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Nested Autonomy Paradigm 
Objective 

•! Autonomy system capable of adapting to the environmental and 
tactical situation to achieve mission objectives, without being 
dependent on continuous connectivity with operators. 

•! Autonomy system which takes advantage of communication 
windows to exploit collaboration with other network nodes for  
enhanced mission performance 

Platform Autonomy 
Integrated Sensing, Modeling and Control 

•! Automated processing of sensor data for detection, 
classification, localization and tracking of tactical or 
environmental event 

•! Data-driven modeling for forecasting of tactical and 
environmental situation 

•! Intelligent decision-making based on situational awareness, 
adaptive and collaborative strategies (behaviors), and learning, 
to adapt to forecast for enhanced performance  



Platform Autonomy Components 
•! Platform Helm (“Captain of the Ship”) 

–! Command and control platform maneuvers for optimally achieving mission objectives 
as devised by Mission Autonomy and C2 (“Chief Scientist”), while maintaining 
platform safety and preparedness. 

•! Sensor Data Management (“Sonar Officer”) 
–! Configure sensor systems in accordance with mission directives from Mission 

Autonomy and C2. 
–! Coordinate sensor operation with other platform systems (communication, 

propulsion, actuators). 
–! Process and interpret sensor data for real-time support of decision making by the 

Helm 
–! Prepare sensor system reports for decision for communication to the Helm and  MA 

•! Communication (“Radio Officer”) 
–! Package and prioritize outgoing communication for available communication 

channels  
–! Handle and distribute incoming communication to Helm and Sensor system. 

•! Platform Mobility (“Helmsman – Engine Room”) 
–! Converts speed, heading and depth commands to rudder and propulsion commands 
–! Performs basic platform navigation 
–! Manufacturer dependent 
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LAMSS 
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Nested Autonomy Tutorial Example 

Port Entry Surveillance 
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Nested Autonomy with MOOS-IvP 
Concept of Operations 
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Hierarchical Mode Structure •! Mission-defined Autonomy System 
•! Hierarchical Mode Structure 
•! No programmed sequencing 
•! Modes and behaviors perpetual until 

actively changed by mission 
planning and control infrastructure 

•! Autonomy Modes 
•! Contains behavior set for Speed, 

Heading and Depth 
•! ‘Perpetual’ until transitioned 
•! Mode transitions 

•! Onboard Mission Planning and 
Control 

•! C2 through ACOMMS 
•! Behaviors 

•! Mode defined 
•! Mission objectives 
•! Safety 

•! Dynamic Configuration 
•! Parameter updates 
•! Spawned behaviors 

•! Collision avoidance 
•! Collaborative sensing 
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IvP-Helm 
Multi-Objective Optimization 

Behavior Examples – Tracking 
 
ArrayTurn – Break L/R ambiguity 
ArrayAngle – Optimize target tracking 
TurnMemory – Protect towed array 

Behavior Examples – Search 
 
TowHeading – Minimize noise interference 
CloseRange – Approach predicted target track 
TurnMemory – Protect towed array 
GotoDepth – Optimal detection depth 

Speed 

Heading 
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Tracking Mode 
BHV_ArrayAngle 

 Behavior = BHV_HArrayAngle 
{ 
  name = track_array_angle 
  pwt  = 100 
  width = 60 
  desired_angle = 90 
  condition = MODE == TRACKING 
} 
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Collaborative Autonomy 
pClusterPriority 

priority = pwt e -! r/<r> 

NAV_X, NAV_Y 
Status Reports 

ProcessConfig = pClusterPriority 
{ 
  AppTick    = 4 
  CommsTick  = 4 
   
  verbosity = verbose 
  target = target_updates 
  target_updates = TARGET_ID 
 
  ownship = caribou 
  friend = unicorn 
 
  pwt =  100 
 
  max_delay_friends = 60 
} 
 

BF21 Caribou 

BF21 Unicorn 
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Collaborative Autonomy 
BHV_CollaborativeTracking 

 Behavior = BHV_CollaborativeTracking 
{ 
  name = 2v_tracking 
  pwt = 140 
  updates = COLLABORATION_PARAM // pwt = pwt <r>/r from pMBTracker 
  position_uncertainty = 1 
  measurement_uncertainty = .017 
  condition = MODE == TRACKING 
  condition = (COLLABORATION_MODE = COLLABORATING) 
} 
 

Optimal  
relative bearing 
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Ocean Acoustic Sensing 
Environmental Ocean Acoustics 
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What is  
“Environmental Ocean Acoustics” 

•! Understanding and Modeling the generation and 
propagation of sound  in the ocean 
–! The ocean is a “thin” sheet with horizontal extend ~ 100 

times the vertical, creating a waveguide. 
–! Sound speed variability 

•! ~ 10% in vertical 
•! ~ 1% in horizontal for typical propagation ranges 

–! Boundary Interaction 
•! Bottom an “infinite” acoustic and elastic medium 
•! Ice cover in polar regions 
•! Surface waves and bubbles 

–! Signals and noise 
–! Scattering and Reverberation 
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Colladen and Sturm 
Lake Geneva 1826 
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Generic Sound Speed Profile 
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Global Sound Speed Structure 
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c(z) 

Sound is Attracted to  
Low Speed of Sound!! 

