

Electroweak Physics and Fundamental Symmetries

dedicio parte

JENS ERLER (IF-UNAM)

IUPAP WG.9 Nuclear Science SymposiumLN di Frascati, Italy31 May 2013

- Introduction (SM and generalities)
- Neutrino mass

- Introduction (SM and generalities)
- Neutrino mass
- Parity-violating and neutrino scattering

- Introduction (SM and generalities)
- Neutrino mass
- Parity-violating and neutrino scattering
- Dipole moments

- Introduction (SM and generalities)
- Neutrino mass
- Parity-violating and neutrino scattering
- Dipole moments
- Flavor violation

- Introduction (SM and generalities)
- Neutrino mass
- Parity-violating and neutrino scattering
- Dipole moments
- Flavor violation
- Conclusions

Table of the Elementary Particles

ντ	τ-	τ+	t	t	t	Ŧ	Ŧ	ī	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
νμ	μ-	μ+	C	C	C	C	C	C	S	S	S	S	S	S
S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1/2	S=1⁄2	S=½	S=1/2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=½	S=1/2
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e-	e +	u	u	U	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1/2	S=1/2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1/2
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
H s=0	H= s=0	Z s=1	W- s=1	W+ s=1	g lhl=1	g Ihl=1	g Ihl=1	g lhl=1	g lhl=1	g lbl=1	g lhl=1	g lhl=1	Y Ihl=1	G
134	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

Spin-parity of very Higgs-like state at LHC

- ATLAS disfavors a specific spin 2 alternative (massive graviton) at > 99.9% CL
- CMS excludes pseudoscalar with 97.6% CL

$SU(3)_C \times SU(2)_L \times U(1)_Y \times SO(1,3)$ gauge theory

 weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)
- QCD (g) Yang-Mills interaction + θ_{QCD} -term : quarks and antiquarks (g_s)

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)
- QCD (g) Yang-Mills interaction + θ_{QCD}-term : quarks and antiquarks (g_s)
- Yukawa couplings ($H\overline{\psi}\psi$): all massive fermions (except neutrinos?)

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)
- QCD (g) Yang-Mills interaction + θ_{QCD}-term : quarks and antiquarks (g_s)
- Yukawa couplings ($H\overline{\psi}\psi$): all massive fermions (except neutrinos?)
- scalar potential interactions ([H*H]²): H

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)
- QCD (g) Yang-Mills interaction + θ_{QCD} -term : quarks and antiquarks (g_s)
- Yukawa couplings ($H\overline{\psi}\psi$): all massive fermions (except neutrinos?)
- scalar potential interactions ([H*H]²): H
- non-renormalizable interactions consistent with the gauge symmetries

- weak charged current (CC) V-A interactions (W[±]): left-handed leptons and quarks and their right-handed antiparticles (gauge parameter g)
- neutral current (NC) interactions (Z): all fermions, W[±], described by fundamental parameter $sin^2\theta_W$ where $e = g sin\theta_W = g' cos\theta_W$
- QED (Y): charged leptons, all quarks and antiquarks, W^{\pm} (charge e)
- QCD (g) Yang-Mills interaction + θ_{QCD} -term : quarks and antiquarks (g_s)
- Yukawa couplings ($H\overline{\psi}\psi$): all massive fermions (except neutrinos?)
- scalar potential interactions ([H*H]²): H
- non-renormalizable interactions consistent with the gauge symmetries
- gravitational interaction (G): all (Planck length $\kappa_P = \sqrt{8\pi G_N}$)

- reductionist view (Weinberg):
 - we observe what should be expected except supersymmetry
 - origin of equivalence principle and gauge symmetries understood
 - these are renormalizable

- reductionist view (Weinberg):
 - we observe what should be expected except supersymmetry
 - origin of equivalence principle and gauge symmetries understood
 - these are renormalizable
- Lorentz invariance at the quantum level \Rightarrow QFT (our tool) and dynamic symmetries (yielding our most cherished theories):
 - spin I: gauge invariance (exact, realized in Goldstone mode)
 - spin 2: general coordinate and local Lorentz invariance (equivalence principle, exact, realized in Wigner mode)
 - spin 3/2: supersymmetry (explicitly broken in models, realized?)

- reductionist view (Weinberg):
 - we observe what should be expected except supersymmetry
 - origin of equivalence principle and gauge symmetries understood
 - these are renormalizable
- Lorentz invariance at the quantum level \Rightarrow QFT (our tool) and dynamic symmetries (yielding our most cherished theories):
 - spin I: gauge invariance (exact, realized in Goldstone mode)
 - spin 2: general coordinate and local Lorentz invariance (equivalence principle, exact, realized in Wigner mode)
 - spin 3/2: supersymmetry (explicitly broken in models, realized?)
- the higher the spin the more complicated the interactions, but the better our understanding

• CPT: predicted, exact (window to Planck scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)
- T: electric dipole moments (EDMs)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)
- T: electric dipole moments (EDMs)
- CLFV: negligible in SM (window to multi-PeV scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)
- T: electric dipole moments (EDMs)
- CLFV: negligible in SM (window to multi-PeV scale)
- FCNC: in SM suppressed by GIM mechanism (window to PeV scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)
- T: electric dipole moments (EDMs)
- CLFV: negligible in SM (window to multi-PeV scale)
- FCNC: in SM suppressed by GIM mechanism (window to PeV scale)
- FCCC: unitarity and universality tests (window to 10 TeV scale)

- CPT: predicted, exact (window to Planck scale)
- B: accidentally exact at renormalizable level; if violated then p-decay and nn-oscillations (window to sub-Planck scale)
- L: accidentally exact at renormalizable level; if violated then $0\nu\beta\beta$ -decay (window to GUT scale)
- CP: accidentally small effects in SM (window to 100 PeV scale)
- T: electric dipole moments (EDMs)
- CLFV: negligible in SM (window to multi-PeV scale)
- FCNC: in SM suppressed by GIM mechanism (window to PeV scale)
- FCCC: unitarity and universality tests (window to 10 TeV scale)
- P: polarized e⁻-scattering, APV (window to multi-TeV scale)

Cirigliano, Ramsey-Musolf 2013

- naturalness of fundamental scales
 - cosmological constant
 - Fermi scale (Higgs vacuum expectation value, v)
 - stabilizing v (Planck-weak hierarchy) quite generically implies rich new physics at the EW scale or slightly above
 - in most models designed to address or solve the hierarchy problem, there is a dark matter candidate with desired properties

- naturalness of fundamental scales
 - cosmological constant
 - Fermi scale (Higgs vacuum expectation value, v)
 - stabilizing v (Planck-weak hierarchy) quite generically implies rich new physics at the EW scale or slightly above
 - in most models designed to address or solve the hierarchy problem, there is a dark matter candidate with desired properties
- fermion content and its consistency with SU(5) representations

- naturalness of fundamental scales
 - cosmological constant
 - Fermi scale (Higgs vacuum expectation value, v)
 - stabilizing v (Planck-weak hierarchy) quite generically implies rich new physics at the EW scale or slightly above
 - in most models designed to address or solve the hierarchy problem, there is a dark matter candidate with desired properties
- fermion content and its consistency with SU(5) representations
- values of the fundamental parameters or their small size
 - $m_e, m_v, \theta_{QCD}, CKM$ mixing, ...

