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Talk Outline 

•  Problem description(s) 
–  Dolphin Whistles 
–  Sperm Whale tracking 

•  State space representations 
•  Single target tracking 
–  Kalman filter 
–  Extended Kalman filter; Unscented Kalman filter 
–  Particle filter 

•  Multi-target tracking 
–  Multiple Hypothesis Tracker 
–  Probability Hypothesis Density Filter 

•  Results 

Starts	  Specific	  

Ends	  more	  General	  



What do I mean by Tracking? 

•  Linking together (associating) isolated detections 
from one (acoustic) source. 
–  This may correspond to physical space, e.g. following an 

animal as it moves, but not necessarily. 



Example Applications 

•  Dolphin whistles 
–  Passive acoustic monitoring: 

•  Potential for species ID 
•  Recognition of individual (signature whistles)? 

–  Tools to understand behaviours, acoustic repertoires, etc. 

•  Tracking sperm whales 
–  Following individuals, e.g. during controlled exposure 

experiments. 
–  Population surveys 

(See	  Doug’s	  and	  Harry’s	  talk	  	  
yesterday)	  
	  

(See	  Walter,	  Herve,	  Michel,	  
Gianni	  +	  co-‐workers,	  Doug	  ……)	  
	  



Dolphin Whistle Detection 

Segment	   Envelope	   “Declick”	  
Window	  

FFT	  log(|	  |2)	  X(f)-‐local	  med	  
Freq.	  domain	  

X(f)-‐local	  med	  
Time	  domain	  

Output	  one	  spectral	  line	  
in	  a	  normalised	  spectrogram	  

Acous6c	  
Data	  



Example: “The Problem with Clicks” 



Declicking Window 
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Classical	  spectral	  window	  
Threshold	  (e.g.	  5)	  

Controls	  sharpness	  of	  	  
cut-‐off	  (e.g.	  3)	  

Example	  Weigh6ng	  func6on	  

Std.	  Dev.	  in	  the	  
	  segment	  



Original	  Time	  Series	  

Weighted	  Time	  Series,	  with	  no	  window	  

Declicking in Action 
Analysis of One Frame 

Original	  Spectrum	  

Spectrum	  of	  Weighted	  Signal	  

Peak	  due	  whistle	  



Applying the Median Filter in Frequency 



Dolphin Whistle Example 
Reflec6ons	  

(Double	  lines)	  

Crossing	  Tracks	  
Rapid	  frequency	  modula6ons	  
(causing	  breaks	  in	  tracks?)	  

Now	  Join	  the	  Dots	  

Common	  
Dolphin	  
(Delphinus	  	  
delphis)	  



Sperm Whale Tracking 
•  Localising sperm whales using towed hydrophone 

arrays. 



Processing Chain 

Filter	  

Peak	  	  
Selec6on	  Threshold	  

Correla6on	  
(or	  similar)	  

2	  Hydro.	  
Acous6c	  
Data	  

Envelope	  

Bearing	   Sample	  point	  

Detector	  

Rules	  

Pre-‐whiten	  



Example Dataset 
IFAW	  Data	  

More	  Dots	  to	  be	  Joined	  



State Space Modelling 

•  A tracker relies on an underlying model of how 
parameters change with time. 

•  The states (xn) are the things that characterise what 
we are looking at 
–  They may, or may not, be directly measureable.  

•  A state space model takes the form of 2 equations 

1n n n

n nn

x Ax Cu
y Bx Dv
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Describes	  how	  the	  states	  	  
change	  with	  6me	  

Describes	  how	  what	  we	  measure	  
(yn)	  relates	  to	  the	  states.	  

State	  Update	  

Measurement	  



A State Space Model for Dolphin 
Whistles 

•  State representation 

 
•  State transition 

•  Measurement 
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Measurement	  noise	  

Plant	  noise	  
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I	  am	  assuming	  we	  are	  measuring	  only	  frequency.	  
It	  is	  possible	  to	  es6mate	  sweep	  rate	  accurately	  and	  efficiently	  too.	  