Snell’s Law 
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Adapting Sensor Systems to Environment 



Ocean Acoustic Material Properties 

Snell’s Law 

Attenuation 

Sound Speed 
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Ocean Waveguide Propagation Paths 
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Geometric Spreading 

Transmission Loss 
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Ocean Waveguide Boundary Effects 
Lloyd-Mirror Pattern 
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Deep Ocean Waveguide Propagation 
SOFAR Channel Propagation 

Norwegian Sea 
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Deep Ocean Waveguide Propagation 
Surface Duct Propagation 

Norwegian Sea 
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Deep Ocean Waveguide Propagation 
Convergence Zone Propagation 

North Atlantic 
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Deep Ocean Waveguide Propagation 
Polar Environments 

Arctic Ocean 
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Shallow Water Seismo-Acoustics 
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Shallow Water Propagation 

Mediterranian Summer 
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Shallow Water Acoustics 
Bottom Interaction 
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Shallow Water Propagation 
Ray-Mode Analogy 
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Shallow Water Acoustics 
Mode Cutoff 
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OPTIMUM FREQUENCY CURVES 
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Shallow Water Propagation 
Modal Interference 
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Waveguide Invariants 

Phase and Group velocity 

Taylor Expansion for Group of Modes 

Frequency-Range TL Maxima 

Waveguide Invariant 

Ideal Waveguide 

Small grazing angles 
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Waveguide Invariants 
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Hierarchy of Underwater Acoustic Propagation Models 
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Model Consistency 
Normal Modes and Rays 
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MIT Center for 
Ocean Engineering 
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Comparison between 3D and Nx2D solutions 

TL in the horizontal plane at depth 300 m. The source frequency is 10 Hz. 

H=1000 m, 3D 

H=1000 m, Nx2D 

H=3800 m, 3D 

H=3800 m, Nx2D 



AMBIENT NOISE SPECTRA 
Wenz Curves 
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Surface Noise in a Stratified Ocean 
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Surface Noise in a Stratified Ocean 

Total Field 

Continuous 
Spectrum 

Discrete 
Spectrum 

MIT Laboratory for  
Autonomous Marine Sensing Systems 



Nested Autonomy 

Model-Based Environmental Acoustic 
Adaptation 
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Deep Ocean Sensing and Communication 
Environmental Adaptation 

c(z) 
Environmental Focusing 

ACOMMS 

RF 

Environmental 
Adaptation 

Variable Latency 

0 – 60 km 

Optimal depth? 



Extending Sonar Range through Depth 
Adaptation 

 
Full Angular Spectrum Signal and Noise Modeling 

RAP Path Extension by Vertical Mobility 
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Mission 
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IVP-Helm 

Model-based Environmental Adaptation 
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Bellhop 

BHV_OptAcoustDepth 

MOOSDB 

Publishes: 
!! Bellhop_Request 

 

iBellhop 
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Acoustic Tracking with Depth Adaptation 

•! Prosecute CONOPS 
•! Detection: Dive to depth with maximum predicted signal excess (SE), align 

broadside to surveillance bearing, level, fire sonar, drift and adapt to target cue 
for next ping. 

•! Tracking:  After detection, maintain depth and track source in bearing and 
range until it moves out towards " CZ, then change depth dynamically to 

depth with max SE for forecast of source track. 
 

Transmission Loss 
 

Source depth: 200 m 
Source speed: 16 kn 

Frequency: 800-1000 Hz 
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Hold-at-Risk Autonomy 

Depth Utility Function 
Unfiltered 

Depth Utility Function 
Filtered 

Caustic 

Robust Model-based Adaptation 

Depth Filtering 

Uncertainty 

•! Depth-filtering of utility function 
•! Avoid non-symmetric caustics – Must stay on ‘good side’ 

•! Filtering consistent with statistics of environmental acoustics 
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Nested Autonomy 

Field Deployment Examples 
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GLINT’08 – ‘10 
 

Generic Littoral Interoperable Network 
Technology 
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Multistatic-Active target Tracking 
GLINT ‘09 EXPERIMENT 

Deploying DEMUS source from 
deck of NRV ALLIANCE 

DEMUS source 

SOURCE 

Deploying OEX 
AUV, with BENS 
array on tow 

RECEIVER 

DERS on deck of CRV 
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TARGET 



Key algorithms 
–! Sonar signal processing 
–! Target tracking 
–! Behavior-based autonomy 
–! Integrated information theoretic & environmental acoustic framework 

57 

Integrated, Adaptive Multistatic 
Processing and Control Framework 

Raymond Lum (PhD 2/12) 
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Performance Evaluation 
Tracking Error Covariance 

58 

Racetrack Adaptive 
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The Sonar of Bats 

Figures from The Sonar of Dolphins  by W. Au (Springer Verlag, 1993) 



Dolphin Sonar 
Reflection from Objects 

Figures from The Sonar of Dolphins  by W. Au (Springer Verlag, 1993) 



GOATS 98 
Odyssey II Bi-static Receiver Platform 

MIT Laboratory for  
Autonomous Marine Sensing Systems 



GOATS 98 Experiment 
Automated, Bistatic SAS Imaging 

Super-critical Insonification  
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Summary 

•! Intelligent autonomy is crucial to the performance of distributed 
undersea sensing systems 
–! Adaptation and collaboration may compensate for less capable sensing 

capabilities 
–! Communication channel capacity many orders of magnitude lower than for 

air-and land-based systems 
–! Full integration of sensing, modeling, and control required so mission can 

be accomplished with no or intermittent communication 
–! Behavior-based autonomy key enabler for integrated sensing, modeling 

and control. 
–! MOOS-IvP is an open-source, highly portable autonomy software 

supporting advanced, behavior-based, adaptive and collaborative 
autonomy. 

–! High-fidelity acoustic simulation linked with autonomy system is a key tool 
for development of distributed autonomy 
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