- naturalness of fundamental scales
 - cosmological constant
 - Fermi scale (Higgs vacuum expectation value, v)
 - stabilizing v (Planck-weak hierarchy) quite generically implies rich new physics at the EW scale or slightly above
 - in most models designed to address or solve the hierarchy problem, there is a dark matter candidate with desired properties
- fermion content and its consistency with SU(5) representations
- values of the fundamental parameters or their small size
 - $m_e, m_v, \theta_{QCD}, CKM$ mixing, ...
- very strong arguments to pursue all possible searches for New Physics beyond the SM

• dark matter

- dark matter
- Baryon Asymmetry in the Universe (BAU)

- dark matter
- Baryon Asymmetry in the Universe (BAU)
- V-oscillations and mass \Rightarrow
 - non-renormalizable operator LLHH

v are Majorana fermions (new type of particle) $\Rightarrow 0\nu\beta\beta$ -decay

• right-handed V (new particle)

need HLV-Yukawa couplings of $< O(10^{-12})$ and impose L by hand

• or both

- dark matter
- Baryon Asymmetry in the Universe (BAU)
- V-oscillations and mass \Rightarrow
 - non-renormalizable operator LLHH

v are Majorana fermions (new type of particle) $\Rightarrow 0\nu\beta\beta$ -decay

• right-handed V (new particle)

need HLV-Yukawa couplings of $< O(10^{-12})$ and impose L by hand

• or both

 muon g-2 and some other smaller SM deviations in precision observables

Example: supersymmetry (SUSY)

Example: supersymmetry (SUSY)

a theorist's dream

- SUSY required if massless spin 3/2 particle present
- unique non-trivial extension of Poincaré group Haag, Sohnius, Łopuszański 1984
- only superstrings contain fermions and are free of tachyons

Example: supersymmetry (SUSY)

a theorist's dream

- SUSY required if massless spin 3/2 particle present
- unique non-trivial extension of Poincaré group Haag, Sohnius, Łopuszański 1984
- only superstrings contain fermions and are free of tachyons
- phenomenology of minimal model of weak scale SUSY (MSSM)
 - perturbative stabilization of Fermi scale
 - $M_{H} \lesssim 130 (150) \text{ GeV predicted in MSSM (extensions)}$
 - perfect one-loop gauge coupling unification (separate at two loops)
 - unification scale almost coincides with (reduced) Planck scale
 - roughly consistent with $m_b m_T$ unification
 - account for muon g-2 (in a rapidly shrinking corner of parameter space)

string theory (finite, predicts GR) and M-theory

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum
- grand unified theories

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum
- grand unified theories
- anthropic principle and the landscape

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum
- grand unified theories
- anthropic principle and the landscape
- total concrete models either baroque or ruled out, most notably by precision measurements

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum
- grand unified theories
- anthropic principle and the landscape
- total concrete models either baroque or ruled out, most notably by precision measurements
- the flavor, CP and LHC problems of new physics

- string theory (finite, predicts GR) and M-theory
- supersymmetry and supergravity
- technicolor and other strong dynamics (disfavored)
- warped extra dimensions Randall, Sundrum
- grand unified theories
- anthropic principle and the landscape
- total concrete models either baroque or ruled out, most notably by precision measurements
- the flavor, CP and LHC problems of new physics
- need urgently guidance from experiment

Bottom-up models

spin 0: extra Higgs doublets (THDM, SUSY)

- spin 0: extra Higgs doublets (THDM, SUSY)
- spin 1/2: extra fermions (extra generations, technicolor, V_R)

- spin 0: extra Higgs doublets (THDM, SUSY)
- spin 1/2: extra fermions (extra generations, technicolor, V_R)
- spin I: extra gauge bosons (Z',W')

- spin 0: extra Higgs doublets (THDM, SUSY)
- spin 1/2: extra fermions (extra generations, technicolor, V_R)
- spin I: extra gauge bosons (Z',W')
- spin 3/2: gravitino (SUGRA)

- spin 0: extra Higgs doublets (THDM, SUSY)
- spin 1/2: extra fermions (extra generations, technicolor, V_R)
- spin I: extra gauge bosons (Z',W')
- spin 3/2: gravitino (SUGRA)
- spin 2: KK gravitons (TeV scale extra dimensions)

- spin 0: extra Higgs doublets (THDM, SUSY)
- spin 1/2: extra fermions (extra generations, technicolor, V_R)
- spin I: extra gauge bosons (Z',W')
- spin 3/2: gravitino (SUGRA)
- spin 2: KK gravitons (TeV scale extra dimensions)
- an uncountable number of concrete models ...

 discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)
 - expect that TeV scale NP appears chiral with respect to part of gauge group \Rightarrow PV
- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)
 - expect that TeV scale NP appears chiral with respect to part of gauge group \Rightarrow PV
 - exploit that some discrete symmetry violations are strongly suppressed or quasiforbidden in some observables

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)
 - expect that TeV scale NP appears chiral with respect to part of gauge group \Rightarrow PV
 - exploit that some discrete symmetry violations are strongly suppressed or quasiforbidden in some observables
 - signal is then tantamount to the discovery of NP. Downside: what NP?

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)
 - expect that TeV scale NP appears chiral with respect to part of gauge group \Rightarrow PV
 - exploit that some discrete symmetry violations are strongly suppressed or quasiforbidden in some observables
 - signal is then tantamount to the discovery of NP. Downside: what NP?
 - expect NP to introduce new sources of CP and flavor violations, as new interactions allow more complex phases which cannot be absorbed

- discovery of new particles & precision measurements at the high energy frontier (EF): LEP, SLC, Tevatron, LHC, ILC, CLIC, VLHC, muon collider
- discovery of new effects & precision measurements at the intensity frontier (IF):
 - study particles which only participate in the weak interaction (v)
 - exploit that only weak interaction (and θ_{QCD} -term) violates P (filters out the much stronger EM and strong forces)
 - SM parity violation (PV) is both signal (measuring the weak mixing angle) and BG for NP searches (needs understanding with high precision and confidence)
 - expect that TeV scale NP appears chiral with respect to part of gauge group \Rightarrow PV
 - exploit that some discrete symmetry violations are strongly suppressed or quasiforbidden in some observables
 - signal is then tantamount to the discovery of NP. Downside: what NP?
 - expect NP to introduce new sources of CP and flavor violations, as new interactions allow more complex phases which cannot be absorbed
 - ultra-high precision (muon g-2)

Erler, Langacker, Munir, Rojas 2011

• expansion in v/Λ_{new} (model independent)

- expansion in v/Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$

- expansion in v/ Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$
- write most general Lagrangian consistent with (exact) gauge symmetries

- expansion in v/ Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$
- write most general Lagrangian consistent with (exact) gauge symmetries
- renormalizable at any given finite order

- expansion in v/ Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$
- write most general Lagrangian consistent with (exact) gauge symmetries
- renormalizable at any given finite order
- dimension 0 and 2: cosmological constant and hierarchy problems

- expansion in v/Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$
- write most general Lagrangian consistent with (exact) gauge symmetries
- renormalizable at any given finite order
- dimension 0 and 2: cosmological constant and hierarchy problems
- dimension 4: strong CP problem, $\theta_{QCD} = \mathcal{O}(10^{-10})$
 - Higgs portal: spin 0 singlet operator (HH*)(HH*) Schabinger, Wells 2005
 - V portal: spin 1/2 singlet operator HLV Falkowski, Juknevich, Shelton 2009
 - U(1) portal: spin 1 singlet operator $F^{\mu\nu} F_{\mu\nu}$ Holdom 1986

