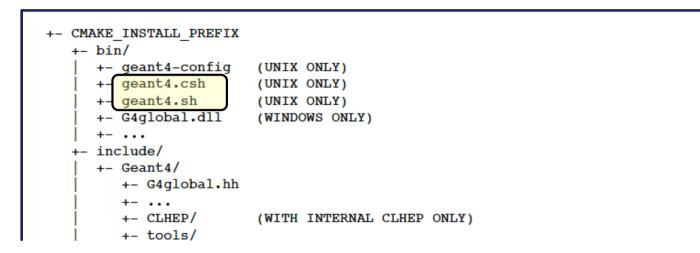
• CMake configures the build and generates Unix Makefiles to perform the actual build:


If you see errors at this point, carefully check the messages output by CMake

 After the configuration has run, CMake have generated Unix Makefiles for building Geant4. To run the build, simply execute make in the build directory:

\$ make -jN

- where N is the number of parallel jobs you require. The build will now run, and will output information on the progress of the build and current operations
- When build has completed, you can install Geant4 to the directory you specified earlier in CMAKE_INSTALL_PREFIX by running:



- Additional arguments can be passed to CMake to activate optional components of Geant4 (*standard* and *advanced* options):
 - DGEANT4_INSTALL_DATA=ON (recommended)
 the additional external data libraries are automatically downloaded
 - DGEANT4_INSTALL_EXAMPLES=ON (recommended) examples are installed
 - DGEANT4_USE_OPENGL_X11=ON (recommended) build the X11 OpenGL visualization driver
 - DGEANT4_USE_QT=ON (optional, but nice!!!) build the Qt visualization driver
 - DGEANT4_USE_SYSTEM_CLHEP=ON (optional) external CLHEP are required

You can directly include the options since the beginning:

cmake -DCMAKE_INSTALL_PREFIX=/path/to/geant4.9.6-install -DGEANT4_INSTALL_DATA=ON
-DGEANT4_USE_OPENGL_X11=ON -DGEANT4_INSTALL_EXAMPLES=ON /path/to/geant4.9.6

 The install of Geant4 is contained under the directory chosen (CMAKE_INSTALL_PATH), with the following structure:

• To make the Geant4 binaries and libraries available on your PATH and library path and to set the variables for external data libraries:

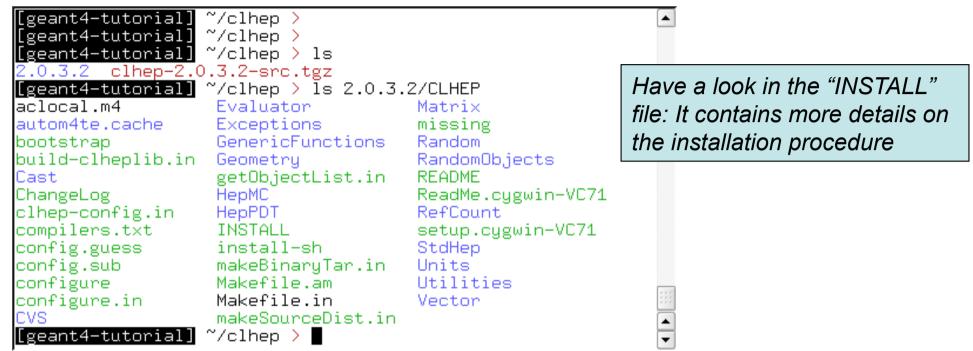
N.B.: each time you close the shell remember to source the geant4.sh script before executing an application !!!

