Pontecorvo for the centennial of the birth Pisa 18－20 September 2013

＂On the history of

Pontecorvo100－Symposium in honour of Bruno

the PMNS matrix＂

，

號

（
\square
\qquad
\square
\qquad

[^0]\qquad
\square右
,

地

PERSONAL REMINISCENCES

$>$ I met personally Bruno in the summer 1990, when he visited CERN at the time of the collapse of the Soviet Union. He was deeply concerned and wishful on the future of Russia. I remember him following the news by radio in the CERN office.
> Beyond political events, I was delighted in convincing him to participate in TAUP'91 meeting in Toledo.

- According to notes by F. Buccella in Pontecorvo's book, when Bruno joined this meeting in the Lecture Hall, J.B. was lecturing on "Neutrino Properties" and interrupted his presentation with the greeting "Bruno, Welcome to Spain". After a moment of general complacency, the session continued.

PERSONAL REMINISCENCES

PERSONAL REMINISCENCES

> Among other exhibitions, the Canada Pavilion was special for neutrino physicists with the presentation of the SNO experiment for solar neutrino detection. The statement was: "John Bahcall is probably right.
But his solar model is NOT needed for the interpretation of the solar neutrino problem"
$>$ CERN as Meeting Point of physicists was also important in preparing a long-term visit of Samoil Bilenky, from 1991 to 1994, to Valencia. This was a period of fruitful scientific collaboration.

THE COMPONENTS

$>$ The understanding of the beautiful properties associated to Neutrino Mixing and Oscillations has several "components" to be discussed in their historical steps:
$>$ The Family Problem

- μ-e Universality
- Different $v_{e}-v_{\mu}$ Flavours
$>$ Neutrino Mass
- Mismatch between Weak Interaction-Mass eigenstates
- Global L-charge ?
> Mixing \& Oscillations
- Earliest ideas
- MNS mixing in the Nagoya model of baryons
- Oscillation Phenomenology

THE FAMILY PROBLEM

- μ-e Universality

$>$ A decade before the (V-A) theory of (charged current) weak interactions (WI),
B. Pontecorvo, PR (1947)
discussed the "universality" of WI for processes of nuclear β-decay together with those with muon and neutrino!

He introduced
μ - capture $\mu^{-}+(A, Z) \rightarrow v+(A, Z-1)$
and compared with probability for e-capture.
$>$ The idea of μ-e universality was also followed by G. Puppi, NC(1948) with the famous "Puppi triangle"

Question: The same U in the two vertices?

LEPTON FLAVOUR NUMBER

$>$ The idea of different neutrinos v_{e}, v_{μ} appeared published in the paper B. Pontecorvo, J Phys. (1959) and, more important, in the proposal made by Pontecorvo of the Brookhaven experiment that discovered v_{μ} !
B. Pontecorvo, Sov. Phys. JETP (1960)
$>$ The Brookhaven v experiment was the first with high energy v ' S from π decay. It was a great event in physics and TWO LEPTON FAMILIES COMPLETED

$$
\left(v_{e}, e\right) \&\left(v_{\mu}, \mu\right)
$$

G. Dandy et al., PRL (1962)
\Rightarrow An earlier indication $v_{e} \neq v_{\mu}$: The search for the decay $\mu \rightarrow e \gamma^{\mu}$

- G. Feinberg, PR (1958) estimated the BR in the V-A theory with the W-boson if

$$
v_{e}=v_{\mu} \rightarrow \mathrm{R}_{\mathrm{th}} \sim 10^{-4}, \quad \mathrm{R}_{\exp }<10^{-8}
$$

The cross section for β-particle production in the collision of free neutrinos with nuclei was first evaluated in 1934 by Bethe and Peierls [1]. As is well known, the cross section for $I \mathrm{MeV}$ neutrinos was expected to be $10^{-4.4} \mathrm{~cm}^{2}$. Because of this for a long time the effects induced by free neutrons were considered umberervahle Tater an it

Recently there were widely discussed the possibilities of using beams of high energy neutrinos emitted by mesons to get information on weak interactions $[1,2,3,4,5]$.

In the papers $[3,4]$ it has been shown that the form-factors related to the presence
B.Ponlecorvo

Joint Institute for Nuclear Research, Dubna
-
armonk intarnetimar mortiolee sunnmes the increase with energy of the cross sections

UP'S \& DOWN'S NEUTRINO MASS

$>$ PV in processes involving v ' $s \rightarrow$ Advent of Two-component v theory
If $U^{\prime} S$ are exactly massless

$$
i \gamma^{\mu} \partial_{\mu} v_{L}(x)-m_{v} v_{R}(x)=0
$$

$>$ Goldhaber experiment,

> M. Goldhaber et al., PR(1958)
proved that v-helicity is $-1 \rightarrow v_{L}$!
> But ... Universal V-A theory of WI tells that L-handed Chiral Fields enter for ALL Fermions \rightarrow No rationale why v 's are special and massless.
$>$ Still, contrary to other fermions, v ' S have no electric charge. Do they have a
Lepton Charge? OPEN Question in 2013!:
B.M.Pontecorvo

GLOBAL LEPTON NUMBER
$>$ Pontecorvo proposal (1946)!:

- v 's produced in β^{-}decay in Reactors, Can them produce e's ?
- Davis (1959), BAPS (1959)

INTRODUCTION

The Fermi theory of the β disintegration is not yet in a final stage; not only detailed problems are to be solved, but also the fundamental assumption - the neutrino hypothesis - bas nol yet been definitely proven. I will recall briefly the main
experimental facts which experimental facts which have led Pauli to propose the neutrino hypothesis.