- expansion in v/Λ_{new} (model independent)
- non-observation of NP at LHC: emerging little hierarchy v $\ll \Lambda_{new}$
- write most general Lagrangian consistent with (exact) gauge symmetries
- renormalizable at any given finite order
- dimension 0 and 2: cosmological constant and hierarchy problems
- dimension 4: strong CP problem, $\theta_{QCD} = \mathcal{O}(10^{-10})$
 - Higgs portal: spin 0 singlet operator (HH*)(HH*) Schabinger, Wells 2005
 - V portal: spin 1/2 singlet operator HLV Falkowski, Juknevich, Shelton 2009
 - U(1) portal: spin 1 singlet operator $F^{\mu\nu} F_{\mu\nu}$ Holdom 1986
- dimension 5 (unique): HHLL ($\Delta L = 2$) Weinberg 1979
 - → Majorana mass terms $\propto v^2/\Lambda_{new}$ (special case: seesaw mechanism)

v oscillations and mass

<u>v oscillations and mass</u>

ν oscillation and thus ν flavor violation (vFL) has been established by the observation

- of the disappearance of solar ($V_e \nleftrightarrow V_e$), reactor ($\overline{V}_e \not\rightarrow \overline{V}_e$), atmospheric and accelerator ($V_\mu \not\rightarrow V_\mu$ and $\overline{V}_\mu \not\rightarrow \overline{V}_\mu$) neutrinos
- of the appearance of new neutrino flavors from solar ($\nu_e \rightarrow \nu_{\mu,\tau}$), atmospheric ($\nu_{\mu} \rightarrow \nu_{\tau}$) and accelerator ($\nu_{\mu} \rightarrow \nu_e$) neutrinos

<u>v oscillations and mass</u>

V oscillation and thus V flavor violation (VFL) has been established by the observation

- of the disappearance of solar ($V_e \nleftrightarrow V_e$), reactor ($\overline{V}_e \not\rightarrow \overline{V}_e$), atmospheric and accelerator ($V_\mu \not\rightarrow V_\mu$ and $\overline{V}_\mu \not\rightarrow \overline{V}_\mu$) neutrinos
- of the appearance of new neutrino flavors from solar ($\nu_e \rightarrow \nu_{\mu,\tau}$), atmospheric ($\nu_{\mu} \rightarrow \nu_{\tau}$) and accelerator ($\nu_{\mu} \rightarrow \nu_e$) neutrinos
- this can be understood if (and almost certainly only if) the masses of the three V_i all differ and there is a misalignment between mass and CC eigenstates, parameterized by the PMNS matrix with (marginalized over sign choices) Fogli et al. 2012

$$\begin{split} \Delta m^2 &\cong m_2^2 - m_1^2 = (8.69 \pm 0.14 \text{ meV})^2 \\ |\Delta m^2_A| &\equiv |m_3^2 - (m_1^2 + m_2^2)/2| = (49.0 \pm 0.9 \text{ meV})^2 \\ \theta_{\odot} &\equiv \theta_{12} = 33.7^\circ \pm 1.1^\circ \text{ where } \theta_{12} < 45^\circ \text{ from matter (MSVV) effect} \\ \theta_A &\equiv \theta_{23} = 39.1 \pm 1.9^\circ \\ \theta_{13} &= 8.9 \pm 0.5^\circ \end{split}$$

<u>V spectrum</u>

- sign of Δm^2_A unknown:
 - normal hierarchy (NH): $m_1 \ll m_2 < m_3 \ (m_3^2 \approx \Delta m_A^2)$
 - inverted hierarchy (IH): $m_3 \ll m_1 < m_2 (m_1^2 \approx m_2^2 \approx \Delta m_A^2)$
 - quasi-degeneracy (QD): $m_1 \approx m_2 \approx m_3 \ (m_i^2 \gg \Delta m^2_A)$

<u>V spectrum</u>

- sign of Δm^2_A unknown:
 - normal hierarchy (NH): $m_1 \ll m_2 < m_3 (m_3^2 \approx \Delta m^2_A)$
 - inverted hierarchy (IH): $m_3 \ll m_1 < m_2 (m_1^2 \approx m_2^2 \approx \Delta m_A^2)$
 - quasi-degeneracy (QD): $m_1 \approx m_2 \approx m_3 \ (m_i^2 \gg \Delta m^2_A)$
- to determine it can use (the relatively large θ_{13} helps here)
 - long-baseline accelerator v (NOvA, ...) with large matter effects
 - atmospheric V traversing the Earth by studying subdominant $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.
 - resonance-like enhancement (but not MSW) of $v_{\mu} \rightarrow v_{e} (\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ for normal (inverted) hierarchy Petcov 1998
 - reactor \overline{v}_e (challenging but not impossible if $\theta_{13} \gtrsim 4^\circ$) Ghoshal, Petcov 2011
 - improve β -decay experiments (below) by factor 4 to reach $|\Delta m^2_A|$

- ³H β -decay experiments like KATRIN will improve $m_{\overline{v}} < 2.05$ eV (Troitsk) by factor 10 and probe QD spectrum
- ΛCDM cosmology (6 parameter model): $\sum_{i} m_{\nu} \approx 230 \text{ meV}$ (relativistic)

- ³H β -decay experiments like KATRIN will improve $m_{\overline{v}} < 2.05$ eV (Troitsk) by factor 10 and probe QD spectrum
- ACDM cosmology (6 parameter model): $\sum_{i} m_{v} \approx 230 \text{ meV}$ (relativistic)
- CP violation in V sector?
 - look for difference between v and corresponding \overline{v} oscillations in long-baseline experiments (T2K, ...)
 - the two Majorana phases do not enter into oscillations Bilenky, Hosek, Petcov 1980
 - in one scenario can get BAU from leptogenesis if $\theta_{13} \gtrsim 5^{\circ}$ Pascoli, Petcov, Riotti 2007

- ³H β -decay experiments like KATRIN will improve $m_{\overline{v}} < 2.05$ eV (Troitsk) by factor 10 and probe QD spectrum
- ACDM cosmology (6 parameter model): $\sum_{i} m_{v} \approx 230 \text{ meV}$ (relativistic)
- CP violation in V sector?
 - look for difference between v and corresponding \overline{v} oscillations in long-baseline experiments (T2K, ...)
 - the two Majorana phases do not enter into oscillations Bilenky, Hosek, Petcov 1980
 - in one scenario can get BAU from leptogenesis if $\theta_{13} \gtrsim 5^{\circ}$ Pascoli, Petcov, Riotti 2007
- V counting: sterile neutrinos?

- ³H β -decay experiments like KATRIN will improve $m_{\overline{v}} < 2.05$ eV (Troitsk) by factor 10 and probe QD spectrum
- ACDM cosmology (6 parameter model): $\sum_{i} m_{v} \approx 230 \text{ meV}$ (relativistic)
- CP violation in V sector?
 - look for difference between v and corresponding \overline{v} oscillations in long-baseline experiments (T2K, ...)
 - the two Majorana phases do not enter into oscillations Bilenky, Hosek, Petcov 1980
 - in one scenario can get BAU from leptogenesis if $\theta_{13} \gtrsim 5^{\circ}$ Pascoli, Petcov, Riotti 2007
- V counting: sterile neutrinos?
- LSND and MiniBooNE anomaly? observed $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ which would need two extra ν_{s} with $m_{\nu} = \mathcal{O}(1 \text{ eV})$

- absolute m_v scale (only Δm^2 known)?
 - ³H β -decay experiments like KATRIN will improve $m_{\overline{v}} < 2.05$ eV (Troitsk) by factor 10 and probe QD spectrum
 - ACDM cosmology (6 parameter model): $\sum_{i} m_{v} \approx 230 \text{ meV}$ (relativistic)
- CP violation in V sector?
 - look for difference between v and corresponding \overline{v} oscillations in long-baseline experiments (T2K, ...)
 - the two Majorana phases do not enter into oscillations Bilenky, Hosek, Petcov 1980
 - in one scenario can get BAU from leptogenesis if $\theta_{13} \gtrsim 5^{\circ}$ Pascoli, Petcov, Riotti 2007
- V counting: sterile neutrinos?
- LSND and MiniBooNE anomaly? observed $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ which would need two extra ν_{s} with $m_{\nu} = \mathcal{O}(1 \text{ eV})$
- V nature: Majorana (strictly neutral) or Dirac?