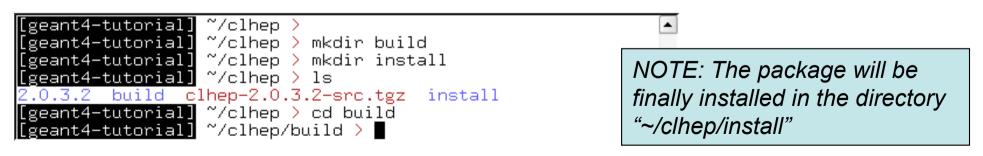
• Alternatively, you may use the *geant4make.sh* (*.csh*) script to compile applications with GNUmakefile (*deprecated* \rightarrow G4.10)

Installing CLHEP full version (not mandatory)

• Create a directory for the installation procedure (ex.:clhep)

[geant4-tutorial] ~ > [geant4-tutorial] ~ > [geant4-tutorial] ~ > [geant4-tutorial] ~ > [geant4-tutorial] ~ > mkdir clhep [geant4-tutorial] ~ > cd clhep [geant4-tutorial] ~ > cd clhep	
---	--

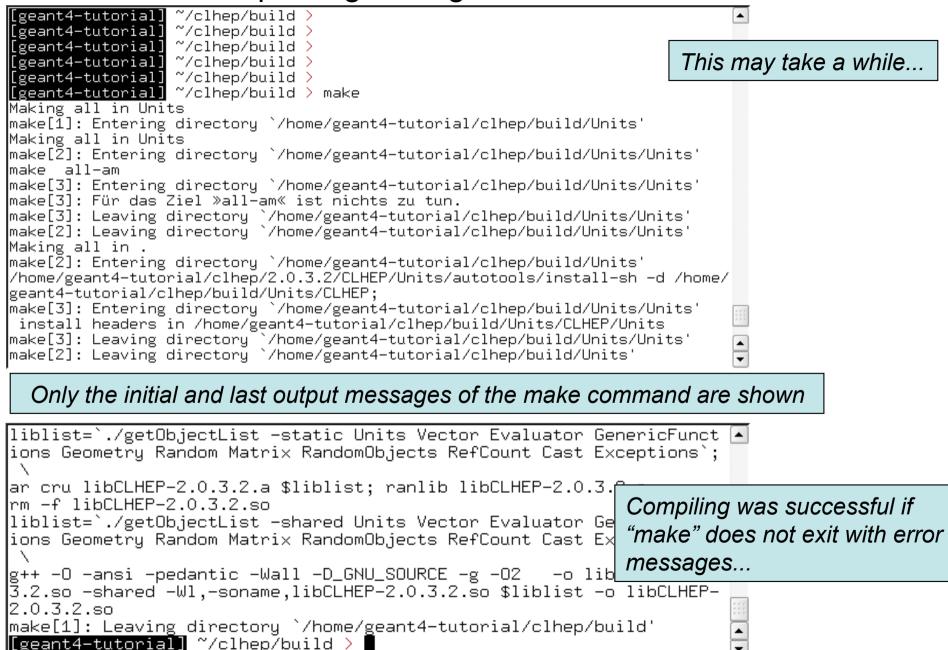

• Move the downloaded tar-ball into this directory


• Unzip the extract tar-ball into this directory

[geant4-tutorial] ~/clhep >	
[geant4-tutorial] ~/clhep >	
[geant4-tutorial] ~/clhep >	
[geant4-tutorial] ~/clhep > tar xzvf clhep-2.0.3.2-sro	.tgz
2.0.3.2/	222
2.0.3.2/CLHEP/	
2.0.3.2/CLHEP/CVS/	
2.0.3.2/CLHEP/CVS/Root	
2.0.3.2/CLHEP/CVS/Repository	
2.0.3.2/CLHEP/CVS/Entries	
2.0.3.2/CLHEP/CVS/Template	
2.0.3.2/CLHEP/CVS/Tag	
-	<u> </u>

• The extracted CLHEP package can be found in the subdirectory 2.0.3.2/CLHEP". Have a look at the content:

 Create two directories (inside our "clhep" directory), which are used for building and installing the package:


