FIRST S. Valentine's Meeting 2013 ToF-Wall Activity Report

F. Balestra, F. Iazzi, R. Introzzi and H. Younis

INFN PoliTO

February 14, 2013

Overview

- Single Channel Calibration
- Physical Quantities Calibration
- Benefits of Single Channel and Physical Quantity Calibrations
- Mon-linearity in Energy Measurements

TDC Calibration

TDC and trigger readings are related to physical quantities as follows:

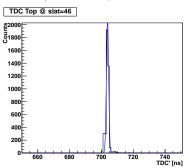
$$TDC_{t,b}' = t_{add} - TDC_{t,b} = ToF_{Carbon} + au_{t,b} + \Delta_{t,b}$$

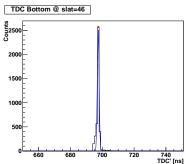
• TDC measurements were performed in common-stop mode: t_{add} takes into account the trigger correction

$$t_{add} = trg_{TW} - trg_{SC}$$

- \bullet $\tau_{t,b}$ is the time spent by the light pulse to propagate to the PMT in the slat
 - in sweepruns the hit position is known

$$au_{t,b} = rac{L}{2 \, v_{light}}$$

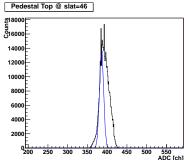

- L is the slat length, v_{light} is the light speed in the slat
- ToF_{Carbon} is needed from MC simulation

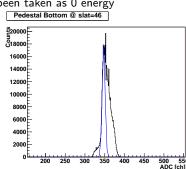


TDC peak identification on slat 46

$$TDC'_{t,b} = ToF_{Carbon} + au_{t,b} + \Delta_{t,b}$$

ullet $\Delta_{t,b}$ can finally be determined after fitting the measured quantities

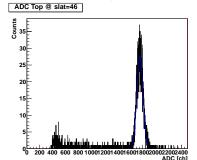


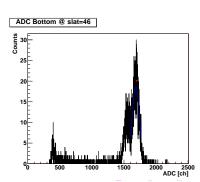

Pedestal Identification

Pedestal distributions must be identified to address ADC calibration

$$ADC'_{t,b} = ADC_{t,b} - PED_{t,b}$$

- ADC_{t,b} are measured quantities
- gaussian fits of PED_{t,b} distributions have been built in an asymmetric way on the left side
 - the left half-maximum has been taken as 0 energy




ADC Calibration

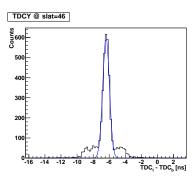
 $ADC'_{t,b}$ are proportional to PMT inputs and thus to E_{loss}

$$ADC'_{t,b} = \epsilon_{t,b} E_{loss} e^{-\alpha[L/2\mp Y]}$$

- $\epsilon_{t,b}$ are the PMT and electronic gains (to be found)
- E_{loss} is the energy released in the slat
- ullet α is the absorption coefficient

Channel Status

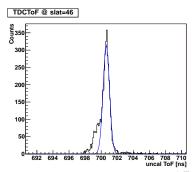
Bad channel list - slats with 1 missing channel can be recovered


DC top	TDC bottom	Pedestal top	Pedestal bottom	ADC top	ADC bottom
	1				1
	9			9	
1				10	
	27				
				32	0.0
				36	35
5	6			56	
J				66	
7	6			76	
	82		82		82
	84				
		89		89	
9				93	
	101			400	
				102 104	
	113			104	
	133				
	100			139	
					142
				144	
	147				
					156
				162	
	5 165			165	

Y Calibration via TDC

$$Y_{TDC} = \frac{v_{light}}{2} (TDC_b - TDC_t + \Delta_t - \Delta_b)$$

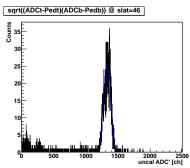
- in sweepruns the vertical hit coordinate is taken as 0
- \bullet $\Delta_t \Delta_b$ can be calculated



ToF Calibration

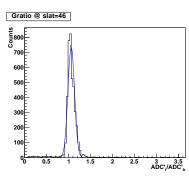
$$ToF_{Carbon} = rac{TDC_t + TDC_b - (au_t + au_b) - (\Delta_t + \Delta_b)}{2}$$

- the time spent by Carbon ions to travel from SC to TW (ToF_{Carbon}) can be provided by MC simulation
- $\Delta_t + \Delta_b$ can be calculated