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

would (assuming a Majorana v mass is the dominant mechanism)

establish L violation

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

- establish L violation
- determine the ν nature to be Majorana

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

- establish L violation
- determine the ν nature to be Majorana
- inform about Majorana phases in PMNS matrix U_{ij}

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

- establish L violation
- determine the ν nature to be Majorana
- inform about Majorana phases in PMNS matrix U_{ij}
- inform about absolute m_{ν} scale

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

- establish L violation
- determine the ν nature to be Majorana
- inform about Majorana phases in PMNS matrix U_{ij}
- inform about absolute m_{ν} scale
- measure $\langle m_{\beta\beta} \rangle = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i\alpha} + U_{e3}^2 m_3 e^{i\beta}|$

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

- establish L violation
- determine the ν nature to be Majorana
- inform about Majorana phases in PMNS matrix U_{ij}
- inform about absolute m_{ν} scale
- measure $\langle m_{\beta\beta} \rangle = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i\alpha} + U_{e3}^2 m_3 e^{i\beta}|$
- inform about the type of $\boldsymbol{\nu}$ spectrum

observation and sufficiently accurate measurement of

 $(A, Z) \rightarrow (A, Z+2) + 2 e^{-}$

would (assuming a Majorana V mass is the dominant mechanism)

- establish L violation
- determine the ν nature to be Majorana
- inform about Majorana phases in PMNS matrix U_{ij}
- inform about absolute m_{ν} scale
- measure $\langle m_{\beta\beta} \rangle = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i\alpha} + U_{e3}^2 m_3 e^{i\beta}|$
- inform about the type of $\boldsymbol{\nu}$ spectrum
- need to confirm or reject the claimed evidence in ⁷⁶Ge of

 $T_{\frac{1}{2}} \approx 2 \times 10^{25} \, \text{y} \rightarrow \left\langle m_{\beta\beta} \right\rangle \sim 0.32 \; (0.03)_{\text{exp}} \; (0.10)_{\text{th}} \; \text{eV} \; \textit{Klapdor-Kleingrothaus et al. 2001}$

de Gouvêa, Vogel 2013

Pascoli, Petcov 2012

EFT at d = 6

- 16 types of bosonic operators Grzadkowski, Iskrzyński, Misiak and Rosiek 2010
 - 4 affect triple gauge couplings: 2 G³, 2 W³ (CP even and odd)
 - II affect Higgs couplings: 2 H²G², 2 H²W², 2 H²B², 2 H²WB, H⁶, (HDH)², H²D²H²

EFT at d = 6

- 16 types of bosonic operators Grzadkowski, Iskrzyński, Misiak and Rosiek 2010
 - 4 affect triple gauge couplings: 2 G³, 2 W³ (CP even and odd)
 - II affect Higgs couplings: 2 H²G², 2 H²W², 2 H²B², 2 H²WB, H⁶, (HDH)², H²D²H²
- 19 mixed types (one fermion bilinear)
 - 3 affect fermion mass matrices: H^3F^2
 - 8 affect fermion dipole moments: 2 HGF², 3 HWF², 3 HBF² (important for CPV)
 - 8 affect fermion couplings to gauge bosons: $(HDH)F^2$

EFT at d = 6

- 16 types of bosonic operators Grzadkowski, Iskrzyński, Misiak and Rosiek 2010
 - 4 affect triple gauge couplings: 2 G³, 2 W³ (CP even and odd)
 - II affect Higgs couplings: 2 H²G², 2 H²W², 2 H²B², 2 H²WB, H⁶, (HDH)², H²D²H²
- 19 mixed types (one fermion bilinear)
 - 3 affect fermion mass matrices: H^3F^2
 - 8 affect fermion dipole moments: 2 HGF², 3 HWF², 3 HBF² (important for CPV)
 - 8 affect fermion couplings to gauge bosons: (HDH)F²
- 30 types (up to flavor structures) of fermionic operators (four-Fermi)
 - LLLL
 - 10 QQQQ
 - I2 QQLL ($\Delta B = 0$)
 - 5 QQQL ($\Delta B = I$)

V scattering

<u>V scattering</u>

<u>V</u> scattering

most precise measurements in deep inelastic scattering (vDIS) from iso-scalar targets

- gives coupling combinations $g_L^2 \equiv g_{Lu}^2 + g_{Ld}^2$ and $g_R^2 \equiv g_{Ru}^2 + g_{Rd}^2$
- nominally 2.7 σ deviation (NuTeV) in $g_L{}^2$

•

- possible explanations within SM (e.g. iso-vector EMC effect *cloet, Bentz, Thomas 2009*)
- need theory and experiments testing it (e.g. PREX)
- $sin^2\theta_W$ less precise than PVES experiments, but important for v 4-Fermi operators
- improve using superbeams and v-factory (intensity and composition)

<u>V</u> scattering

most precise measurements in deep inelastic scattering (vDIS) from iso-scalar targets

- gives coupling combinations $g_L^2 \equiv g_{Lu}^2 + g_{Ld}^2$ and $g_R^2 \equiv g_{Ru}^2 + g_{Rd}^2$
- nominally 2.7 σ deviation (NuTeV) in $g_L{}^2$
- possible explanations within SM (e.g. iso-vector EMC effect Cloet, Bentz, Thomas 2009)
- need theory and experiments testing it (e.g. PREX)
- $sin^2\theta_W$ less precise than PVES experiments, but important for v 4-Fermi operators
- improve using superbeams and V-factory (intensity and composition)

• also need iso-vector couplings $h_L^2 \equiv g_{Lu}^2 - g_{Ld}^2$ and $h_R^2 \equiv g_{Ru}^2 - g_{Rd}^2$

• V-induced coherent π^- production

e.g. as $vA \rightarrow vA\pi_0 \Rightarrow$ axial-vector combination $\beta = h_L^2 - h_R^2$

elastic scattering from protons (also vDIS from nucleons?)
difficult to interpret (s-quark contribution)

future: use β -beams (for ν spectra) and universal analyses (with PVES)

• tiny (order 10⁻⁷) polarization asymmetry \sim 1 – 4 sin² $\theta_{W} \Rightarrow$

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$

- tiny (order 10⁻⁷) polarization asymmetry \propto 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC
- may resolve LEP/SLC discrepancy (at least one is "wrong")

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC
- may resolve LEP/SLC discrepancy (at least one is "wrong")
- can access higher order "oblique" corrections to W and Z propagators ("X parameter")

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC
- may resolve LEP/SLC discrepancy (at least one is "wrong")
- can access higher order "oblique" corrections to W and Z propagators ("X parameter")
- can access new physics mimicking the X parameter (dark Z)

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC
- may resolve LEP/SLC discrepancy (at least one is "wrong")
- can access higher order "oblique" corrections to W and Z propagators ("X parameter")
- can access new physics mimicking the X parameter (dark Z)
- new PV amplitudes which are strongly suppressed at Z-pole (e.g. Z')

- tiny (order 10⁻⁷) polarization asymmetry \sim 1 4 sin² $\theta_{W} \Rightarrow$
- very clean (leptonic) low-energy determination of $sin^2\theta_W$
- SLAC-E158 established "running" of $sin^2\theta_W$
- MOLLER (JLab) will be competitive with LEP/SLC
- may resolve LEP/SLC discrepancy (at least one is "wrong")
- can access higher order "oblique" corrections to W and Z propagators ("X parameter")
- can access new physics mimicking the X parameter (dark Z)
- new PV amplitudes which are strongly suppressed at Z-pole (e.g. Z')
- new (PV) coupling combination not accessible at Z-pole

