

Nested Autonomy: A Robust Operational Paradigm for Adaptive and Collaborative Ocean Acoustic Sensing

Laboratory for Autonomous Marine Sensing Systems Massachusetts Institute of technology 617-253-5727 (henrik@mit.edu)

http://lamss.mit.edu

Ettore Majorana Foundation and Centre for Scientific Culture International School of Ethology 30th International Workshop, Erice, October 18-21, 2013

Outline

- Introduction
- Nested Autonomy Paradigm
- Tutorial Example
- Environmental Ocean Acoustics
- Model-based Adaptive Autonomy
- Field Examples
- Summary

Ocean Sensing Systems Paradigm Shift

Sensing Systems

Net-centric, Distributed Autonomous Sensing Systems

0

MIT Laboratory for Autonomous Marine Sensing

Undersea Network Communication

Nested Autonomy

Nested Autonomy Paradigm Objective

- Autonomy system capable of adapting to the environmental and tactical situation to achieve mission objectives, without being dependent on continuous connectivity with operators.
- Autonomy system which takes advantage of communication windows to exploit collaboration with other network nodes for enhanced mission performance

Platform Autonomy

Integrated Sensing, Modeling and Control

- Automated processing of sensor data for detection, classification, localization and tracking of tactical or environmental event
- Data-driven modeling for forecasting of tactical and environmental situation
- Intelligent decision-making based on situational awareness, adaptive and collaborative strategies (behaviors), and learning, to adapt to forecast for enhanced performance

Platform Autonomy Components

- Platform Helm ("Captain of the Ship")
 - Command and control platform maneuvers for optimally achieving mission objectives as devised by Mission Autonomy and C2 ("Chief Scientist"), while maintaining platform safety and preparedness.
- Sensor Data Management ("Sonar Officer")
 - Configure sensor systems in accordance with mission directives from Mission Autonomy and C2.
 - Coordinate sensor operation with other platform systems (communication, propulsion, actuators).
 - Process and interpret sensor data for real-time support of decision making by the Helm
 - Prepare sensor system reports for decision for communication to the Helm and MA
- Communication ("Radio Officer")
 - Package and prioritize outgoing communication for available communication channels
 - Handle and distribute incoming communication to Helm and Sensor system.
- Platform Mobility ("Helmsman Engine Room")
 - Converts speed, heading and depth commands to rudder and propulsion commands
 - Performs basic platform navigation
 - Manufacturer dependent

Assachusetts Institute of Technology Payload Autonomy Architecture

Nested Autonomy Tutorial Example

Port Entry Surveillance

MIT Laboratory for Autonomous Marine Sensing

Massachusetts Institute of Technology Collaborative, Adaptive DCLT

Massachusetts Institute of Technology Nested Autonomy with MOOS-IvP Concept of Operations

Hierarchical Mode Structure

- Mission-defined Autonomy System
 - Hierarchical Mode Structure
 - No programmed sequencing
 - Modes and behaviors perpetual until actively changed by mission planning and control infrastructure

Autonomy Modes

- Contains behavior set for Speed, Heading and Depth
- 'Perpetual' until transitioned
- Mode transitions
 - Onboard Mission Planning and Control
 - C2 through ACOMMS
- Behaviors
 - Mode defined
 - Mission objectives
 - Safety
 - Dynamic Configuration
 - Parameter updates
 - Spawned behaviors
 - Collision avoidance
 - Collaborative sensing

IvP-Helm Multi-Objective Optimization

Behavior Examples – Search

TowHeading – Minimize noise interference CloseRange – Approach predicted target track TurnMemory – Protect towed array GotoDepth – Optimal detection depth

MIT Laboratory for Autonomous Marine Sensing

Behavior Examples – Tracking

ArrayTurn – Break L/R ambiguity ArrayAngle – Optimize target tracking TurnMemory – Protect towed array

Tracking Mode BHV_ArrayAngle

0

Behavior = BHV_HArrayAngle { name = track_array_angle pwt = 100 width = 60 desired_angle = 90 condition = MODE == TRACKING }

Collaborative Autonomy pClusterPriority

MIT Laboratory for Autonomous Marine Sensing

Collaborative Autonomy BHV_CollaborativeTracking

Nested Autonomy

Ocean Acoustic Sensing Environmental Ocean Acoustics

MIT Laboratory for Autonomous Marine Sensing

What is "Environmental Ocean Acoustics"

- Understanding and Modeling the generation and propagation of sound in the ocean
 - The ocean is a "thin" sheet with horizontal extend ~ 100 times the vertical, creating a waveguide.
 - Sound speed variability
 - ~ 10% in vertical
 - ~ 1% in horizontal for typical propagation ranges
 - Boundary Interaction
 - Bottom an "infinite" acoustic and elastic medium
 - Ice cover in polar regions
 - Surface waves and bubbles
 - Signals and noise
 - Scattering and Reverberation

MIT Laboratory for Autonomous Marine Sensing Systems

Massachusetts Institute of Technology Environmental Ocean Acoustics

Colladen and Sturm Lake Geneva 1826

0

MIT Laboratory for Autonomous Marine Sensing Systems

Generic Sound Speed Profile

Global Sound Speed Structure

Sound is Attracted to Low Speed of Sound!!

