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Spin-parity of very Higgs-like state at LHC

• ATLAS disfavors a specific spin 2 alternative 
(massive graviton) at > 99.9% CL

• CMS excludes pseudoscalar with 97.6% CL
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• QCD (g) Yang-Mills interaction + θQCD-term : quarks and antiquarks (gs)

• Yukawa couplings (Hψ ̄ψ): all massive fermions (except neutrinos?)

• scalar potential interactions ([H*H]2): H

• non-renormalizable interactions consistent with the gauge symmetries

• gravitational interaction (G): all (Planck length κP = √8πGN)
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• spin 1: gauge invariance (exact, realized in Goldstone mode)

• spin 2: general coordinate and local Lorentz invariance (equivalence 
principle, exact, realized in Wigner mode)

• spin 3/2: supersymmetry (explicitly broken in models, realized?)

• the higher the spin the more complicated the interactions, but the better 
our understanding
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• B: accidentally exact at renormalizable level;  if violated then p-decay 
and nn̅-oscillations (window to sub-Planck scale)

• L: accidentally exact at renormalizable level;  if violated then 0νββ-
decay (window to GUT scale)

• CP: accidentally small effects in SM (window to 100 PeV scale)

• T: electric dipole moments (EDMs)

• CLFV: negligible in SM (window to multi-PeV scale)

• FCNC: in SM suppressed by GIM mechanism (window to PeV scale)

• FCCC: unitarity and universality tests (window to 10 TeV scale)

• P: polarized e−-scattering,  APV (window to multi-TeV scale)
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• stabilizing v (Planck−weak hierarchy) quite generically implies rich 
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• in most models designed to address or solve the hierarchy problem, 
there is a dark matter candidate with desired properties

• fermion content and its consistency with SU(5) representations

• values of the fundamental parameters or their small size

• me, mν, θQCD, CKM mixing, …

• very strong arguments to pursue all possible searches for New Physics 
beyond the SM
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• ν-oscillations and mass ⇒

• non-renormalizable operator LLHH

ν are Majorana fermions (new type of particle) ⇒ 0νββ-decay

• right-handed ν (new particle)

need HLν-Yukawa couplings of < O(10−12) and impose L by hand

• or both

• muon g−2 and some other smaller SM deviations in precision 
observables
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• a theorist’s dream

• SUSY required if massless spin 3/2 particle present

• unique non-trivial extension of Poincaré group Haag, Sohnius, Łopuszański 1984

• only superstrings contain fermions and are free of tachyons

• phenomenology of minimal model of weak scale SUSY (MSSM)

• perturbative stabilization of Fermi scale

• MH ≲ 130 (150) GeV predicted in MSSM (extensions)

• perfect one-loop gauge coupling unification (separate at two loops)

• unification scale almost coincides with (reduced) Planck scale

• roughly consistent with mb−mτ unification

• account for muon g−2 (in a rapidly shrinking corner of parameter space)
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Ideas and top-down scenarios

• string theory (finite, predicts GR) and M-theory

• supersymmetry and supergravity

• technicolor and other strong dynamics (disfavored)

• warped extra dimensions Randall, Sundrum

• grand unified theories

• anthropic principle and the landscape

★ but concrete models either baroque or ruled out, most 
notably by precision measurements

• the flavor, CP and LHC problems of new physics

• need urgently guidance from experiment
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• spin 1/2: extra fermions (extra generations, technicolor, νR)

• spin 1: extra gauge bosons (Z′, W′)
• spin 3/2: gravitino (SUGRA)

• spin 2: KK gravitons (TeV scale extra dimensions)

• an uncountable number of concrete models …
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• exploit that only weak interaction (and θQCD-term) violates P (filters out the much 
stronger EM and strong forces)  

• SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for 
NP searches (needs understanding with high precision and confidence)   

• expect that TeV scale NP appears chiral with respect to part of gauge group ⇒ PV

• exploit that some discrete symmetry violations are strongly suppressed or quasi-
forbidden in some observables

• signal is then tantamount to the discovery of NP.  Downside: what NP?