Erler 2013

Erler, Su 2013

• polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)
- $y \rightarrow 0$ extrapolation using other (higher Q²) asymmetry results

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)
- $y \rightarrow 0$ extrapolation using other (higher Q²) asymmetry results
- Qweak (y = 0.0085) completed data taking and will extract the weak charge of the proton $Q_{W^P} \approx -2 g_{AV^P}$ to 4% and sin² θ_W to 0.3%

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)
- $y \rightarrow 0$ extrapolation using other (higher Q²) asymmetry results
- Qweak (y = 0.0085) completed data taking and will extract the weak charge of the proton $Q_{W^P} \approx -2 g_{AV^P}$ to 4% and sin² θ_W to 0.3%
- P2 (Mainz): y²-term not I − 4 sin²θ_W suppressed, contributing I/3 to asymmetry and I.5% to error ⇒ go to even lower y = 0.0038

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)
- $y \rightarrow 0$ extrapolation using other (higher Q²) asymmetry results
- Qweak (y = 0.0085) completed data taking and will extract the weak charge of the proton $Q_{W^P} \approx -2 g_{AV^P}$ to 4% and sin² θ_W to 0.3%
- P2 (Mainz): y²-term not I − 4 sin²θ_W suppressed, contributing I/3 to asymmetry and I.5% to error ⇒ go to even lower y = 0.0038
- will also reduce additional γ-Z box uncertainty Gorchtein, Horowitz 2009

- polarization asymmetry in elastic scattering from proton as a whole $\Rightarrow g_{AV}^{P} \equiv 2 g_{AV}^{u} + g_{AV}^{d} = -1/2 + 2 \sin^{2}\theta_{W}$
- low Q² important to keep y²-term and associated hadronic uncertainties below experimental error (not an option in V-scattering)
- $y \rightarrow 0$ extrapolation using other (higher Q²) asymmetry results
- Qweak (y = 0.0085) completed data taking and will extract the weak charge of the proton $Q_{W^P} \approx -2 g_{AV^P}$ to 4% and sin² θ_W to 0.3%
- P2 (Mainz): y²-term not I 4 sin² θ_{W} suppressed, contributing I/3 to asymmetry and I.5% to error \Rightarrow go to even lower y = 0.0038
- will also reduce additional γ-Z box uncertainty Gorchtein, Horowitz 2009
- **P2** goal: 2% in Q_W^P

PVES and SUSY

Erler, Su 2013

Atomic Parity Violation (APV)

<u>APV</u>

• effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^u + g_{AV}^d$)
- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^u + g_{AV}^d$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{u} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009
- moving history of Cs result (Boulder): currently 1.5 σ SM deviation Dzuba, Berengut, Flambaum, Roberts 2012

- effects tiny and $\sim Z^3 \rightarrow$ seen only in heavy atoms ($\sim g_{AV}^u + g_{AV}^d$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009
- moving history of Cs result (Boulder): currently 1.5 σ SM deviation Dzuba, Berengut, Flambaum, Roberts 2012
- Yb (Berkeley) isotope ratios (R) (atomic physics cancels Bouchiat, Pottier 1986)

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial \rightarrow Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009
- moving history of Cs result (Boulder): currently 1.5 σ SM deviation Dzuba, Berengut, Flambaum, Roberts 2012
- Yb (Berkeley) isotope ratios (R) (atomic physics cancels Bouchiat, Pottier 1986)
- single trapped Ra⁺ and Ba⁺ promising (much larger PV effect) KVI, Seattle

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009
- moving history of Cs result (Boulder): currently 1.5 σ SM deviation Dzuba, Berengut, Flambaum, Roberts 2012
- Yb (Berkeley) isotope ratios (R) (atomic physics cancels *Bouchiat, Pottier 1986*)
- single trapped Ra⁺ and Ba⁺ promising (much larger PV effect) KVI, Seattle
- trapped Fr atoms TRIUMF

- effects tiny and ~ $Z^3 \rightarrow$ seen only in heavy atoms (~ $g_{AV}^{\mu} + g_{AV}^{d}$)
- g_{AV} add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent gvA clouded by dominant nuclear anapole moment
- separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- good understanding of atomic structure crucial → Cs (TI)
- state-of-the-art many body calculation Porsev, Beloy, Derevianko 2009
- moving history of Cs result (Boulder): currently 1.5 σ SM deviation Dzuba, Berengut, Flambaum, Roberts 2012
- Yb (Berkeley) isotope ratios (R) (atomic physics cancels **Bouchiat**, Pottier 1986)
- single trapped Ra⁺ and Ba⁺ promising (much larger PV effect) KVI, Seattle
- trapped Fr atoms TRIUMF
- ideally measure APV in H and D Dunford, Holt 2007

Oblique parameters

Qweak 2012

• eDIS asymmetries much larger (\geq 10–4) than in elastic scattering

- eDIS asymmetries much larger (\geq 10–4) than in elastic scattering
- sensitive to ~ $(2 g_{VA}^{u} g_{VA}^{d}) 0.84 (2 g_{VA}^{u} g_{VA}^{d})$

- eDIS asymmetries much larger (\geq 10–4) than in elastic scattering
- sensitive to ~ $(2 g_{VA}^{u} g_{VA}^{d}) 0.84 (2 g_{VA}^{u} g_{VA}^{d})$
- measured to ~ 10% at SLAC at 0.92 GeV² < Q^2 < 1.96 GeV² Prescott et al 1979

- eDIS asymmetries much larger (≥ 10-4) than in elastic scattering
- sensitive to ~ $(2 g_{VA}^{u} g_{VA}^{d}) 0.84 (2 g_{VA}^{u} g_{VA}^{d})$
- measured to ~ 10% at SLAC at 0.92 GeV² < Q² < 1.96 GeV²
 Prescott et al 1979
- JLab Hall A Collaboration took 2 further points (currently analyzed) at $Q^2 = 1.1$ and 1.9 GeV² to ~ 2.5%

- eDIS asymmetries much larger (≥ 10-4) than in elastic scattering
- sensitive to ~ $(2 g_{VA}^{u} g_{VA}^{d}) 0.84 (2 g_{VA}^{u} g_{VA}^{d})$
- measured to ~ 10% at SLAC at 0.92 GeV² < Q² < 1.96 GeV²
 Prescott et al 1979
- JLab Hall A Collaboration took 2 further points (currently analyzed) at $Q^2 = 1.1$ and 1.9 GeV² to ~ 2.5%
- SOLID will measure large array of kinematic points up to 9.5 GeV² (0.5% precision in coupling combination)

- eDIS asymmetries much larger (≥ 10-4) than in elastic scattering
- sensitive to ~ $(2 g_{VA}^{u} g_{VA}^{d}) 0.84 (2 g_{VA}^{u} g_{VA}^{d})$
- measured to ~ 10% at SLAC at 0.92 GeV² < Q² < 1.96 GeV²
 Prescott et al 1979
- JLab Hall A Collaboration took 2 further points (currently analyzed) at $Q^2 = 1.1$ and 1.9 GeV² to ~ 2.5%
- SOLID will measure large array of kinematic points up to 9.5 GeV² (0.5% precision in coupling combination)
- remaining gvA combination: elastic scattering at background angles, but obstructed by strange quarks and nucleon anapole moment (universal analyses with V scattering)

Kumar, Mantry, Marciano, Souder 2013

• $a_{\mu} = (||65920.80 \pm 0.63) \times ||0^{-9} (|BNL-E82|)$

• $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9} (BNL-E821)$ • SM: $a_{\mu} \equiv (1165918.41 \pm 0.36_{vac pol} \pm 0.32_{Y \times Y}) \times 10^{-9}$

- $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9} (BNL-E821)$
- SM: $a_{\mu} = (1165918.41 \pm 0.36_{vac pol} \pm 0.32_{Y \times Y}) \times 10^{-9}$
- 3.0 σ deviation (includes e⁺e⁻ and τ-decay data): SUSY?

