)
INFN

L/ Geant4

Geant4 general concept

Varisano Annagrazia
LNS-INFN

Geant4 simulation code: theory and practical session

X Seminar on Software for Nuclear, Subnuclear and Applied Physics

Basic concepts and capabilities of
Geantd4

C++ language

Object Oriented

Open Source

Released twice per year A (V« My
Supported and tested in different platforms: > o]

It is a toolkit, i.e. a collection of tools the User can use for his/
her simulation

It does not provide a general setup configurations:

- You must provide the necessary information to configure
your simulation

- You must choose the Geant4 tools to use

Main Geant4 capabilities

Transportation of a particle ‘step-by-step’ taking into account all the
possible interactions with materials and fields

The transport ends if the particle
- reaches zero kinetic energy
- disappears in some interaction
- reaches the end of the simulation volume

Geant4 allows the User to access the transportation process to retrieve
the simulation results (USER ACTIONS)

- at the beginning and end of the transport
- at the end of each step in transportation
- if particle reaches a sensitive detector;

Geant4: main steps

What you MUST do:

*Describe your experimental set-up

*Provide the primary particles input to your simulation

*Decide which particles and physics models you want to use out

of those available in Geant4 and the precision of your simulation
(cuts to produce secondary particles)

Files composing a Geant4 app

e Main() file

e Sources files (*.cc)
- usually included in the /src folder

e Header files (*.hh)
- usually included in the /include folder

e Three important files are mandatory(with the Main.cc)
- The PrimarygeneratorAction (.cc and .hh)
- The DetectorConstruction (.cc and .hh)
- The PhysicsList (.cc and .hh)

Terminology (jargons)

Step : has two points pre-step point and post-step point, and it gives us
also “delta” information of a particle (energy loss on the step, time-of-
flight spent by the step, etc.).

Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary and it
logically belongs to the next volume.

— Because one step knows two volumes, boundary processes such as transition radiation or
refraction could be simulated.

G4SteppingManager class manages processing a step, a step is represented by G4Step
class.

G4UserSteppingction is the optional user hook.

pre- ste t- step point

Terminology (jargons)

* Event : At beginning of processing, an event contains primary
particles. These primaries and secondary produced are
pushed into a stack.

* When the stack becomes empty, processing of an event is
over.

* G4Event class represents an event. It has following objects at
the end of its processing.

— List of primary vertexes and particles (as input)

— Hits collections

Terminology (jargons)

Run: Conceptually, a run is a collection of events
which share the same detector conditions.

As an analogy of the real experiment, a run of
Geant4 starts with “Beam On”.

Within a run, the user cannot change
— detector geometry
— settings of physics processes
---> detector is inaccessible during a run

Interaction with the Geant4 kernel - 1

Geant4 kernel

M%

A A A :

—-_—
-
-
-
-~
-~
~
~-~o
~

—————
—— -
-
L -

-
-
-
-
-
- ~

inheritance

Only virtual interface ~--__ i
v

e provided > users

. concrete

~o
~
-~
~ -~
-
-
-
-
-

Interaction with the Geant4 kernel - 2

Two types of Geant4 classes:

* Abstract base classes (classes starting with G4V)
— User derived concrete classes are mandatory
— User to implement the purely virtual methods

* User Hook classes for user interaction
— User derived classes are optional

G4VUserPrimaryGeneratorAction

inheritance =

MyPrimaryGeneratorAction

(concrete class)

User Classes

Initialisation classes Action classes

Invoked at the initialization

G4RunManager::SetUserlnitialization() Invoked during the execution loop

G4RunManager::SetUserAction()

G4VUserDetectorConstruction

G4VUserPhysicsList s G4VUserPrimaryGeneratorAction
m G4UserRunAction
Classes haVing Name s G4UserEventAction
starting with G4V are m G4UserTrackingAction
abstract classes s G4UserStackingAction
(containing purely s G4UserSteppingAction

virtual methods)

[@ G4VUserDetectorConstruction
Mandatory classes describe the experimental set-up

in ANY Geant4 User | I G4VUserPhysicsList
Application select the physics you want to activate

@ G4VUserPrimaryGeneratorAction
generate primary events

9

The main() program

Geant4 does not provide the main()
— Geant4 is a toolkit!