• expect NP to introduce new sources of CP and flavor violations, as new interactions 
allow more complex phases which cannot be absorbed
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• study particles which only participate in the weak interaction (ν)

• exploit that only weak interaction (and θQCD-term) violates P (filters out the much 
stronger EM and strong forces)  

• SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for 
NP searches (needs understanding with high precision and confidence)   

• expect that TeV scale NP appears chiral with respect to part of gauge group ⇒ PV

• exploit that some discrete symmetry violations are strongly suppressed or quasi-
forbidden in some observables

• signal is then tantamount to the discovery of NP.  Downside: what NP?

• expect NP to introduce new sources of CP and flavor violations, as new interactions 
allow more complex phases which cannot be absorbed

• ultra-high precision (muon g−2)
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• non-observation of NP at LHC: emerging little hierarchy v ≪ Λnew

• write most general Lagrangian consistent with (exact) gauge symmetries 

• renormalizable at any given finite order

• dimension 0 and 2: cosmological constant and hierarchy problems

• dimension 4: strong CP problem, θQCD = O(10−10)

• Higgs portal: spin 0 singlet operator (HH*)(HH*) Schabinger, Wells 2005

• ν portal: spin ½ singlet operator HLν Falkowski, Juknevich, Shelton 2009

• U(1) portal: spin 1 singlet operator Fμν Fμν Holdom 1986

• dimension 5 (unique): HHLL (ΔL = 2) Weinberg 1979                                             

→ Majorana mass terms ∝ v2/Λnew (special case: seesaw mechanism)
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• ν oscillation and thus ν flavor violation (νFL) has been established by the observation 

• of the disappearance of solar (νe ↛ νe), reactor (ν̅e ↛ ν̅e), atmospheric and 
accelerator (νμ ↛ νμ and ν̅μ ↛ ν̅μ) neutrinos

• of the appearance of new neutrino flavors from solar (νe → νμ,τ), atmospheric 
(νμ → ντ) and accelerator (νμ → νe) neutrinos
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• ν oscillation and thus ν flavor violation (νFL) has been established by the observation 

• of the disappearance of solar (νe ↛ νe), reactor (ν̅e ↛ ν̅e), atmospheric and 
accelerator (νμ ↛ νμ and ν̅μ ↛ ν̅μ) neutrinos

• of the appearance of new neutrino flavors from solar (νe → νμ,τ), atmospheric 
(νμ → ντ) and accelerator (νμ → νe) neutrinos

• this can be understood if (and almost certainly only if) the masses of the three νi all 
differ and there is a misalignment between mass and CC eigenstates, parameterized 
by the PMNS matrix with (marginalized over sign choices) Fogli et al. 2012

Δm2
⊙◉☉ ≡ m22 - m12 = (8.69 ± 0.14 meV)2 

|Δm2A| ≡ |m32 - (m12 + m22)/2| = (49.0 ± 0.9 meV)2

θ⊙◉☉ ≡ θ12 = 33.7° ± 1.1° where θ12 < 45° from matter (MSW) effect

θA ≡ θ23 = 39.1 ± 1.9°

θ13 = 8.9 ± 0.5°
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• sign of Δm2A unknown:

• normal hierarchy (NH): m1 ≪ m2 < m3 (m32 ≈ Δm2A)

• inverted hierarchy (IH): m3 ≪ m1 < m2 (m12 ≈ m22 ≈ Δm2A)

• quasi-degeneracy (QD): m1 ≈ m2 ≈ m3 (mi2 ≫ Δm2A)

18



ν spectrum

18

• sign of Δm2A unknown:

• normal hierarchy (NH): m1 ≪ m2 < m3 (m32 ≈ Δm2A)

• inverted hierarchy (IH): m3 ≪ m1 < m2 (m12 ≈ m22 ≈ Δm2A)

• quasi-degeneracy (QD): m1 ≈ m2 ≈ m3 (mi2 ≫ Δm2A)

• to determine it can use (the relatively large θ13 helps here)

• long-baseline accelerator ν (NOνA, …) with large matter effects

• atmospheric ν traversing the Earth by studying subdominant νμ → νe and 
ν̅μ → ν̅e.  

