

Dark Matter searches at Canfranc with Nal: The ANAIS experiment

LSC

M. Martínez, Fundacion ARAID, Univ. de Zaragoza – Laboratori Nazionali del Gran Sasso, February 2013

Outline

- The Canfranc Underground Laboratory
- DM detection by Annual Modulation
- The ANAIS experiment
- R&D Nal for bolometric applications

The Canfranc Underground Laboratory

The history of the LSC

Underground facilities

The new laboratory is run by a Consortium between the Spanish Ministerio de Economía y Competitividad, the Government of Aragon and the University of Zaragoza.

Service facilities: offices, workshop, clean room...

Experiments at LSC

Universidad Zaragoza

DM direct detection rate

But also Inelastic scattering, Inelastic dark matter, interaction with e⁻ ...

Distinctive signal: annual modulation

v_{orbital} = 30 km/s

 α = 60°

v = 225 km/s

The movement of the Earth around the Sun induces an annual modulation in the expected rate.

 $S_k(t) = S_{0,k} + S_{m,k} \cos[w(t-t_0)]$

✓ Cosine behaviour
 ✓ 1 year period
 ✓ Maximum around June 1st
 ✓ Weak effect (<7%)
 Only noticeable at low energy
 ✓ (For Nal, E<6 keVee)

DAMA/LIBRA @ LNGS

~250kg Nal scintillators @ LNGS

Total exposure:

DAMA/Nal (100 kg Nal, 7 years, completed in 2002)
+ DAMA/LIBRA (250 kg Nal, more than 9 years, ongoing)
→ total exposure reported so far: 425428 kg×day = 1.17 tonxyr

« New results from DAMA/LIBRA » Eur. Phys. J. C (2010) 67: 39

Evidence (8.9 σ C.L.) of an annual modulation of the *single-hit* events in the (2–6) keV energy region satisfying all the requests of a DM component in the galactic halo

CoGeNT @ Soudan

PPC HPGe (p-type point contact high purity Ge detector)

Reported so far: 15 months of data collection

"Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of lightmass WIMPs" (2.8 σ C.L.)

Comparison between DAMA and CoGeNT results is model dependent PRD 84 (2011) 055014 JCAP 1108 (2011) 008 PRD 85 (2012) 043515 arXiv:1106.6241 arXiv:1302.0796

and also the comparison with other experiments with negative results (Xenon, CDMS..)

"Search for an Annual Modulation in a *p*-Type Point Contact Germanium Dark Matter Detector" PRL 107, 141301 (2011)

Nal Scintillators for DM search

- ↑ I -> σ_{si} (α A²)↑
- ↑ Na -> sensitive to light WIMPS
- \uparrow Sensitive to SD-proton interaction

²³Na (i.a. 100%) : J=3/2 (unpaired proton) ¹²⁷I (i.a. 100%): J=5/2 (unpaired proton)

- ↑ High light yield (420 nm, well matched with PMTs)
- \uparrow Particle discrimination by pulse shape analysis
- ↓ Low quenching factor NR/βγ (Na ≈ 0.3, I ≈ 0.1)
- \downarrow Hygroscopic character
- \downarrow No particle discrimination ($\beta\gamma$ /NR) at very low energy

The ANAIS experiment

Annual Modulation with Nal Scintillators

Universidad Zaragoza J. Amaré, S. Cebrián, C. Cuesta, E. García, C. Ginestra, M. Martínez, M. A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, C. Pobes, J. Puimedón, M. L. Sarsa, P. Villar and J. A. Villar.