- $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9} (BNL-E821)$
- SM: $a_{\mu} \equiv (1165918.41 \pm 0.36_{vac pol} \pm 0.32_{Y \times Y}) \times 10^{-9}$
- 3.0 σ deviation (includes e⁺e⁻ and τ -decay data): SUSY?
- improve measurement to $\pm 10^{-10}$ (FNAL, J-PARC) $\Rightarrow \Lambda/g \gtrsim 1$ TeV in loops

- $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9} (BNL-E821)$
- SM: $a_{\mu} \equiv (1165918.41 \pm 0.36_{vac pol} \pm 0.32_{Y \times Y}) \times 10^{-9}$
- 3.0 σ deviation (includes e⁺e⁻ and τ -decay data): SUSY?
- improve measurement to $\pm 10^{-10}$ (FNAL, J-PARC) $\Rightarrow \Lambda/g \gtrsim 1$ TeV in loops
- reduce hadronic uncertainties by at least factor 2 (overall error by factor 3)

- $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9} (BNL-E821)$
- SM: $a_{\mu} \equiv (1165918.41 \pm 0.36_{vac pol} \pm 0.32_{Y \times Y}) \times 10^{-9}$
- 3.0 σ deviation (includes e⁺e⁻ and τ-decay data): SUSY?
- improve measurement to $\pm 10^{-10}$ (FNAL, J-PARC) $\Rightarrow \Lambda/g \gtrsim 1$ TeV in loops
- reduce hadronic uncertainties by at least factor 2 (overall error by factor 3)
- vacuum polarization: low-energy part correlated with running α and sin² θ_W
 - e^+e^- based (annihilation & radiative return): 3.6 σ
 - 2.3 σ discrepancy with measured $\mathcal{B}(\tau^- \rightarrow \nu \pi^0 \pi^-)$
 - τ based: 2.4 σ
 - 1.9 σ conflict between KLOE and BaBar (which is not inconsistent with τ -data)
 - charm threshold and continuum regions for m_c and $\Delta\alpha$ (for M_H prediction)

Davoudiasl, Lee, Marciano, 2012

• violate P and CP with SM contribution many orders of magnitude below current limits

- violate P and CP with SM contribution many orders of magnitude below current limits
- diamagnetic atoms are mostly sensitive to the nuclear Schiff moment, the nucleon EDMs d_p, d_n and one QQLL operator, and probe θ_{QCD} Engel, Ramsey-Musolf, van Kolck 2013 $|d_{Hg}| < 2.0 \times 10^{-29}$ e cm (1 σ) ≈ 2500 e $|_{P} \Rightarrow |\theta_{QCD}| < 10^{-10}$

- violate P and CP with SM contribution many orders of magnitude below current limits
- diamagnetic atoms are mostly sensitive to the nuclear Schiff moment, the nucleon EDMs d_p, d_n and one QQLL operator, and probe θ_{QCD} Engel, Ramsey-Musolf, van Kolck 2013 $|d_{Hg}| < 2.0 \times 10^{-29}$ e cm (1 σ) ≈ 2500 e $|_{P} \Rightarrow |\theta_{QCD}| < 10^{-10}$
- polar molecules & paramagnetic atoms sensitive to d_e and another QQLL combination Yb F Hudson et al. 2011 \Rightarrow $|d_e| < 2 \times 10^{-17} \text{ e/m}_e = \text{e v/(76 PeV)}^2 (1\sigma)$ superseding TI limit

- violate P and CP with SM contribution many orders of magnitude below current limits
- diamagnetic atoms are mostly sensitive to the nuclear Schiff moment, the nucleon EDMs d_p, d_n and one QQLL operator, and probe θ_{QCD} Engel, Ramsey-Musolf, van Kolck 2013 $|d_{Hg}| < 2.0 \times 10^{-29}$ e cm (1 σ) ≈ 2500 e $|_{P} \Rightarrow |\theta_{QCD}| < 10^{-10}$
- polar molecules & paramagnetic atoms sensitive to d_e and another QQLL combination Yb F Hudson et al. 2011 \Rightarrow $|d_e| < 2 \times 10^{-17} \text{ e/m}_e = \text{e v/(76 PeV)}^2 (1\sigma)$ superseding TI limit
- measure or set limits on as many different EDMs as possible
 - measure EDMs of charged nuclei in storage ring experiments
 - improve $|d_n| < 9 \times 10^{-13} \text{ e/m}_n (1\sigma)$ as competitor to probe θ_{QCD}
 - compare patterns like 0.01 e/m_n $\theta_{QCD} \sim d_n \simeq -d_p \simeq -3 d_d$ Pospelov, Ritz 2005 with SUSY: $d_d \simeq 20 d_n \simeq 200 d_e \simeq e v/(2.2 \text{ PeV})^2$
 - $|d_{\mu}| < 10^{-6} \text{ e/m}_{\mu}$ (E-821) to be competitive gradually improve to $10^{-12} \text{ e/m}_{\mu} = \text{e v/(5 PeV)}^2$ (PSI, FNAL, J-PARC)

Engel, Ramsey-Musolf, van Kolck 2013

Wilson Coefficient	Operator (dimension)	Number	Systems
$\overline{\theta}$	theta term (4)	1	hadronic &
			diamagnetic atoms
δ_e	electron EDM (6)	1	paramagenetic atoms
$ Im C_{\ell equ}^{(1,3)}, Im C_{\ell eqd} $	semi-leptonic (6)	3	& molecules
δ_q	quark EDM (6)	2	hadronic &
$\ $ $ ilde{\delta}_q$	quark chromo EDM (6)	2	diamagnetic atoms
$C_{\tilde{G}}$	three-gluon (6)	1	
$\operatorname{Im} C_{quqd}^{(1,8)}$	four-quark (6)	2	
$ \qquad \qquad \text{Im} C_{\varphi ud} $	induced four-quark (6)	1	
total	(first generation only)	13	

Li, Profumo, Ramsey-Musolf 2010

CP phases too small for BAU unless one relaxes universality and allows cancellations
• hopelessly negligible in SM \Rightarrow directly probing new physics

- hopelessly negligible in SM \Rightarrow directly probing new physics
- $\mu^+ \rightarrow e^+ \gamma$
 - current MEG limit: BR < 5.7×10^{-13}
 - improve to 10^{-13} and perhaps 10^{-14} (challenging)
 - probes effective operator like $m_{\mu}/\Lambda^2\,\overline{\mu}\,\,\sigma^{\mu\nu}$ e $F_{\mu\nu}$ at tree level

- hopelessly negligible in SM \Rightarrow directly probing new physics
- $\mu^+ \rightarrow e^+ \gamma$
 - current MEG limit: BR < 5.7×10^{-13}
 - improve to 10^{-13} and perhaps 10^{-14} (challenging)
 - probes effective operator like $m_{\mu}/\Lambda^2 \, \overline{\mu} \, \sigma^{\mu\nu}$ e $F_{\mu\nu}$ at tree level
- $\mu^+ \rightarrow e^+ e^- e^+$
 - current SINDRUM limit: BR < 1.0×10^{-12}
 - improve to 10^{-15} and perhaps 10^{-16} (challenging)
 - probes effective operator like $I / \Lambda^2 \overline{\mu} \gamma^{\mu} e \overline{e} \gamma_{\mu}$ e at tree level