• resonance-like enhancement (but not MSW) of νμ → νe (ν̅μ → ν̅e) for 
normal (inverted) hierarchy Petcov 1998

• reactor ν̅e (challenging but not impossible if θ13 ≳ 4°) Ghoshal, Petcov 2011

• improve β-decay experiments (below) by factor 4 to reach |Δm2A| 
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• absolute mν scale (only Δm2 known)?

• 3H β-decay experiments like KATRIN will improve mν̅ < 2.05 eV (Troitsk) by 
factor 10 and probe QD spectrum

• ΛCDM cosmology (6 parameter model): ∑i mν ≲ 230 meV (relativistic)
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• ΛCDM cosmology (6 parameter model): ∑i mν ≲ 230 meV (relativistic)

• CP violation in ν sector?

• look for difference between ν and corresponding ν̅ oscillations in long-baseline 
experiments (T2K, …)

• the two Majorana phases do not enter into oscillations Bilenky, Hosek, Petcov 1980

• in one scenario can get BAU from leptogenesis if θ13 ≳ 5° Pascoli, Petcov, Riotti 2007

• ν counting: sterile neutrinos?

• LSND and MiniBooNE anomaly? observed ν̅μ → ν̅e which would need two extra νs 
with mν = O(1 eV)

• ν nature: Majorana (strictly neutral) or Dirac?
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0νββ decay

20

• observation and sufficiently accurate measurement of 

(A, Z) → (A, Z+2) + 2 e− 

would (assuming a Majorana ν mass is the dominant mechanism)

• establish L violation

• determine the ν nature to be Majorana

• inform about Majorana phases in PMNS matrix Uij

• inform about absolute mν scale

• measure 〈mββ〉 ≡ | U2e1 m1 + U2e2 m2 eiα + U2e3 m3 eiβ |

• inform about the type of ν spectrum

• need to confirm or reject the claimed evidence in 76Ge of 

T½ ≈ 2×1025 y → 〈mββ〉 ~ 0.32 (0.03)exp (0.10)th eV Klapdor-Kleingrothaus et al. 2001
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EFT at d = 6

• 16 types of bosonic operators Grzadkowski, Iskrzyński, Misiak and Rosiek 2010

• 4 affect triple gauge couplings: 2 G3, 2 W3 (CP even and odd)

• 11 affect Higgs couplings: 2 H2G2, 2 H2W2, 2 H2B2, 2 H2WB, H6, (HDH)2, H2D2H2
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• 16 types of bosonic operators Grzadkowski, Iskrzyński, Misiak and Rosiek 2010

• 4 affect triple gauge couplings: 2 G3, 2 W3 (CP even and odd)

• 11 affect Higgs couplings: 2 H2G2, 2 H2W2, 2 H2B2, 2 H2WB, H6, (HDH)2, H2D2H2

• 19 mixed types (one fermion bilinear)

• 3 affect fermion mass matrices: H3F2

• 8 affect fermion dipole moments: 2 HGF2, 3 HWF2, 3 HBF2 (important for CPV)

• 8 affect fermion couplings to gauge bosons: (HDH)F2

• 30 types (up to flavor structures) of fermionic operators (four-Fermi)

• LLLL

• 10 QQQQ

• 12 QQLL (ΔB = 0)

• 5 QQQL (ΔB = 1)
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• most precise measurements in deep inelastic scattering (νDIS) from iso-scalar targets

• gives coupling combinations gL2 ≡ gLu2 + gLd2 and gR2 ≡ gRu2 + gRd2

• nominally 2.7 σ deviation (NuTeV) in gL2

• possible explanations within SM (e.g. iso-vector EMC effect Cloet, Bentz, Thomas 2009)

• need theory and experiments testing it (e.g. PREX)

• sin2θW less precise than PVES experiments, but important for ν 4-Fermi operators

• improve using superbeams and ν-factory (intensity and composition)
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• most precise measurements in deep inelastic scattering (νDIS) from iso-scalar targets

• gives coupling combinations gL2 ≡ gLu2 + gLd2 and gR2 ≡ gRu2 + gRd2

• nominally 2.7 σ deviation (NuTeV) in gL2

• possible explanations within SM (e.g. iso-vector EMC effect Cloet, Bentz, Thomas 2009)

• need theory and experiments testing it (e.g. PREX)