 Inside the "build" directory, call the CLHEP configure script (which is contained in the "2.0.3.2/CLHEP" directory).
 NOTE: As argument you need to specify the directory, where CLHEP should be installed. Thus the full command to be called is: ../2.0.3.2/CLHEP/configure --prefix=/home/geant4tutorial/clhep/install


• The configure script checks for required programs and libraries, and creates some files, e.g. makefiles, and directories:

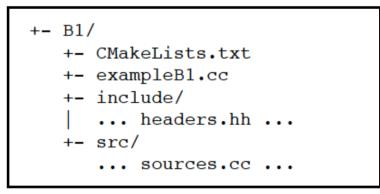
[geant4-tutoria [geant4-tutoria [geant4-tutoria build-clheplib Cast clhep-config	Exceptions GenericFunctions	makeBinaryTar Makefile makeSourceDist		
•				
config.log	Geometry	Matri×	Vector	
	getObjectList			
[geant4-tutoria	📘 ~/clhep/build >			-

• If no error occured in the configure process, one can start to build the CLHEP package using the "make" command:

 Once the package was compiled successfully, CLHEP can be installed using the "make install" command:

 The CLHEP libraries are now installed in the directory "~/clhep/ install"

(NOTE: We specified the installation directory in the configure process; see the previous slides)


- What do the subdirectories in "~/clhep/install" contain?
 - include: Contains (in a defined directory tree structure) the C++ header files of CLHEP
 - lib: Contains the (static and shared) CLHEP libraries
 - bin: Contains configure scripts and the very useful "clhep- config" script
- Finally, to save some disk space, you can remove the "build" directory, as well as the tar-ball and the source package

[geant4	1-tutorial] ~/clhep > du -sh *	
27M	2.0.3.2	
93M	build	
4,9M	clhep-2.0.3.2-src.tgz	
53M	install	
[geant4	-tutorial] ~/clhep > rm -r 2.0.3.2 build clhep-2.0.3.2-src.tgz	
[geant4	1-tutorial] ~/clhep >	
		-

- To build an application that uses the Geant4 toolkit, it is necessary to include Geant4 headers in the application sources and link the application to the Geant4 libraries:
 - using CMake → Geant4Config.cmake → writing a CMakeLists.txt script

to locate Geant4 and describe the build of your application against it

• For istance: examples/basic/B1:

Here, exampleB1.cc contains main() for the application, with include/ and src/ containing the implementation class headers and sources respectively.

CMakeLists.txt file has to be located in the root directory of the application

(1)

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(Bl)

(2)

option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)
find_package(Geant4 REQUIRED ui_all vis_all)
else()

find_package(Geant4 REQUIRED)
endif()

(3)

include(\${Geant4_USE_FILE})
include_directories(\${PROJECT_SOURCE_DIR}/include)

(4)

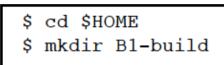
file(GLOB sources \${PROJECT_SOURCE_DIR}/src/*.cc)
file(GLOB headers \${PROJECT_SOURCE_DIR}/include/*.hh)

(5)

add_executable(exampleBl exampleBl.cc \${sources} \${headers})
target_link_libraries(exampleBl \${Geant4_LIBRARIES})

(6)

```
set(EXAMPLEB1_SCRIPTS
  exampleB1.in
  exampleB1.out
  init.mac
  init_vis.mac
  run1.mac
  run2.mac
  vis.mac
```


)

```
foreach(_script ${EXAMPLEB1_SCRIPTS})
  configure_file(
    ${PROJECT_SOURCE_DIR}/${_script}
    ${PROJECT_BINARY_DIR}/${_script}
    copyonLy
    )
endforeach()
```

```
# (7)
install(TARGETS exampleBl DESTINATION bin)
```

- The text file CMakeLists.txt is the CMake script containing commands which describe how to build the exampleB1 application
- Example of structure:
 - 1. Cmake minimum version and set the project name
 - 2. Find and configure G4
 - 3. Configure the project to use G4 and B1 headers
 - 4. List the sources
 - 5. Define and link the executable
 - 6. Copy any runtime script to the build directory
 - 7. Install the executable