Adapting Sensor Systems to Environment

Ocean Acoustic Material Properties

Sound Speed

 $c = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3 + (1.34 - 0.01T)(S - 35) + 0.016z.$

Snell's Law
$$\frac{\cos \theta}{c} = constant$$
,
Attenuation $A = A_0 \exp(-\alpha x)$,

$$\alpha(dB/km) = 3.3 \times 10^{-3} + \frac{0.11f^2}{1+f^2} + \frac{43f^2}{4100+f^2} + 2.98 \times 10^{-4}f^2,$$

MIT Laboratory for Autonomous Marine Sensing Systems

Ocean Waveguide Propagation Paths

MIT Laboratory for Autonomous Marine Sensing Systems

Geometric Spreading

(a) Spherical spreading (b) Cylindrical spreading

$$\propto \frac{1}{2\pi RD}$$

Transmission Loss

$$TL = 20 \log_{10} \frac{p(r;z)}{p(r=1m)} = 10 \log_{10} \frac{l(r;z)}{l(r=1m)}$$

MIT Laboratory for Autonomous Marine Sensing Systems

Ocean Waveguide Boundary Effects Lloyd-Mirror Pattern

Deep Ocean Waveguide Propagation SOFAR Channel Propagation Norwegian Sea

0

MIT Laboratory for Autonomous Marine Sensing Systems

Deep Ocean Waveguide Propagation Surface Duct Propagation Norwegian Sea

0

MIT Laboratory for Autonomous Marine Sensing Systems

0

Massachusetts Institute of Technology

Deep Ocean Waveguide Propagation Polar Environments Arctic Ocean

MIT Laboratory for Autonomous Marine Sensing Systems

Shallow Water Seismo-Acoustics

MIT Laboratory for Autonomous Marine Sensing Systems

Shallow Water Propagation

Mediterranian Summer

MIT Laboratory for Autonomous Marine Sensing Systems

Shallow Water Acoustics Bottom Interaction

Shallow Water Propagation Ray-Mode Analogy

Shallow Water Acoustics Mode Cutoff

OPTIMUM FREQUENCY CURVES

MIT Laboratory for Autonomous Marine Sensing Systems

0

MIT Laboratory for Autonomous Marine Sensing Systems

Institute of Technology

Waveguide Invariants

Taylor Expansion for Group of Modes

$$s_{gn}=s_g+rac{ds_g}{ds_p}(s_{np}-s_p)\;,$$

Frequency-Range TL Maxima

$$\frac{\Delta r}{\Delta \omega} = -\frac{r \, ds_g}{\omega \, ds_p} \,.$$

Waveguide Invariant

$$rac{1}{eta}\equiv -rac{ds_g}{ds_p}=-\left(rac{v}{u}
ight)^2rac{du}{dv}\,,$$

$$rac{\Delta \omega}{\Delta r} = eta rac{\omega}{r} \, ,$$
 $rac{\omega}{\omega_0} = \left(rac{r}{r_0}
ight)^eta \, .$

MIT Laboratory for Autonomous Marine Sensing Systems

Ideal Waveguide

$$k_{rn} \equiv \omega/v_n = k \cos \theta_n = (\omega/c) \cos \theta_n$$

Phase and Group velocity

$$v_n = \frac{\omega}{k_r} = \frac{c}{\cos \theta_n}$$
$$u_r = c \cos \theta_r$$

$$eta = \cos^2 heta$$
 .
Small grazing angles $eta pprox 1$

Waveguide Invariants

MIT Laboratory for Autonomous Marine Sensing

Hierarchy of Underwater Acoustic Propagation Models

MIT Laboratory for Autonomous Marine Sensing Systems

Model Consistency Normal Modes and Rays

0

Autonomous Marine Sensing Systems

3D Propagation Around Conical Seamount

Ocean Engineering

Massachusetts

Institute of Technology

TL in the horizontal plane at depth 300 m. The source frequency is 10 Hz.