• sin2θW less precise than PVES experiments, but important for ν 4-Fermi operators

• improve using superbeams and ν-factory (intensity and composition)

• also need iso-vector couplings hL2 ≡ gLu2 − gLd2 and hR2 ≡ gRu2 − gRd2

• ν-induced coherent π− production

e.g. as νA → νAπ0 ⇒ axial-vector combination β ≡ hL2 − hR2

• elastic scattering from protons (also νDIS from nucleons?)

difficult to interpret (s-quark contribution)

future: use β-beams (for ν spectra) and universal analyses (with PVES)
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29

• tiny (order 10−7) polarization asymmetry ∝ 1 − 4 sin2θW  ⇒

• very clean (leptonic) low-energy determination of sin2θW

• SLAC-E158 established “running” of sin2θW

• MOLLER (JLab) will be competitive with LEP/SLC

• may resolve LEP/SLC discrepancy (at least one is “wrong”)

• can access higher order “oblique” corrections to W and Z 
propagators (“X parameter”)

• can access new physics mimicking the X parameter (dark Z)

• new PV amplitudes which are strongly suppressed at Z-pole (e.g. Z′)
• new (PV) coupling combination not accessible at Z-pole

29



145 150 155 160 165 170 175 180 185
mt [GeV]

10

20

30

50

100

200

300

500

1000

M
H
 [G

eV
]

ΓZ, σhad, Rl, Rq (1σ)
Z pole asymmetries (1σ)
MW (1σ)
low energy
mt (1σ)
MH (LHC)

30

Erler 2013

30



10 100 1000 10000
MH [GeV]

0.230 0.230

0.231 0.231

0.232 0.232

0.233 0.233

0.234 0.234

0.235 0.235

si
n2 e

ef
f(e

)

E158

ALR(had)

AFB(b)

MOLLER Qweak

31

Erler, Su 2013

Rb anomaly?

31



0.0001 0.001 0.01 0.1 1 10 100 1000 10000

µ [GeV]

0.225

0.230

0.235

0.240

0.245

si
n2 θ

W
(µ

)

QW(Cs)

QW(e)

CMS

Tevatron
LEP 1

SLD

NuTeV

eDIS

QW(p)QW(Ra)

QW(p)

QW(e)

SLAC

JLab

JLab

Mainz

an
tis

cr
ee

ni
ng

screening

SM
published
ongoing
planned

32

Erler, Su 2013

Polarized ep scattering

32



Polarized ep scattering

33

33



Polarized ep scattering

33

• polarization asymmetry in elastic scattering from proton as a whole 
⇒	 gAVp ≡ 2 gAVu + gAVd = − 1/2 + 2 sin2θW

33



Polarized ep scattering

33

• polarization asymmetry in elastic scattering from proton as a whole 
⇒	 gAVp ≡ 2 gAVu + gAVd = − 1/2 + 2 sin2θW

• low Q2 important to keep y2-term and associated hadronic 
uncertainties below experimental error (not an option in ν-scattering)

33



Polarized ep scattering

33

• polarization asymmetry in elastic scattering from proton as a whole 
⇒	 gAVp ≡ 2 gAVu + gAVd = − 1/2 + 2 sin2θW

• low Q2 important to keep y2-term and associated hadronic 
uncertainties below experimental error (not an option in ν-scattering)

• y → 0 extrapolation using other (higher Q2) asymmetry results

33



Polarized ep scattering

33

• polarization asymmetry in elastic scattering from proton as a whole 
⇒	 gAVp ≡ 2 gAVu + gAVd = − 1/2 + 2 sin2θW

• low Q2 important to keep y2-term and associated hadronic 
uncertainties below experimental error (not an option in ν-scattering)

• y → 0 extrapolation using other (higher Q2) asymmetry results

• Qweak (y = 0.0085) completed data taking and will extract the weak 
charge of the proton QWp ≈ − 2 gAVp to 4% and sin2θW to 0.3%

33



Polarized ep scattering

33

• polarization asymmetry in elastic scattering from proton as a whole 
⇒	 gAVp ≡ 2 gAVu + gAVd = − 1/2 + 2 sin2θW