 First step: create a build directory for the specific application (suggestion: build that alongside the application source directory):

- Change to this build directory and run CMake to generate the Makefiles needed to build the B1 application. Pass CMake two arguments:
 - \$ cd \$HOME/B1-build
 - \$ cmake -DGeant4_DIR=/home/you/geant4-install/lib64/Geant4-9.6.0 \$HOME/B1

• CMake will now run to configure the build and generate Makefiles .:

- \$ cmake -DGeant4_DIR=/home/you/geant4-install/lib64/Geant4-9.6.0 \$HOME/B1
- -- The C compiler identification is GNU
- -- The CXX compiler identification is GNU
- -- Check for working C compiler: /usr/bin/gcc
- -- Check for working C compiler: /usr/bin/gcc -- works
- -- Detecting C compiler ABI info
- -- Detecting C compiler ABI info done
- -- Check for working CXX compiler: /usr/bin/c++
- -- Check for working CXX compiler: /usr/bin/c++ -- works
- -- Detecting CXX compiler ABI info
- -- Detecting CXX compiler ABI info done
- -- Configuring done
- -- Generating done
- -- Build files have been written to: /home/you/B1-build

• The following files have been generated:

\$ ls			
CMakeCache.txt	exampleB1.in	init_vis.mac	run2.mac
CMakeFiles	exampleB1.out	Makefile	vis.mac
cmake_install.cmake	init.mac	run1.mac	
CMakeFiles	exampleB1.out	Makefile	

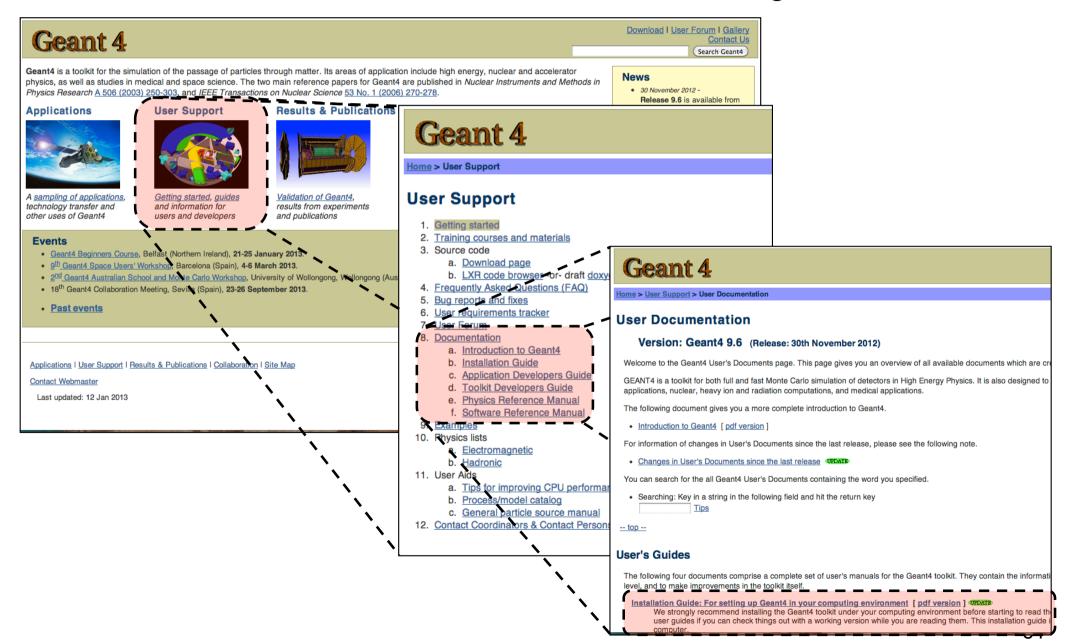
• Once the Makefile is available we can do:

```
$ make -jN
```