0

MIT Laboratory for Autonomous Marine Sensing Systems

AMBIENT NOISE SPECTRA Wenz Curves

Helmholtz Equation - Horizontal Source Distribution

$$\phi(\mathbf{r}, z) = \int S(\mathbf{r}') g(\mathbf{r}, \mathbf{r}'; z, z') d^2 \mathbf{r}',$$

Green's function

$$(
abla^2 + k^2) \, g({f r},{f r}';z,z') = - \delta^2({f r}-{f r}') \, \delta(z-z') \, ,$$

MIT Laboratory for Autonomous Marine Sensing Systems

Massachusetts Institute of

Technology

Nested Autonomy

Model-Based Environmental Acoustic Adaptation

MIT Laboratory for Autonomous Marine Sensing

Massachusetts Institute of Technology Deep Ocean Sensing and Communication Environmental Adaptation

Extending Sonar Range through Depth Adaptation

Full Angular Spectrum Signal and Noise Modeling

RAP Path Extension by Vertical Mobility

Model-based Environmental Adaptation

Embedded Environmental Modeling

Massachusetts Institute of Technology Acoustic Tracking with Depth Adaptation

Prosecute CONOPS

- Detection: Dive to depth with maximum predicted signal excess (SE), align broadside to surveillance bearing, level, fire sonar, drift and adapt to target cue for next ping.
- Tracking: After detection, maintain depth and track source in bearing and range until it moves out towards ½ CZ, then change depth dynamically to depth with max SE for forecast of source track.

MIT Laboratory for Autonomous Marine Sensing Systems

Hold-at-Risk Autonomy Robust Model-based Adaptation

- Depth-filtering of utility function
- Avoid non-symmetric caustics Must stay on 'good side'
- Filtering consistent with statistics of environmental acoustics

MIT Laboratory for Autonomous Marine Sensing Systems

Nested Autonomy

Field Deployment Examples

MIT Laboratory for Autonomous Marine Sensing

0

Generic/L

tora Interoperable Netwerk Technology

Multistatic-Active target Tracking GLINT '09 EXPERIMENT

Key algorithms

- Sonar signal processing
- Target tracking
- Behavior-based autonomy
- Integrated information theoretic & environmental acoustic framework

MIT Laboratory for Autonomous Marine Sensing Systems

Performance Evaluation

Racetrack Tracking Frror Covariance Adaptive

Massachusetts Institute of Technology

Figures from "The Sonar of Dolphins" by W. Au (Springer Verlag, 1993)

Massachusetts Institute of Technology GOATS' 98 Experiment Automated, Bistatic SAS Imaging

AUV range from TOPAS 16m, depth 5m

MIT Laboratory for state 1.500 states Autonomous Marine Sensing Systems

Super-critical Insonification

Summary

- Intelligent autonomy is crucial to the performance of distributed undersea sensing systems
 - Adaptation and collaboration may compensate for less capable sensing capabilities
 - Communication channel capacity many orders of magnitude lower than for air-and land-based systems
 - Full integration of sensing, modeling, and control required so mission can be accomplished with no or intermittent communication
 - Behavior-based autonomy key enabler for integrated sensing, modeling and control.
 - MOOS-IvP is an open-source, highly portable autonomy software supporting advanced, behavior-based, adaptive and collaborative autonomy.
 - High-fidelity acoustic simulation linked with autonomy system is a key tool for development of distributed autonomy

Waveguide Invariants

Frequency-Range TL Maxima

$$\begin{aligned} \zeta \, I(r; !) &= \frac{\underline{a}}{\underline{a}!} \, \zeta \, ! \, + \, \frac{\underline{a}}{\underline{a}r} \, \zeta \, r = \, 0 \\ \frac{\Delta \omega}{\Delta r} &= -\frac{\partial I}{\partial r} / \frac{\partial I}{\partial \omega} \, . \end{aligned}$$

Modal Sum Intensity

$$I(r, z; \omega) \propto \left(\sum_{n} B_n^2 + 2\sum_{m \neq n} B_m B_n \cos[(k_{rm} - k_{rn})r]\right)$$

Range-dependent Mode Amplitudes

$$B_{m,n} = r^{-1/2} A_{m,n}$$

Partial Derivatives

$$\frac{\partial I}{\partial r} = -\omega \sum_{m,n} B_n B_m \left(s_{pm} - s_{pn} \right) \sin(\left(k_{rm} - k_{rn} \right) r),$$

$$\frac{\partial I}{\partial \omega} = -r \sum_{m,n} B_n B_m \left(s_{gm} - s_{gn} \right) \sin(\left(k_{rm} - k_{rn} \right) r),$$

Modal Phase and Group Slowness

$$s_{pn} = 1/v_n = k_n/\omega$$

 $s_{gn} = 1/u_n = \partial k_n/\partial \omega$

0

Frequency Perturbation

 $egin{aligned} & \omega + \Delta \omega \ & \end{aligned} \ &$

$$\Delta f/\Delta r = rac{1}{2\pi}\Delta\omega/\Delta r$$

MIT Laboratory for Autonomous Marine Sensing Systems