- hopelessly negligible in SM \Rightarrow directly probing new physics
- $\mu^+ \rightarrow e^+ \gamma$
 - current MEG limit: BR < 5.7×10^{-13}
 - improve to 10^{-13} and perhaps 10^{-14} (challenging)
 - probes effective operator like $m_{\mu}/\Lambda^2 \, \overline{\mu} \, \sigma^{\mu\nu}$ e $F_{\mu\nu}$ at tree level
- $\mu^+ \rightarrow e^+ e^- e^+$
 - current SINDRUM limit: BR < 1.0×10^{-12}
 - improve to 10^{-15} and perhaps 10^{-16} (challenging)
 - probes effective operator like $I / \Lambda^2 \overline{\mu} \gamma^{\mu} e \overline{e} \gamma_{\mu}$ e at tree level
- $K_L \rightarrow \mu^{\pm} e^{\mp}$

- hopelessly negligible in SM \Rightarrow directly probing new physics
- $\mu^+ \rightarrow e^+ \gamma$
 - current MEG limit: BR < 5.7×10^{-13}
 - improve to 10^{-13} and perhaps 10^{-14} (challenging)
 - probes effective operator like $m_{\mu}/\Lambda^2 \, \overline{\mu} \, \sigma^{\mu\nu}$ e $F_{\mu\nu}$ at tree level
- $\mu^+ \rightarrow e^+ e^- e^+$
 - current SINDRUM limit: BR < 1.0×10^{-12}
 - improve to 10^{-15} and perhaps 10^{-16} (challenging)
 - probes effective operator like $I/\Lambda^2 \,\overline{\mu} \, \gamma^\mu$ e $\overline{e} \, \gamma_\mu$ e at tree level
- $K_L \rightarrow \mu^{\pm} e^{\mp}$
- $\mu^+ e^- \leftrightarrow \mu^- e^+$

- hopelessly negligible in SM \Rightarrow directly probing new physics
- $\mu^+ \rightarrow e^+ \gamma$
 - current MEG limit: BR < 5.7×10^{-13}
 - improve to 10^{-13} and perhaps 10^{-14} (challenging)
 - probes effective operator like $m_{\mu}/\Lambda^2 \, \overline{\mu} \, \sigma^{\mu\nu}$ e $F_{\mu\nu}$ at tree level
- $\mu^+ \rightarrow e^+ e^- e^+$
 - current SINDRUM limit: BR < 1.0×10^{-12}
 - improve to 10^{-15} and perhaps 10^{-16} (challenging)
 - probes effective operator like $I/\Lambda^2 \,\overline{\mu} \, \gamma^\mu$ e $\overline{e} \, \gamma_\mu$ e at tree level
- $K_L \rightarrow \mu^{\pm} e^{\mp}$
- $\mu^+ e^- \leftrightarrow \mu^- e^+$
- CLFV involving τ leptons (currently 10⁻⁸ level) competitive in specific scenarios
 - may improve to $< 10^{-9}$ at super-B factories

• $0\nu\mu$ - capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)

• $0\nu\mu$ - capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)

- μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
- normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)

• $0\nu\mu$ - capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)

- μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
- normalization process: $\mu^- + (A, Z) \rightarrow \nu_{\mu} + (A, Z-I)$ (ordinary muon capture)
- μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)
 - $\Lambda_{NP} / g \sim [3 \times 10^{-19}]^{\frac{1}{4}} v \sim 10 \text{ PeV} = 10,000 \text{ TeV}$

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)
 - $\Lambda_{NP} / g \sim [3 \times 10^{-19}]^{\frac{1}{4}} v \sim 10 \text{ PeV} = 10,000 \text{ TeV}$
 - most likely the ultimate CLFV test

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)
 - $\Lambda_{NP} / g \sim [3 \times 10^{-19}]^{\frac{1}{4}} v \sim 10 \text{ PeV} = 10,000 \text{ TeV}$
 - most likely the ultimate CLFV test
 - probes effective operator like $I/\Lambda^2 \,\overline{\mu} \, \gamma^\mu$ e $\overline{q} \, \gamma_\mu \, q$ at tree level

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)
 - $\Lambda_{NP} / g \sim [3 \times 10^{-19}]^{\frac{1}{4}} v \sim 10 \text{ PeV} = 10,000 \text{ TeV}$
 - most likely the ultimate CLFV test
 - probes effective operator like $I / \Lambda^2 \overline{\mu} \gamma^{\mu} e \overline{q} \gamma_{\mu} q$ at tree level
 - need ratios of target nuclei (ideally light / heavy) to disentangle operators *Cirigliano, Kitano, Okada, Tuzon 2009*

- $0\nu\mu$ capture (current SINDRUM-II limit: BR < 7 × 10⁻¹³ on Au)
 - μ^- to e⁺ conversion: μ^- + (A, Z) \rightarrow e⁺ + (A, Z-2) (not the $0\nu\beta\beta$ L-operator)
 - normalization process: μ^- + (A, Z) $\rightarrow \nu_{\mu}$ + (A, Z-I) (ordinary muon capture)
 - μ^- to e^- conversion: μ^- + (A, Z) $\rightarrow e^-$ + (A, Z) (CLFV)
 - Mu2e and COMET: 10⁻¹⁶
 - **PRIME**: 3×10⁻¹⁹ (single event sensitivity)
 - $\Lambda_{NP} / g \sim [3 \times 10^{-19}]^{\frac{1}{4}} v \sim 10 \text{ PeV} = 10,000 \text{ TeV}$
 - most likely the ultimate CLFV test
 - probes effective operator like $I / \Lambda^2 \overline{\mu} \gamma^{\mu} e \overline{q} \gamma_{\mu} q$ at tree level
 - need ratios of target nuclei (ideally light / heavy) to disentangle operators *Cirigliano, Kitano, Okada, Tuzon 2009*
 - perfect opportunities for facilities like J-PARC and Project X

de Gouvêa, Vogel 2013

β-decay of (ultra-)cold neutrons, trapped nuclei and mesons

β-decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

 $\Delta_{\text{CKM}} \equiv |V_{\text{ud}}|^2 + |V_{\text{us}}|^2 + |V_{\text{ub}}|^2 - 1 = (1 \pm 6) \times 10^{-4} \implies \Lambda \gtrsim 9 \text{ TeV}$

• lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

- lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF
- bright future: 5×10⁻⁸ PIENU, PEN

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

- lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF
- bright future: 5×10⁻⁸ PIENU, PEN
- kaons: 10⁻⁷ CERN

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

- lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF
- bright future: 5×10⁻⁸ PIENU, PEN
- kaons: 10⁻⁷ CERN
- departure from V-A (S, P,T,V+A currents)

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

- lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF
- bright future: 5×10⁻⁸ PIENU, PEN
- kaons: 10⁻⁷ CERN
- departure from V-A (S, P,T,V+A currents)
 - µ-decay (Sirlin-Michel parameters) TWIST

 β -decay of (ultra-)cold neutrons, trapped nuclei and mesons

• Cabibbo (CKM) universality:

- lepton universality: $R_{e/\mu} = \Gamma[\pi \rightarrow e \vee (\gamma)] / \Gamma[\pi \rightarrow \mu \vee (\gamma)]$ helicity suppressed in SM: (1.2310 ± 0.0037)×10⁻⁴ PSI, TRIUMF
- bright future: 5×10⁻⁸ PIENU, PEN
- kaons: 10⁻⁷ CERN
- departure from V-A (S, P,T,V+A currents)
 - µ-decay (Sirlin-Michel parameters) TWIST
 - nuclear decay distributions Cirigliano, Gardner, Holstein 2013