- Looking for DM annual modulation with 250 kg NaI(TI) scintillators
- To be installed at the new Canfranc Underground Laboratory (start data-taking expected: end 2013)

Same target and technique as DAMA/LIBRA

ANAIS @ LSC (Hall B)

The ANAIS Hut and the control room already constructed @ LSC Hall B

Shielding

PMTs Selection

Several models have been considered so far. We have selected **Hamamatsu VLB** based on the radioactivity levels (measured at LSC by HPGe spectroscopy) and quantum efficiency

	⁴⁰ K	²³² Th	²³⁸ U	⁶⁰ Co				
	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)	(mBq/PMT)				
Low background Electron Tubes Limited 9302B	420 ± 50	24 ± 4	220 ± 12	-	$igstar{}$ radioactivity too high			
Low background (LB) Hamamatsu R6233-100	678 ± 42	68 ± 3	100 ± 3	-	$igstar{}$ radioactivity too high			
Ultra low background (ULB) Hamamatsu R11065SEL	12±7	3.6±1.2	238 U - 47 ± 28 226 Ra - 8.0 ± 1.2	4.1 ± 0.7	 ↑ Very low background level ↓ Relatively low Q.E. ↓ Very expensive 			
Very low background (VLB) Hamamatsu R6596MOD	97 ± 19	20 ± 2	238 U - 128 ± 38 226 Ra - 84 ± 3	-	↑ Q.E. > 33 % @ 420 nm			

PMTs Selection

Several models have been considered so far. We have selected **Hamamatsu VLB** based on the radioactivity levels (measured at LSC by HPGe spectroscopy) and quantum efficiency

	⁴⁰ K (mBq/PMT)	²³² Th (mBq/PMT)	²³⁸ U (mBq/PMT)	⁶⁰ Co (mBq/PMT)	
Low background Electron Tubes Limited 9302B	420 ± 50	24 ± 4	220 ± 12	-	$igstar{}$ radioactivity too high
Low background (LB) Hamamatsu R6233-100	678 ± 42	68 ± 3	100 ± 3	-	$igstar{}$ radioactivity too high
Ultra low background (ULB) Hamamatsu R11065SEL	12 ± 7	3.6 ± 1.2	238 U - 47 ± 28 226 Ra - 8.0 ± 1.2	4.1 ± 0.7	 ↑ Very low background level ↓ Relatively low Q.E. ↓ Very expensive
Very low background (VLB) Hamamatsu R6596MOD	97 ± 19	20 ± 2	238 U - 128 ± 38 226 Ra - 84 ± Co T	TECT	ED.E. > 33 % @ 420 nm

42 units of the Hamamatsu R6956 MOD SEL model have been purchased

OFHC copper housing

Voltage divider (with Teflon support)

- 20 detectors x 2 PMTS = 40 channels
- (almost) fully commissioned.

20 detectors x 2 PMTS = 40 channels
(almost) fully commissioned.

20 detectors x 2 PMTS = 40 channels
(almost) fully commissioned.

20 detectors x 2 PMTS = 40 channels
(almost) fully commissioned.

Acquisiton & analysis software and Slow control system

- □ Linux 3.0.0, multithread, root integrated
- Raid5 (2.7 TB) with replication system (rsync)
- Monitor system with alerts via e-mail/sms
- □ Slow control system monitoring:
 - Temperature (Hut/electronics/Hall B)
 - N₂ flux
 - HV supply 💊
 - Radon concentration @ Hall BW
 - Baseline noise
 - Muon rate
 - •••

ANAIS-0 @ LSC

A 9.6 kg NaI(TI) (St Gobain) Crystal
 Encapsulated at UZ with ETP copper
 C from Con 2011 to Doc 2012

@ LSC from Sep 2011 to Dec 2012

25.4 x 10.2 x 10.2 cm³ NaI(TI) crystal

(removable) light guides

PMTs (several models tested)

<u>Goals</u>:

- Test ANAIS DAQ (electronic chain & software)
- PMT/guides test
- Fine tuning analysis algorithms
- Background model

Shielding:

- 10 cm roman lead + 20 cm low activity lead.
- 3 active vetoes anti-muons.
- Anti-radon box, adaptable to the complete ANAIS experiment.