— The main() is part of the user application

In his/her main(), the user must
— construct G4ARunManager (or his/her own derived class)

— notify the G4ARunManager mandatory user classes derived from

* G4VUserDetectorConstruction
* G4VUserPhysicsList
* G4VUserPrimaryGeneratorAction

in his/her main(), the user may define optional user action classes
User mustn't forget to delete the G4ARunManager at the end

The user also has to take care of retrieving and saving the
relevant information from the simulation (Geant4 will not do
that by default)

An example of main()

{

// Construct the default run manager
G4RunManager* runManager = new G4RunManager;

// Set mandatory user initialization classes
MyDetectorConstruction™ detector = new MyDetectorConstruction;
runManager->SetUserlnitialization(detector);

MyPhysicsList* physicsList = new MyPhysicsList;
runManager->SetUserlnitialization(myPhysicsList);

// Set mandatory user action classes
runManager->SetUserAction(new MyPrimaryGeneratorAction);

// Set optional user action classes

MyEventAction* eventAction = new MyEventAction();
runManager->SetUserAction(eventAction);
MyRunAction* runAction = new MyRunAction();
runManager->SetUserAction(runAction);

Select physics processes

Geant4 doesn’t have any default particles or processes

* Derive your own concrete class from the
G4VUserPhysicsList abstract base class

— define all necessary particles

— define all necessary processes and assign them to proper
particles

— define y/d production thresholds (in terms of range)

* Pure virtual methods of G4VUserPhysicsList

ConstructParticles()
ConstructProcesses()
SetCuts()

must be implemented by the user in
his/her concrete derived class

Optional user classes

 Five concrete base classes whose virtual member functions
the user may override to gain control of the simulation at

various stages

— GA4UserRunAction e.g. actions to be done
— G4UserEventAction - at the beginning and
— G4UserTrackingAction end of each event

— G4UserStackingAction
— G4UserSteppingAction

 Each member function of the base classes has a dummy
implementation (not purely virtual)
— Empty implementation: does nothing

* Objects of user action classes must be registered with

G4RunManager
runManager->SetUserAction (new MyEventActionClass

Methods of user classes - 1
G4UserRunAction

- BeginOfRunAction (const G4Run*) // book histos

- EndOfRunAction (const G4Run*) //store histos

G4UserEventAction

-BeginOfEventAction (const G4Event*) //initialize event

-EndOfEventAction (const G4Event*) // analyze event

G4UserTrackingAction

- PreUserTrackingAction (const G4Track¥*)
//decide to store/not store a given track
-PostUserTrackingAction (const G4Track¥*)

Methods of user classes - 2

G4UserSteppingAction

- UserSteppingAction (const G4Step¥*)

//kill, suspend, pospone the track, draw the step, ...

G4UserStackingAction

-PrepareNewEvent () //reset priority control
—-ClassifyNewTrack (const G4Track¥*)
// Invoked when a new track is registered (e.qg. kill, pospone)

- NewStage ()

/[Invoked when the Urgent stack becomes empty (re-classify,
abort event)

Optional: select (G)Ul

In your main(), taking into account your computer environment, instantiate a
G4Ulsession concrete/derived class provided by Geant4 and invoke its
SessionStart() method

mysession->SessionStart() ;

Optional: select visualization

In your main(), taking into account your computer environment, instantiate a
G4VisExecutive and invoke its Initialize() method

Geant4 provides interfaces to various graphics drivers:
— DAWN (Fukui renderer)
— WIRED
— RayTracer (ray tracing by Geant4 tracking)
— OpenGL
— Openlnventor
— VRML

General recipe for novice users

Experienced users may do
much more, but the conceptual
process is still the same...

Design your application... requires some preliminar thinking
(what is it supposed to do?)

Create your derived mandatory user classes
— MyDetectorConstruction

— MyPhysicslList

— MyPrimaryGeneratorAction

Create optionally your derived user action classes
— MyUserRunAction, MyUserEventAction, ...

Create your main()
— Instantiate GARunManager or your own derived MyRunManager
— Notify the RunManager of your mandatory and optional user classes
— Optionally initialize your favourite User Interface and Visualization

That’s all!