MSSM with R-parity

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \Rightarrow \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \implies \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)
- can be improved to 10⁻¹¹ CERN-NA62

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \Rightarrow \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)
- can be improved to 10⁻¹¹ CERN-NA62
- KOPIO concept 10^{-14} ($\Lambda \ge 800$ TeV)

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \Rightarrow \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)
- can be improved to 10⁻¹¹ CERN-NA62
- KOPIO concept 10^{-14} ($\Lambda \ge 800$ TeV)
- CPV mode: $K^0 \rightarrow \pi^0 \nu \overline{\nu}$ KEK, J-PARC
Flavor-changing neutral currents (FCNC)

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \Rightarrow \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)
- can be improved to 10⁻¹¹ CERN-NA62
- KOPIO concept 10^{-14} ($\Lambda \ge 800$ TeV)
- CPV mode: $K^0 \rightarrow \pi^0 \vee \overline{\nu}$ KEK, J-PARC
- K⁺ (K⁰) can determine modulus (Im) of $V_{td}V_{ts}^{*}$

Flavor-changing neutral currents (FCNC)

- $\mathcal{B}(K^+ \rightarrow \pi^+ \vee \overline{\nu}) \sim 10^{-10} \text{ BNL-E787} \implies \Lambda \gtrsim 76 \text{ TeV}$
- theoretically very clean (in SM, loop and CKM suppressed)
- can be improved to 10⁻¹¹ CERN-NA62
- KOPIO concept 10^{-14} ($\Lambda \ge 800$ TeV)
- CPV mode: $K^0 \rightarrow \pi^0 \vee \overline{\nu}$ KEK, J-PARC
- K⁺ (K⁰) can determine modulus (Im) of $V_{td}V_{ts}^{*}$
- superior to V_{ub}

Haisch 2010

the next best thing after a GUT or Planck scale accelerator

- the next best thing after a GUT or Planck scale accelerator
- $\tau(p \rightarrow e^+ \pi_0) > 8.2 \times 10^{33}$ a (Super-Kamiokande) \Rightarrow

- the next best thing after a GUT or Planck scale accelerator
- $\tau(p \rightarrow e^+ \pi_0) > 8.2 \times 10^{33}$ a (Super-Kamiokande) \Rightarrow
- $\Gamma/m = C/16\pi (360 \text{ MeV g}/\Lambda)^4 < (4.1 \times 10^{-17})^4 \Rightarrow$

- the next best thing after a GUT or Planck scale accelerator
- $\tau(p \rightarrow e^+ \pi_0) > 8.2 \times 10^{33}$ a (Super-Kamiokande) \Rightarrow
- $\Gamma/m = C/16\pi (360 \text{ MeV g}/\Lambda)^4 < (4.1 \times 10^{-17})^4 \Rightarrow$
- $\Lambda > 3.3 \times 10^{15} \text{ GeV} (\text{for } \text{C} = \text{g} = 1) \approx 10^{-3} \text{ M}_{\text{P}}$

- the next best thing after a GUT or Planck scale accelerator
- $\tau(p \rightarrow e^+ \pi_0) > 8.2 \times 10^{33}$ a (Super-Kamiokande) \Rightarrow
- $\Gamma/m = C/16\pi (360 \text{ MeV g}/\Lambda)^4 < (4.1 \times 10^{-17})^4 \Rightarrow$
- $\Lambda > 3.3 \times 10^{15} \text{ GeV} (\text{for } \text{C} = \text{g} = 1) \approx 10^{-3} \text{ M}_{\text{P}}$
- C \approx 30 in minimal SUSY-SU(5), where

 $\Lambda_{SUSY-GUT} = 2 \times 10^{16}$ GeV, but excluded through

 $T(p \rightarrow K + \overline{v}) > 2.3 \times 10^{33}$ a *Murayama*, Pierce 2002

- the next best thing after a GUT or Planck scale accelerator
- $\tau(p \rightarrow e^+ \pi_0) > 8.2 \times 10^{33} \text{ a (Super-Kamiokande)} \Rightarrow$
- $\Gamma/m = C/16\pi (360 \text{ MeV g}/\Lambda)^4 < (4.1 \times 10^{-17})^4 \Rightarrow$
- $\Lambda > 3.3 \times 10^{15} \text{ GeV} (\text{for } \text{C} = \text{g} = 1) \approx 10^{-3} \text{ M}_{\text{P}}$
- C \approx 30 in minimal SUSY-SU(5), where

 $\Lambda_{SUSY-GUT} = 2 \times 10^{16}$ GeV, but excluded through

 $T(p \rightarrow K + \overline{v}) > 2.3 \times 10^{33}$ a *Murayama*, Pierce 2002

complementarity is crucial even testing the highest scales

Variations at d > 6

Variations at d > 6

 dimension 7 needed for transition magnetic moments of Majorana neutrinos Bell et al. 2006

<u>Variations at d > 6</u>

- dimension 7 needed for transition magnetic moments of Majorana neutrinos Bell et al. 2006
- 129 dimension 8 operators with $\Delta L = 2, \Delta B = 0$ Babu, Leung 2001, de Gouvea, Jenkins 2007

Variations at d > 6

- dimension 7 needed for transition magnetic moments of Majorana neutrinos Bell et al. 2006
- 129 dimension 8 operators with $\Delta L = 2, \Delta B = 0$ Babu, Leung 2001, de Gouvea, Jenkins 2007
- dimension 9
 - needed for nn-oscillations
 - alternative mechanism for $0\nu\beta\beta$ -decay;
 - cataloged by Prezeau, Ramsey-Musolf, Vogel 2003
 - Heidelberg-Moscow Ge experiment $\Rightarrow \Lambda_9/g \gtrsim 3 \text{ TeV}$
 - angular distribution may distinguish "long-distance" (m_v) and "short-distance" models AII, Borisov, Zhuridov 2006

• fundamental symmetry tests probe new physics at the PeV scale

- fundamental symmetry tests probe new physics at the PeV scale
- already severely constrain the flavor and CP structures of any scenario addressing the hierarchy problem

- fundamental symmetry tests probe new physics at the PeV scale
- already severely constrain the flavor and CP structures of any scenario addressing the hierarchy problem
- a positive signal would not point to a specific theory or model (neither can Λ_{NP} be deduced)

- fundamental symmetry tests probe new physics at the PeV scale
- already severely constrain the flavor and CP structures of any scenario addressing the hierarchy problem
- a positive signal would not point to a specific theory or model (neither can Λ_{NP} be deduced)
- it is therefore of paramount importance to pursue
 - as many different types of symmetry tests as possible
 - B, L, LF, CP, P, ...
 - and within each type of test aim at various kinds of processes
 - $\mu \rightarrow e \gamma, \mu \rightarrow 3 e, \mu \rightarrow e, ...$
 - and within each kind of process vary and take combinations of projectiles and targets
 - A, Z, lepton flavor, ...
 - and where possible obtain final state information
 - spin, flavor, energy, scattering angle, ...

- fundamental symmetry tests probe new physics at the PeV scale
- already severely constrain the flavor and CP structures of any scenario addressing the hierarchy problem
- a positive signal would not point to a specific theory or model (neither can Λ_{NP} be deduced)
- it is therefore of paramount importance to pursue
 - as many different types of symmetry tests as possible
 - B, L, LF, CP, P, ...
 - and within each type of test aim at various kinds of processes
 - $\mu \rightarrow e \gamma, \mu \rightarrow 3 e, \mu \rightarrow e, ...$
 - and within each kind of process vary and take combinations of projectiles and targets
 - A, Z, lepton flavor, ...
 - and where possible obtain final state information
 - spin, flavor, energy, scattering angle, ...
- field moving towards being a backup if nothing (except for the Higgs) is seen at the LHC