• The following output should be displayed:

```
$ make
Scanning dependencies of target exampleB1
[ 16%] Building CXX object CMakeFiles/exampleB1.dir/exampleB1.cc.o
[ 33%] Building CXX object CMakeFiles/exampleB1.dir/src/B1PrimaryGeneratorA
ction.cc.o
[ 50%] Building CXX object CMakeFiles/exampleB1.dir/src/B1EventAction.cc.o
[ 66%] Building CXX object CMakeFiles/exampleB1.dir/src/B1RunAction.cc.o
[ 83%] Building CXX object CMakeFiles/exampleB1.dir/src/B1DetectorConstruct
ion.cc.o
[ 100%] Building CXX object CMakeFiles/exampleB1.dir/src/B1SteppingAction.cc
.o
Linking CXX executable exampleB1
[ 100%] Built target exampleB1
```

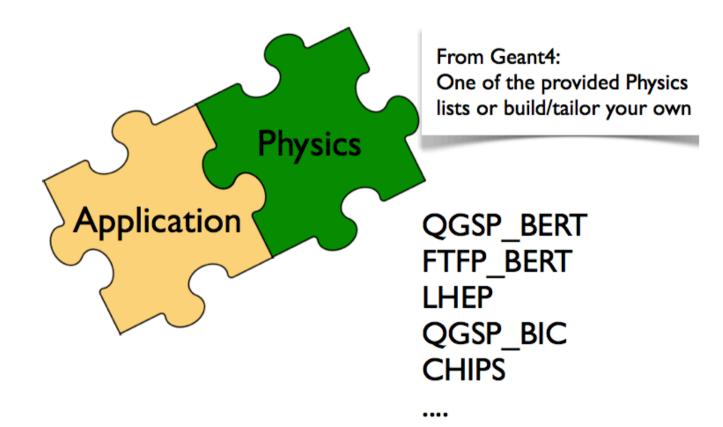
• List again the content of the build directory, you see the executable:

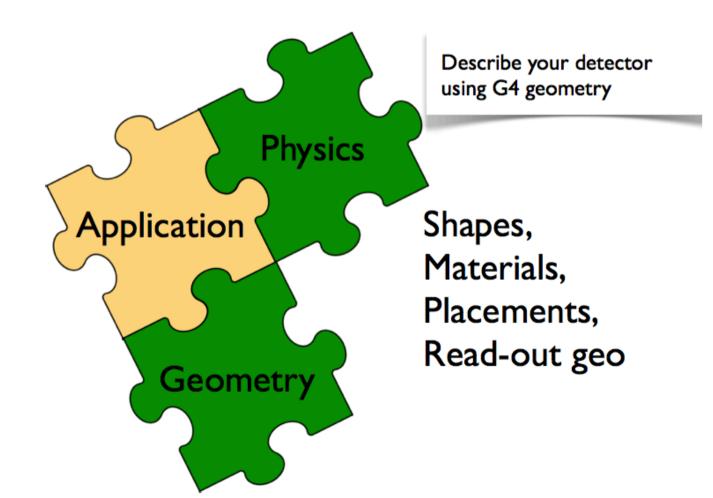

\$ ls			
CMakeCache.txt	exampleB1	init.mac	run1.mac
CMakeFiles cmake_install.cmake	-	init_vis.mac Makefile	run2.mac vis.mac