• low Q2 important to keep y2-term and associated hadronic 
uncertainties below experimental error (not an option in ν-scattering)

• y → 0 extrapolation using other (higher Q2) asymmetry results

• Qweak (y = 0.0085) completed data taking and will extract the weak 
charge of the proton QWp ≈ − 2 gAVp to 4% and sin2θW to 0.3%

• P2 (Mainz): y2-term not 1 − 4 sin2θW suppressed, contributing 1/3 to 
asymmetry and 1.5% to error ⇒ go to even lower y = 0.0038
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• low Q2 important to keep y2-term and associated hadronic 
uncertainties below experimental error (not an option in ν-scattering)

• y → 0 extrapolation using other (higher Q2) asymmetry results

• Qweak (y = 0.0085) completed data taking and will extract the weak 
charge of the proton QWp ≈ − 2 gAVp to 4% and sin2θW to 0.3%

• P2 (Mainz): y2-term not 1 − 4 sin2θW suppressed, contributing 1/3 to 
asymmetry and 1.5% to error ⇒ go to even lower y = 0.0038

• will also reduce additional γ-Z box uncertainty Gorchtein, Horowitz 2009

• P2 goal: 2% in QWp
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• effects tiny and ~ Z3 → seen only in heavy atoms (~ gAVu + gAVd)

• gAV add up coherently → nuclear spin-independent interaction

• spin-dependent gVA clouded by dominant nuclear anapole moment

• separate gAV and gVA by measuring different hyperfine transitions

• good understanding of atomic structure crucial → Cs (Tl)

• state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009

• moving history of Cs result (Boulder): currently 1.5 σ SM deviation  Dzuba, 
Berengut, Flambaum, Roberts 2012

• Yb (Berkeley) isotope ratios (R) (atomic physics cancels Bouchiat, Pottier 1986)

• single trapped Ra+ and Ba+ promising (much larger PV effect) KVI, Seattle 

• trapped Fr atoms TRIUMF

• ideally measure APV in H and D Dunford, Holt 2007
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• eDIS asymmetries much larger (≳ 10−4) than in elastic scattering

• sensitive to ~ (2 gVAu − gVAd) − 0.84 (2 gVAu − gVAd)

• measured to ~ 10% at SLAC at 0.92 GeV2 < Q2 < 1.96 GeV2 
Prescott et al 1979 

• JLab Hall A Collaboration took 2 further points (currently 
analyzed) at Q2 = 1.1 and 1.9 GeV2 to ~ 2.5%

• SOLID will measure large array of kinematic points up to 9.5 
GeV2 (0.5% precision in coupling combination)

• remaining gVA combination: elastic scattering at background 
angles, but obstructed by strange quarks and nucleon anapole 
moment (universal analyses with ν scattering)
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• aμ ≡ (1165920.80 ± 0.63)×10−9 (BNL-E821)

• SM: aμ ≡ (1165918.41 ± 0.36vac pol ± 0.32γ×γ)×10−9 

• 3.0 σ deviation (includes e+e− and τ-decay data): SUSY?

• improve measurement to ± 10−10 (FNAL, J-PARC) ⇒ Λ/g ≳ 1 TeV in loops

• reduce hadronic uncertainties by at least factor 2 (overall error by factor 3)

• vacuum polarization: low-energy part correlated with running α and sin2θW

• e+e− based (annihilation & radiative return): 3.6 σ 

2.3 σ discrepancy with measured B(τ− → ν π0 π−) 

• τ based: 2.4 σ 

• 1.9 σ conflict between KLOE and BaBar (which is not inconsistent with τ-data)

• charm threshold and continuum regions for mc and Δα (for MH prediction)
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• violate P and CP with SM contribution many orders of magnitude below current limits

• diamagnetic atoms are mostly sensitive to the nuclear Schiff moment, the nucleon 
EDMs dp, dn and one QQLL operator, and probe θQCD Engel, Ramsey-Musolf, van Kolck 2013

|dHg| < 2.0×10−29 e cm (1σ) ≈ 2500 e lP ⇒ |θQCD| < 10−10

• polar molecules & paramagnetic atoms sensitive to de and another QQLL combination