E_{loss} Calibration

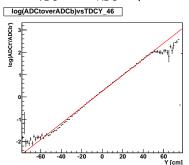
$$E_{loss} = \frac{\sqrt{ADC_t' ADC_b'}}{\sqrt{\epsilon_t \, \epsilon_b \, e^{-\alpha \, L}}}$$

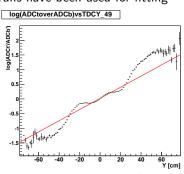

- in sweepruns E_{loss} is a function of the impinging angle, slat by slat, and can be reproduced by MC simulation (by now 116 MeV)
- ullet the product $\epsilon_t \, \epsilon_b$ can be obtained by fitting

Y Calibration via ADC

$$Y_{ADC} = \frac{1}{2\alpha} \left(\log \frac{ADC_t'}{ADC_b'} + \log \frac{\epsilon_b}{\epsilon_t} \right)$$

- in sweepruns the vertical hit coordinate is taken as 0
- ullet the ratio ϵ_t/ϵ_b can be obtained by fitting

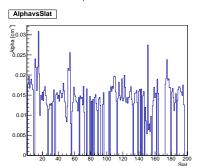


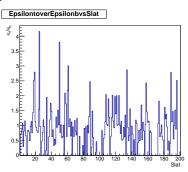


α and ϵ_b/ϵ_t Evaluation

$$\log \frac{ADC_t'}{ADC_b'} = 2\alpha Y_{TDC} - \log \frac{\epsilon_b}{\epsilon_t}$$

- slope (α) and intercept (ϵ_b/ϵ_t) can be determined
- Y_{TDC} and Y_{ADC} in production runs have been used for fitting





α and ϵ_b/ϵ_t Evaluation

• α and ϵ_b/ϵ_t are obtained slat by slat

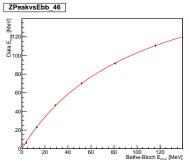
Benefits of Single Channel and Physical Quantity Calibrations

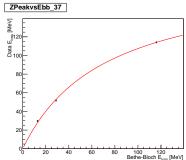
- calibration completion and self-check is possible
 - $\Delta_{t,b}$ and $\epsilon_{t,b}$ can be obtained from:
 - single channel calibration
 - physical quantity calibration
 - ϵ_t/ϵ_b can be fetched from Y_{TDC} and Y_{ADC} comparison
- hits with only 1 missing reading (over 4) can be recovered
 - hits with under-threshold signal on 1 TDC (mainly protons – 20% statistics)
 - slats with 1 failing channel

Z id and non-linearity problems

By comparing measured data and a expected values in ToF vs E_{loss} emerges the following:

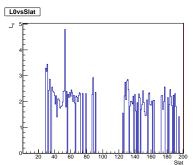
- data distribution and theoretical curves disagree
- this can be attributed to non-linear effects in scintillation
- non-linearity can be corrected to ease Z id using the Bethe-Bloch model for fitting Z clouds

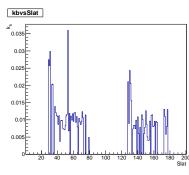

Non-linearity evaluation through Birks' model


Scintillation pulses, L, are not linear with E_{loss}

According to Birks' law:

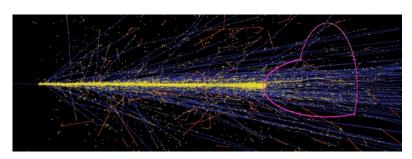
$$\frac{dL}{dx} = L_0 \frac{dE/dx}{1 + k_b * dE/dx}$$


- dL/dx is derived from ADC measurements (Data E_{loss} from Z peak)
- \bullet dE/dx is given by the Bethe-Bloch formula (Bethe-Block E_{loss})



Non-linearity evaluation through Birks' model

- Birks' model parameters, L_0 and k_b , are found from fitting
 - more than 1 Z peak is needed
 - this condition is satisfied on a limited number of slats
 - ullet some slats (< 32) are not reachable by primary fragments


Non-linearity evaluation through Birks' model

- once L_0 and k_b are known, a rescaling of the energy axis can be applied to overlap distributions with theoretical curves
- possibly their mean value can be applied to slats without fitting
- furthermore C peaks from sweepruns can be used in addition to those from data, to compensate where information is lacking

THE END

Thanks for your attention