ANAIS-0: light collection in different configurations

Set-up	Set-up PTM		Resolu	Phe ⁻ /keV	
		guides	14.4 keV	122.1 keV	
1	ET LB	No	17.6	7.8	6.5
2	Ham LB	Yes	22.3	6.6	4.9
3	Ham ULB	Yes	17.6	7.2	4.1
4	Ham ULB	No	14.4	6.3	5.5
5	Ham VLB	No	15.2	5.9	7.5

10 cm length light guides worsen ~30 % resolution and light collection

ANAIS-0⁴⁰K internal contamination

⁴⁰K : especially harmful at low energy

ANAIS-O Event selection

Reject events based on:

- Periods of high rate (after calibrations)
- Cut 0.5 s after a muon (high energy event) in crystal
- Muon veto to coincidence

ANAIS-O Event selection

Reject events based on:

- Periods of high rate (after calibrations)
- Cut 0.5 s after a muon (high energy event) in crystal
- Muon veto to coincidence
- Number of photoelectrons
 PMT1< 3 && PMT2<3

ANAIS-O Event selection

Reject events based on:

- Periods of high rate (after calibrations)
- Cut 0.5 s after a muon (high energy event) in crystal
- Muon veto to coincidence
- Number of photoelectrons
 PMT1< 3 && PMT2<3

Universidad

Zaragoza

Cut on the scintillation time (P1 parameter):

$$P1s = \frac{area1(100 - 600 ns) + area2(100 - 600 ns)}{area1(0 - 600 ns) + area2(0 - 600 ns)} \int_{1}^{\infty}$$

Rejection of non bulk events: surface events
or scintillation of other materials

Efficiency checked with calibrations down to 2 keVee

ANAIS-O Background model

All the materials used in ANAIS-0 have been screened with a HP-Ge . Apart from the PMTs, only upper limits (95% CL) have been found:

Simulated component	Isotope	Activity
	$^{40}\mathrm{K}$	$< 11 \mathrm{~mBq}$
	$^{232}\mathrm{Th}$	$< 4.1 \mathrm{~mBq}$
Copper encapsulation	$^{238}\mathrm{U}$	$< 140 \mathrm{~mBq}$
	226 Ra	$< 2 \mathrm{~mBq}$
	$^{60}\mathrm{Co}$	$< 0.94~\mathrm{mBq}$
	$^{40}\mathrm{K}$	< 12 mBq/kg
Quarte antical mindam	$^{232}\mathrm{Th}$	$< 2.2~{\rm mBq/kg}$
Quartz optical willdow	$^{238}\mathrm{U}$	$< 100 \ \rm mBq/kg$
	226 Ra	$< 1.9~\mathrm{mBq/kg}$
	40 K	$<21~{\rm mBq/guide}$
Light guides	$^{232}\mathrm{Th}$	$< 4.1~\mathrm{mBq/guide}$
Light guides	$^{238}\mathrm{U}$	$< 120~{\rm mBq/guide}$
	226 Ra	< 4.7 mBq/guide
	$^{40}\mathrm{K}$	$< 200 \ \rm mBq/kg$
Optical coupling groups	232 Th	$<200~{\rm mBq/kg}$
Optical coupling grease	$^{238}\mathrm{U}$	$<2000~{\rm mBq/kg}$
	226 Ra	$< 30~{\rm mBq/kg}$
	$^{210}\mathrm{Pb}$	$< 20 \mathrm{~mBq/kg}$
Archaeological Lead	$^{232}\mathrm{Th}$	$<0.3~{\rm mBq/kg}$
	$^{238}\mathrm{U}$	$<0.2~{\rm mBq/kg}$

+ reflectant, mylar, glue, teflon...

Contribution to background (Geant4 simulation):

Universidad Zaragoza

ANAIS-O Background model

Crystal internal contamination determined by several methods:

Identification of Bi-Po sequences

ANAIS-O Background model

MC simulation of known background components

- PMT and adjacent materials contamination (measured by HPGe)
- internal crystal contamination (estimated by alpha discrimination, Bi-Po events identification and coincidence measurement)

plus some plausible hypotheses (210 Pb surface contamination in NaI and copper, cosmogenic 3 H and 129 I in NaI)

successfully explain the measured background :

"Background model for a Nal (TI) detector devoted to dark matter searches" Astrop. Phys. 37 (2012) 60

Nal(TI) Powder selection

- Goal: <20 ppb of ^{nat}K (0.6 mBq/kg)
- Contacts with several scintillator suppliers
- Powder selection based on HPGe measurements at LSC

assuming equilibrium in U and Th chains

Next step: Measure K content by coincidence between two crystals grown with the selected powder