Kalman Filter 

•  The Kalman filter allows one to estimate the state 
sequence (xn) from the sequence of measured data 
(yn). 

•  It is optimal assuming: 
1)  The processes un and vn are Gaussian (normal). 
2)  The transitions and measurements are linear, A and B are 

independent of xn and yn (they do not have to be 
constant). 

3)  The model is accurate!! 

It’s	  a	  filter	  Jim,	  	  
but	  not	  as	  we	  know	  it!	  



Kalman Update Equations 

•  The equations for the Kalman filter can be written as: 
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Update	  state	  es6mate	  

Refine	  es6mate	  

Error	  between	  actual	  measurement	  	  
and	  predicted	  measurement.	  



Example 



Effect of Model Mismatch 
Using a Kalman filter with incorrect model parameters  
does not, in general, stop it working, it just removes the  
claim of optimality. 



Limitations of Kalman Filters 

•  Kalman filters can run into problems when: 
–  State update equations are non-linear 

•  Example: Sperm whales have an effective maximum swim speed, 
there are constraints which one might wish to apply - this leads to 
non-linearity. 

–  Noise processes may be non-Gaussian 
•  Example: Dolphin whistles commonly contain frequency jumps. 

–  Both non-linear and non-Gaussian 



Variants on the Kalman Filter 

•  The extended Kalman filter (EKF) 
–  Copes with non-linearity using local linearisation 

•  The Unscented Kalman filter (UKF) 
–  Approximates probability density functions as Gaussian 

•  Particle filters 
–  Based on point approximations (Monte Carlo methods) 



Particle Filters 

•  Sequential Monte-Carlo method: 
–  Very general (non-linear, non-Gaussian problems) 
–  Can be computationally demanding 



The Real Problem 

•  Kalman filters (and its cousins) are all assume that 
there is one source – single target tracking. 

•  Not realistic in most applications. 
•  Methods that cope with more than one source are 

called Multi-Target Trackers (MTTs). 
–  Note the number of sources is typical unknown and 

changing through time, animals start and stop vocalising 
(without informing you!) 

 



Key Components of the Solution 

•  How do we cope with a time varying, unknown, 
number of targets/sources/animals? 

•  Being robust to: 
–  Missed detections 
–  False alarms  

•  How do we link a new set of observations to the 
current list of tracks? 



General Framework 

n-‐1	  n-‐2	  n-‐3	  n-‐4	   n	  

Two	  Pre-‐exis6ng	  
Tracks	  

T1	  

T2	   New	  	  
observa6ons	  

O1	  

O2	  

O3	  

Kalman	  
Predic6ons	  
for	  T1	  and	  T2	  

Time	  →	  



Hypotheses 
•  There are many ways of combining the new 

measurements to the existing tracks. 
•  Leading to a set of hypotheses: 

–  H1: O1 belongs to T1, O2 belongs to T2, O3 is a New Track. 
–  H2: O1→ T1, O3 → T3, O2 is NT. 
–  H3: O2→ T1, O1 → T2, O3 is NT 
–  H4: O2→ T1, O3 → T2, O1 is NT 
–  H5: O3→ T1, O1 → T2, O2 is NT 
–  H6: O3→ T1, O2 → T2, O1 is NT 
But we don’t stop there …… 
–  H7: O1→ T1, O2 and O3 are NT 
–  H8: O1→ T2, O2 and O3 are NT 
–  H9: O2→ T1, O1 and O3 are NT 
–  H10: O2→ T1, O1 and O3 are NT 
–  H11: O2→ T1, O1 and O3 are NT 
–  H12: O2→ T1, O1 and O3 are NT 
And finally 
–  H13: O1, O2 and O3 are all NT 

 

Note	  each	  observa6on	  is	  
only	  allowed	  to	  be	  associated	  
with	  one	  track.	  	  



Track Scoring 

•  We can allocate a cost to each track using log-
likelihoods. 