$$
\left.\bar{v}+{ }^{37} \mathrm{Cl} \not e^{-}+{ }^{37} \mathrm{Ar} \longrightarrow \begin{array}{l}
L_{e^{-}}=L_{v}=+1 \\
L_{e^{+}}=L_{\bar{v}}=-1
\end{array}\right\}
$$

MIXING AND OSCILLATIONS

> Words of Pontecorvo in 1957 (!):
" If the theory of two component neutrino was not valid, and if the conservation law for <<neutrino charge>> took not place,

Abstract

neutrino \longleftrightarrow antineutrino transitions would be

 possible".- Early ideas in
B. Pontecorvo, J. Expt. Theor. Phys. (1957) are

Not long ago the question was raised [1] as to whether these exist ncutral particle mixtures, other than K^{-1} mesons [2], tbat is particles for which the transition particle \rightarrow antiparticle is not strictly forbidden, although the particle at issue is an entity distioct from the corresponding antiparticle. It was noted that neutrino may be such a particle mixture and consequently that there is a nossibility of real tramsitions nomrrino \rightarrow discussed in analogy with Gell-Mann \& Pais theory of $K^{0} \Leftrightarrow \bar{K}^{0}$ mixing and oscillations. - Instead of only v_{L} and $(\bar{v})_{R}$, Bruno assumed additional $\left(\overline{v_{L}}\right)_{L}$ and v_{R} states ["sterile" is his name]. For the Davis experiment,

Active-Sterile
Mixing $\quad(v)_{R} \Leftrightarrow v_{R}$ with two Majorana massive states - His OSCILLATION result

Appearance

$$
\begin{array}{ll}
P\left[(\bar{v})_{R} \xrightarrow{L} v_{R}\right]=\frac{1}{2}\left(1-\cos \frac{\Delta m^{2} L}{2 E}\right) & \text { Davis } \\
P\left[(\bar{v})_{R} \xrightarrow{L}(\bar{v})_{R}\right] & \text { Reines-Cowan }
\end{array}
$$

Survival

- Pontecorvo in 1958: "It would be extremely interesting to perform the Reines-Cowan experiment at different distances from reactor". KamLAND (2003) observed the effect.

NEUTRINO MIXING FOR BARYON MODEL

$>$ The "Unified" Model? \rightarrow Nagoya model of Baryons as bound states of neutrinos and " a new sort of matter" vector boson. The "true neutrinos" in these baryons would be

$$
\left.\begin{array}{l}
v_{1}=\cos \delta v_{e}-\sin \delta v_{\mu} \\
v_{2}=\sin \delta v_{e}+\cos \delta v_{\mu}
\end{array}\right\} \Leftrightarrow
$$

δ would be the Cabibbo angle, to explain small leptonic decay rate of hyperons.

Remarks on the Unified Model of Elementary Particles

[^1]- The MNS neutrino mixing was not associated to the quantum phenomenon of v oscillations: the interference of different mass eigenstates.
- U_{2}, on the contrary, would have additional interaction with a field of heavy particles X. In MNS words,
" Weak $v^{\prime} s$ are not stable due to the occurrence of virtual transition $\nu_{e} \Leftrightarrow \nu_{\mu}$ caused by this additional interaction with v_{2} "

OSCILLATION PHENOMENOLOGY

$>$ In the 1960 's, after the discovery of ν_{μ}, Pontecorvo discussed the phenomenology of v oscillations in modern views:
 and applied, among other subjects, to Solar U Oscillations

- In the paper with Gribov, one reads (in 1969!): " If Global Lepton Number is violated, neutrinos will have a mass of Majorana type" - In the paper with Bilenky, they discuss Oscillation for Reactor and Accelerator Experiments

1976
OSCILLATIONS IN NEUTRINO BEAMS;
STATUS AND POSSIRILTTIES OF OBSERVATION*
S.M.Bilenky, B.Pontecorvo

Joint Institute for Nuclear Research, Dubra physicists to some theoretical and experimental problems which are to be solved.

[^2]
CONCLUSION

$>$ The Discovery of v Oscillations in 1998, implying v Mass (differences) and
\cup Mixing, was a great event in Science.

- With today's perspective, we condense the information in the Unitarity Mixing Matrix for (active) neutrinos:
$U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right]\left[\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right]\left[\begin{array}{ccc}c_{12} & S_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}e^{i \alpha_{1} / 2} & 0 & 0 \\ 0 & e^{i \alpha_{2} / 2} & 0 \\ 0 & 0 & 1\end{array}\right]$
where the last matrix is only seen iff neutrinos are Majorana particles.
$>$ Historically, it is spectacular that the CONCEPTS were discussed, and understood, in
a period when the prevailing view was of massless neutrinos:
- Universality \& different v Families \rightarrow Pontecorvo, Brookhaven Experiment
- Interplay of Mass \& Mixing for U Oscillations \rightarrow Pontecorvo
- v Flavour Mixing for Baryon Structure \rightarrow MNS
- U Oscillation Phenomenology, including Flavour \& Majorana cases \rightarrow Pontecorvo

My Conclusion: It is FAIR to call the U matrix

The PMNS Matrix

[^0]:

[^1]: Abstract
 A particle mixture theory of neutrino is proposed assuming the existence of two kinds of neutrinos. Based on the neutrino-mixture theory, a possible unified model of elementary particles is constructed by generalizing the Sakata-Nagoya model. Our scheme gives a natural explanation of smallness of leptonic decay rate of hyperons as well as the subtle difference of $\mathcal{\sigma}^{\prime}$'s between μ-e and β-decay.

[^2]:
 experiments are of the relative cype. when ane waidd look for a coxiwuyoidal them now the invenvicy. Possible