Nal(TI) Crystals encapsulation

12.5 kg Nal(Tl) prototypes:

- 4.75" φ x 11.75" length cylindrical shape
- OFHC copper encapsulation
- Teflon diffusor

Zaragoza

- Mylar window for low energy calibration
- Two optical windows

- The PMT have been coupled at LSC by the ANAIS team:
 - \rightarrow First step: PMTs directly coupled to the optical window (no light guide)

ANAIS-25 prototypes @ LSC

From December 2012

Shielding:

- 10 cm roman lead
- 20 cm low activity lead
- 3 active vetoes antimuons.
- Anti-radon box

At least 3 months of data taken will be needed to estimate the ⁴⁰K bulk content

ANAIS-25 Low energy calibration

A Mylar window for low energy calibration with external sources

Universidad Zaragoza

ANAIS-25 prototypes: Resolution

Energy (keV)	Res _{FWHM} (%)									
	ULB PMTs	VLB PMTs								
6.4	43.5	43.9								
14.4	24.0	23.5								
22.1	22.6	24.0								
30.8	19.0	20.4								
81	11.5	10.8								
88	11.5	10.6								
122.1	9.6	9.2								

ANAIS-25 prototypes: Light collection

 With 10 cm length light guides we expect a decrease in light collection of ~30% (final decision will depend on background measurements)

Universidad Zaragoza

ANAIS-25 prototypes: Cosmogenic activation

We started measuring underground very fast after the arrival of the prototypes → valuable information on cosmogenic activation

Production in	Isotope	Half life	Decay mode
¹²⁷	126	13.11 d	CE, b-
	125	59.4 d	CE
	124	4.18 d	CE, b+
	^{121m} Te	154 d	IT, CE
	¹²¹ Te	16.8 d	CE
	^{123m} Te	119.7 d	IT
	¹²³ Te	>10 ¹⁹ y	CE
	^{125m} Te	57.4 d	IT
	^{127m} Te	109 d	IT, b-
	¹²⁷ Te	9.35 h	b-
²³ Na	²² Na	949.7 d	CE, b+

ANAIS-25 prototypes: Cosmogenic activation

<u>Differential background:</u> First week (04/12/12 – 12/12/12) minus last week (31/01/13 – 06/02/13)

Preliminar analysis

We are still working in the adaptation of the event selection algorithms

 Some cosmogenic isotopes have been identified so far.
 The lines are decreasing as expected.

ANAIS Schedule

	2011		2	011		2011		2011		2011		2011		2011		20	12		2012		2012			2012			2013		2013			2013		2013			1
apr	may	jun	jul a	ug se	p	oct nov	dec	jan fet	o ma	r apr	may ju	n jul	l aug s	ер	oct	nov	dec	jan	feb mar	apr	may	jur	jul	aug se	p o	ct nov	dec	jan	1								
		į			÷																																
			Moni	toring	er	nvironme	ntal	parame	ters	(Rn a	air conte	nt, T	Γ, HV sta	abi	ility, (etc)																					
					, stir	a Ham I		i cin AN		1																											
				16:	טט י	іу паш і		5 III AIN/	10-0) 1																											
											-																										
_				_		1	DA	Q hard	vare	and	software	test	ting and	l fii	ne tu	ining				1																	
					i					<u> </u>		<u>.</u>	4	ι Δ	ΝΔΙ	su 3	: mor	مايية	stable da	' Ita ta	kina																
					1			1		1		1		1		00_Z	1110(Juie	Stable ut	י י	ĸing																
					-			📥 Si	mula	tion (of ANAIS	5-0 k	backgro	un	id an	d con	npar	rison	with me	asure	ement	ts															
													-									i	·		مالا کا م			10									
																						- 2	simu	lation	of th	e whole	ANA	15									
			Y					R	adior	uritv	measure	eme	ents of I	Na	l sar	nples																					
														i																							
					÷			1	_	1		₽De	efinition	of	grov	wing, o	enca	apsu	ulation &	crysta	al tes	ting	pro	tocols													
																				¦ 	1		. .														
												!					GI	Jwin	g & enca	psula	ung p		лур	es													
					÷.															Bk	n me:	: as of	f two	n 12 5	ka n	rototype	2										
																					g mot	10 0		5 12.0	- 9 P	lototype	.0										
					÷															1		-	_		_	Grow	ing cr	ysta	ls								
					Ì			<u> </u>		1		1						Com	missioni	na Al		chic	Jdir	ha and	، مامم	tronice											
					ł			1		1								COII	11115510111	ny A	NAIS	51110		iy anu													
																								В	uildi	na ANA	S at	I SC									
					÷																			_		.9											
		i			i.			i i		i -		i –		- i			1			1		i.			1		1										