•  The Kalman filter provides an estimate of the 
variance about each estimated location and the log-
likelihood for a track is updated using: 

 
•  When we include an observation in a track, we 

increment that track’s score using the above. 
•  Scores are also allocated to starting a new track, false 

alarms and missed detections. 

( )2 2/ 2S Tm OnΔ = − σ



Range Gating 

•  Using the variances from the Kalman filter we can 
define a confidence interval (the range gate). 

•  One can then only form hypotheses which link 
observations within the gate. 

•  Greatly reduces the number of hypotheses to 
consider. 

Predicted	  track	  posi6on	  



A Single Scan MHT 
(Not really an MHT yet!) 

•  If we were to build an (overly) simplified MHT based 
on single scans then it might look like: 
–  Get a new set of observations   
–  Enumerate all of the hypotheses 
–  Find the cost of each hypothesis 
–  Pick the one with the highest score (log-likelihood) 
–  Move to the next set of observations 

•  This method is essentially what is called a global 
nearest neighbour tracker. 



MHT Principle 
•  An MHT defers decisions, it looks at hypotheses 

spanning several sets of observations. 

n-‐1	  n-‐2	  n-‐3	  n-‐4	   n	  

T1	  

T2	  

Time	  →	  

Form	  hypotheses	  
using	  this	  data	  

To	  make	  decisions	  
back	  here	  



Hypothesis Overload 

•  Hypotheses are updated recursively 
–  The set of hypotheses at time n can be generate from those 

at time n-. 
•  This still leads to a very large number of hypotheses 

which need to be managed. 
–  Using track gates helps 
–  The different strategies for organising and maintaining 

hypotheses lead to different “flavours” of MHT. 
–  Commonly a fixed number of hypotheses are brought 

forward at each step- there exist efficient algorithms for 
computing the k best solutions. 



Results: Sperm Whale Tracking (MHT) 



Comments on MHTs 

•  Probably the most widely implemented trackers. 
•  Largely heuristic, there is theoretical backing for 

elements, but none for the overall structure. 
•  Complex implementation. 
•  Selecting parameters so the tracker functions well is 

not always trivial. 



Model Order 

•  A tracker needs to cope with signals starting and 
stopping (to be of any use). 

•  A theoretical framework in which model order can 
change not well established. 
–  Commonly one uses reversible MCMC algorithms. 

•  Particle filters in which particles for different orders co-exist. 

•  One such framework uses the idea of Finite Set 
Statistics (FISST). 



Trackers Based on FISST 

•  The solution produced by FISST is generally in tractable 
and needs to be approximated. 

•  These trackers don’t explicitly solve the track association 
problem, this needs an additional final step. 

•  There are various methods for achieving this… 
–  Probability Hypothesis Density (PHD) trackers, in various 

guises: 
•  Gaussian Mixtures (GM-PHD) 
•   Sequential Monte Carlo (SMC-PHD) 
•  Cardinalised PHD (CPHD) 

–  Other methods too including the multi-Bernoulli filters 
….. It’s a zoo out there 



Gaussian Mixture PHD Algorithm 



Results: Dolphin Whistle (PHD) 



Conclusions 

•  Tracking has the potential to extend what can be 
achieved autonomously ….. it is not perfect and 
definitely not a panacea … but is under utilised. 

•  MHTs are ad hoc (to a large extend) and can take 
effort to tune to a problem …. but are still useful. 

•  PHD trackers have considerable promise, they are 
computationally reasonable (despite the large number 
of equations it takes to define the algorithm!) 





Chirp Rate Estimation: Methods 

•  There are a range of methods that can be used to 
estimate the rate of change of frequency of a 
narrowband signal in noise. 
–  Based on the curvature of the peak in the FT 
–  The cubic phase transform (CPT) 
–  Fractional Fourier Transform (FrFT) 
–  Reassignment based method 
–  Maximum likelihood 



Chirp Rate Estimation: Performance 