Yb F Hudson et al. 2011 ⇒ |de| < 2×10−17 e∕me = e v∕(76 PeV)2 (1σ) superseding Tl limit

• measure or set limits on as many different EDMs as possible

• measure EDMs of charged nuclei in storage ring experiments

• improve |dn| < 9×10−13 e∕mn (1σ) as competitor to probe θQCD

• compare patterns like 0.01 e∕mn θQCD ~ dn ≃ −dp ≃ −3 dd Pospelov, Ritz 2005

with SUSY: dd ≃ 20 dn ≃ 200 de ≃ e v∕(2.2 PeV)2

• |dμ| < 10−6 e∕mμ (E-821) to be competitive gradually improve to  

10−12 e∕mμ = e v∕(5 PeV)2 (PSI, FNAL, J-PARC) 
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Wilson Coe�cient Operator (dimension) Number Systems

✓̄ theta term (4) 1 hadronic &

diamagnetic atoms

�e electron EDM (6) 1 paramagenetic atoms

ImC(1,3)
`equ , ImC`eqd semi-leptonic (6) 3 & molecules

�q quark EDM (6) 2 hadronic &

�̃q quark chromo EDM (6) 2 diamagnetic atoms

CG̃ three-gluon (6) 1

ImC(1,8)
quqd four-quark (6) 2

ImC'ud induced four-quark (6) 1

total 13

Table 1: Dimension four and dimension six CPV operator coe�cients for light flavors. First column
gives dimensionless Wilson coe�cient (see Sec. 2), followed by operator name and mass dimension
(second column) and number of operators (third column). Final column indicates type of system in
which a given operator will have its most significant impact.

2 Conventions and Definitions

The starting point for our analysis is the weak scale operators defined in the introductory article [10].
We concentrate on three sources of CPV,

LCPV = LCKM + L✓̄ + Le↵
BSM . (2.1)

Here the CPV SM CKM [15] and QCD [16, 17, 18] interactions are

LCKM = � ig2p
2
V pq
CKMŪ

p
L 6W+Dq

L + h.c. , (2.2)

L✓̄ = � g23
16⇡2

✓̄Tr
⇣

Gµ⌫G̃µ⌫

⌘

, (2.3)

where g2 and g3 are the weak and strong coupling constants, respectively, Up
L (Dp

L) is a generation-p
left-handed up-type (down-type) quark field, V pq

CKM denotes a CKM matrix element, W±
µ are the charged

weak gauge fields, and G̃µ⌫ = ✏µ⌫↵�G↵�/2 (✏0123 = 1 4) is the dual to the gluon field strength Gµ⌫ . In
addition,

Le↵
BSM =

1

⇤2

X

i

↵(n)
i O(6)

i , (2.4)

gives the set of dimension-six CPV operators at the weak scale v = 246 GeV generated by BSM physics
at a scale ⇤ > v. These operators [19] are listed in Tables 2 and 3. Note that the operators containing
fermions are not CPV in and of themselves. Rather CPV e↵ects arise when the corresponding coe�cients
↵(n)
i are complex, as discussed below.

4Note that our sign convention for ✏µ⌫↵� , which follows that of Ref. [19], is opposite to what is used in Ref. [14] and
elsewhere. Consequently, L✓̄ carries an overall �1 compared to what frequently appears in the literature.

6

Engel, Ramsey-Musolf, van Kolck 2013

(first generation only)
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Li, Profumo, Ramsey-Musolf 2010

             ϕi: gauge-Higgs SUSY soft phases                ϕf: trilinear SUSY soft phases (A-terms)

MSUSY = 1000 GeV
MSUSY =   500 GeV
MSUSY =   200 GeV

MSUSY = 1000 GeV
MSUSY =   500 GeV
MSUSY =   200 GeV

CP phases too small for BAU unless one relaxes universality and allows cancellations
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• hopelessly negligible in SM ⇒ directly probing new physics

• μ+ → e+ γ 

• current MEG limit: BR < 5.7 ×10−13 

• improve to 10−13 and perhaps 10−14 (challenging)

• probes effective operator like mμ∕Λ2 μ ̅σμν e Fμν at tree level

• μ+ → e+ e− e+

• current SINDRUM limit: BR < 1.0 ×10−12

• improve to 10−15 and perhaps 10−16 (challenging)