R&D: Nal for bolometric applications

Motivation: Same target, but: NR/ γ discrimination $Q_{NR/\gamma} \approx 1$

In collaboration with the Advanced Detectors Group (ADG) of the Lisbon Universtity and the Institute d'Astrophysique Spatial (IAS), Orsay (France)

Universidad Zaragoza

The bolometric technique

Scintillating bolometers

Zaragoza

Nal for bolometric applications

Scintillating bolometers are excellent detectors for dark matter (and other rare event) searches:

- Very good energy resolution
- Low energy threshold achievable
- Quenching factor close to 1
- > Particle discrimination (γ/α and γ/NR) down to several keV (or several tens of keV)
- > Wide target choice

Nal is a very interesting DM target!, but....

- > Relatively high specific heat (θ_{Debve} =164 K)
- Large coefficient of thermal expansion (1% between 300 K and 4 K)
- High hygroscopicity

A possible solution:

Coat the Nal crystal with an appropriate material acting as humidity barrier

Parylene coating

The coating material has to be:

- > Transparent in the λ of Nal emission
- Resistant to thermal cycles
- Radiopure
- ▶ Low heat capacity (→ very thin films!)
 ▶ ...

A possibility: **PARYLENE**

Parylene C Good humidity barrier!

It can be deposited in very thin films by vaporphase condensation polymerization

Parylene transmission in Nal emission bands

Sepctra from "Alkali Halide Scintillators" W.J. Van Sciver, IRE Trans. Nucl. Sci. 3 (1956) 39.

Universidad Zaragoza

Parylene radiopurity

HPGe measurement at LSC on dimer (dichloro-p-cylophane) samples

0.05 counts/cm²/µm/year

very low contribution to the background for thin parylene layers

Parylene-coated Nal(Tl) Low temperature X-ray scintillation

Light output vs Temperature (Si photodiode)

Light output vs wavelength (fiber spectrometer)

Parylene resistance to thermal cycles

Light output measurement before and after the thermal cycle

 Cooling down to 80 mK (with a dilution unit) (Mounting time one week)

Light detector: PMT faced to the crystal Excitation: ¹³⁷Cs

loss of adherence in certain areas

Parylene resistance to RH

In any case, 2-5 µm parylene allow some days handling but it is not a permanent coating

If the crystals are not kept in dry atmosphere, after one month...

We have not succeeded yet in doing a bolometric measurement with parylene-coated NaI

In parallel we are studying other coating materials

Summary

- The Canfranc Underground laboratory hosts a multidisciplinary scientific program, with focus on rare events physics. The approved experiments are being installed in the new facilities.
- ANAIS is a UZ project that will look for dark matter annual modulation with 250 kg of NaI(TI) at LSC
 - > PMTs, shielding, electronics and software are (almost) ready.
 - Two 12.5 kg NaI(TI) prototypes have been constructed with selected NaI(TI) powder (^{nat}K < 90 ppb at 95% C.L.) and radiopurity is being checked underground. The good light collection allow us to expect an energy threshold below 2 keV. If background requirements are fulfilled, the 250 kg production will start.
- R&D is in progress to study coated NaI and NaI(TI) crystals at low temperature for bolometric applications. Test of light output and resistence to thermal cycles of parylene-coated NaI samples have been performed. The results are not completely satisfactory and other coating materials are being studied.

Grazie!