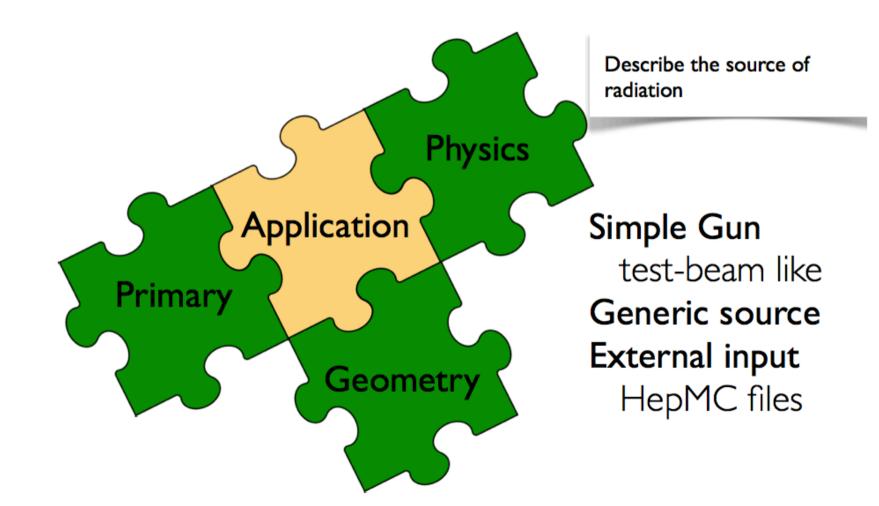
• Run the application, simply with./exampleB1, the following output should be displayed:

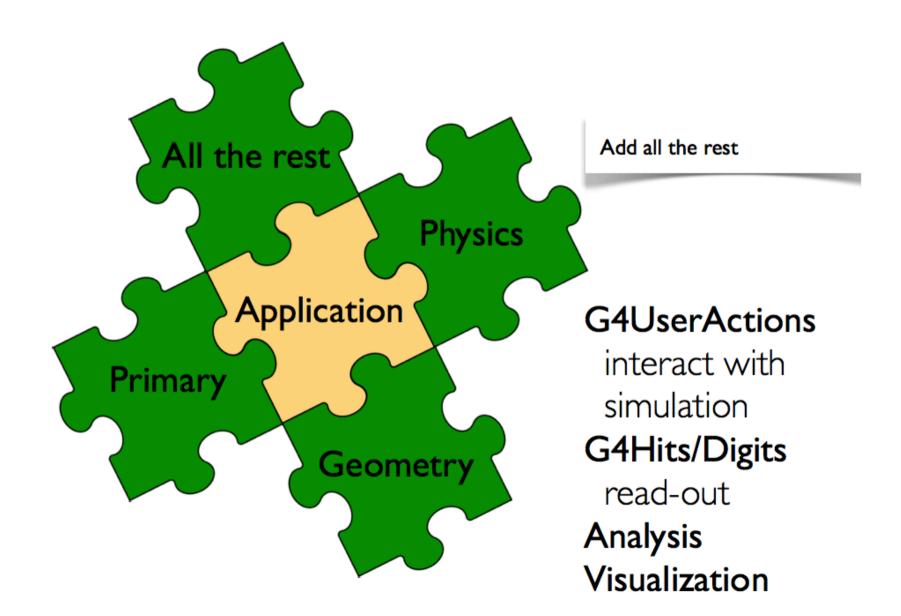
```
$ ./exampleB1
+++ G4StackManager uses G4SmartTrackStack. +++
                                   *****
Geant4 version Name: geant4-09-06-ref-00
                                           (30-November-2012)
                    Copyright : Geant4 Collaboration
                    Reference : NIM A 506 (2003), 250-303
                    WWW : http://cern.ch/geant4
<<< Reference Physics List QBBC
Checking overlaps for volume Envelope ... OK!
Checking overlaps for volume Shape1 ... OK!
Checking overlaps for volume Shape2 ... OK!
WARNING: G40Inelastic is deprecated and will be removed in GEANT4 version 10.0.
### Adding tracking cuts for neutron TimeCut(ns)= 10000 KinEnergyCut(MeV)= 0
Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...
Registering graphics systems...
```

• And that's all !!!


• For further details have a look at the Installation guide:




- Geant4 is a toolkit: no "main" program
- User is responsible of building an application
- Increased flexibility, but...


... more work to be done

Thanks for your attention