• probes effective operator like 1∕Λ2 μ ̅γμ e e ̅ γμ e at tree level

• KL → μ± e∓

• μ+ e− ↔ μ− e+

• CLFV involving τ leptons (currently 10−8 level) competitive in specific scenarios

• may improve to < 10−9 at super-B factories
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• 0νμ− capture (current SINDRUM-II limit: BR < 7 ×10−13 on Au)

• μ− to e+ conversion: μ− + (A, Z) → e+ + (A, Z−2) (not the 0νββ L-operator)
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• probes effective operator like 1∕Λ2 μ ̅γμ e q ̅ γμ q at tree level

• need ratios of target nuclei (ideally light / heavy) to disentangle operators 
Cirigliano, Kitano, Okada, Tuzon 2009

• perfect opportunities for facilities like J-PARC and Project X
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dipole operator ↔ contact operator dipole operator ↔ contact operator
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β-decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

ΔCKM ≡ |Vud|2 + |Vus|2 + |Vub|2 − 1 = (1 ± 6)×10−4	 ⇒ Λ ≳ 9 TeV

• lepton universality: Re/μ = Γ[π→e ν (γ)]∕Γ[π→μ ν (γ)] 

helicity suppressed in SM: (1.2310 ± 0.0037)×10−4 PSI, TRIUMF

• bright future: 5×10−8 PIENU, PEN

• kaons: 10−7 CERN

• departure from V−A (S, P, T, V+A currents)

• μ-decay (Sirlin-Michel parameters) TWIST

• nuclear decay distributions Cirigliano, Gardner, Holstein 2013
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ΔCKM

Re/μ 

STU

LHC bounds

combined

Bauman, Erler, 
Ramsey-Musolf 2012

MSSM with R-parity
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• B(K+→π+ ν ν̄) ~ 10−10 BNL-E787	 ⇒ Λ ≳ 76 TeV 

• theoretically very clean (in SM, loop and CKM suppressed)

• can be improved to 10−11 CERN-NA62

• KOPIO concept 10−14 (Λ ≳ 800 TeV)

• CPV mode: K0→π0 ν ν̄ KEK, J-PARC

• K+ (K0) can determine modulus (Im) of VtdVts*

• superior to Vub
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• the next best thing after a GUT or Planck scale accelerator

• τ(p → e+ π0) > 8.2×1033 a (Super-Kamiokande) ⇒     

• Γ∕m = C∕16π (360 MeV g∕Λ)4 < (4.1×10−17)4 ⇒     

• Λ > 3.3×1015 GeV (for C = g = 1) ≈ 10−3 MP

• C ≈ 30 in minimal SUSY-SU(5), where 

ΛSUSY-GUT = 2×1016 GeV, but excluded through 

τ(p → K+ ν̄) > 2.3×1033 a Murayama, Pierce 2002 

➡ complementarity is crucial even testing the highest scales
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Variations at d > 6

• dimension 7 needed for transition magnetic moments of 
Majorana neutrinos Bell et al. 2006

• 129 dimension 8 operators with ΔL = 2, ΔB = 0                          
Babu, Leung 2001, de Gouvea, Jenkins 2007

• dimension 9 

• needed for nn̅-oscillations

• alternative mechanism for 0νββ-decay; 

• cataloged by Prezeau, Ramsey-Musolf, Vogel 2003

• Heidelberg-Moscow Ge experiment ⇒	 Λ9∕g ≳ 3 TeV

• angular distribution may distinguish “long-distance” (mν) and 
“short-distance” models Ali, Borisov, Zhuridov 2006
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• it is therefore of paramount importance to pursue 

• as many different types of symmetry tests as possible 

• B, L, LF, CP, P, …

• and within each type of test aim at various kinds of processes

• μ → e γ, μ → 3 e, μ → e, …

• and within each kind of process vary and take combinations of projectiles and targets

• A, Z, lepton flavor, …

• and where possible obtain final state information

• spin, flavor, energy, scattering angle, …

• field moving towards being a backup if nothing (except for the Higgs) is seen at the LHC
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