

Tracking Algorithms in Marine Mammal Acoustics (Trying to untangle the spaghetti)

Paul White

Acknowledgements:

The main workers: Mark Hadley, Imtiaz Ahmed Other co-workers: Doug Gillespie, Marjolaine Caillat, Jonathan Gordon (Dolphins) 3S team: TNO, FOI, St Andrews (Sperm whales)

Talk Outline

- Problem description(s)
 - Dolphin Whistles
 - Sperm Whale tracking
- State space representations
- Single target tracking
 - Kalman filter
 - Extended Kalman filter; Unscented Kalman filter
 - Particle filter
- Multi-target tracking
 - Multiple Hypothesis Tracker
 - Probability Hypothesis Density Filter
- Results

Ends more General

What do I mean by Tracking?

0P3 UnLinety Tools - Tracking Results						
			Ship to Address	Ship From Address		
ups			40 Tum A Lum Cir Westerly, RI US	80 Micro Dr Jonestown, PA US		
Tra Number of	cking No nkas in	umber: 1Z1836814276886 shipment: 1 Package W	43 Shipped on dat	te: 05/19/2003 via GROUND		
namber of	ркдз ш	Silpinene, i rackage fi	igne 3.00 Ebs Scheduled de	are, 03/21/2003		
Date	Time	Location		Activit		
05/22/2003	9:06 am	Westerly, RI (US)		DELIVERED		
05/21/2003	8:28 am	Warwick, RI (US)		OUT FOR DELIVERY		
05/21/2003	2:52 am	Warwick, RI (US)		ARRIVAL SCAN		
05/21/2003	1:11 am	Chelmsford, MA (US)		DEPARTURE SCA		
05/20/2003	4:38 pm	Chelmsford, MA (US)		LOCATION SCA		
05/20/2003	1:14 pm	Chelmsford, MA (US)		ARRIVAL SCA		
05/20/2003	7:10 am	Saddle Brook, NJ (US)		DEPARTURE SCA		
05/20/2003	4:31 am	Saddle Brook, NJ (US)		ARRIVAL SCAN		
05/19/2003	9:02 pm	Lancaster, PA (US)		DEPARTURE SCA		
05/19/2003	4:58 pm	Lancaster, PA (US)		ORIGIN SCA		
05/19/2003	6:06 am	, (US)		BILLING INFORMATION RECEIVE		

- Linking together (associating) isolated detections from one (acoustic) source.
 - This may correspond to physical space, e.g. following an animal as it moves, but not necessarily.

Example Applications

• Dolphin whistles

(See Doug's and Harry's talk yesterday)

- Passive acoustic monitoring:
 - Potential for species ID
 - Recognition of individual (signature whistles)?
- Tools to understand behaviours, acoustic repertoires, etc.
- Tracking sperm whales

(See Walter, Herve, Michel, Gianni + co-workers, Doug)

- Following individuals, e.g. during controlled exposure experiments.
- Population surveys

Dolphin Whistle Detection

Example: "The Problem with Clicks"

Declicking Window

$$S(k) = \left| FFT\left\{ w(n) x(n) \right\} \right|^2$$

Declicking in Action Analysis of One Frame

Applying the Median Filter in Frequency

Dolphin Whistle Example

Common Dolphin (*Delphinus delphis*)

Sperm Whale Tracking

• Localising sperm whales using towed hydrophone arrays.

Processing Chain

Example Dataset

State Space Modelling

- A tracker relies on an underlying model of how parameters change with time.
- The states (\underline{x}_n) are the things that characterise what we are looking at
 - They may, or may not, be directly measureable.

Sta

• A state space model takes the form of 2 equations

State Update
$$\underline{x}_n = A \underline{x}_{n-1} + C \underline{u}_n$$

Measurement $\underline{y}_n = B \underline{x}_n + D \underline{y}_n$
Describes how the states
change with time
Describes how what we measure
(\underline{y}_n) relates to the states.

A State Space Model for Dolphin Whistles

It is possible to estimate sweep rate accurately and efficiently too.

It's a filter Jim, but not as we know it!

- The Kalman filter allows one to estimate the state sequence (\underline{x}_n) from the sequence of measured data (\underline{y}_n) .
- It is optimal assuming:
 - 1) The processes \underline{u}_n and \underline{v}_n are Gaussian (normal).
 - 2) The transitions and measurements are linear, *A* and *B* are independent of \underline{x}_n and \underline{y}_n (they do not have to be constant).
 - 3) The model is accurate!!

Kalman Update Equations

• The equations for the Kalman filter can be written as:

Example

Effect of Model Mismatch

Using a Kalman filter with incorrect model parameters does not, in general, stop it working, it just removes the claim of optimality.

Limitations of Kalman Filters

- Kalman filters can run into problems when:
 - State update equations are non-linear
 - Example: Sperm whales have an effective maximum swim speed, there are constraints which one might wish to apply this leads to non-linearity.
 - Noise processes may be non-Gaussian
 - Example: Dolphin whistles commonly contain frequency jumps.
 - Both non-linear and non-Gaussian

Variants on the Kalman Filter

- The extended Kalman filter (EKF)
 - Copes with non-linearity using local linearisation
- The Unscented Kalman filter (UKF)
 Approximates probability density functions as Gaussian
- Particle filters
 - Based on point approximations (Monte Carlo methods)

Particle Filters

- Sequential Monte-Carlo method:
 - Very general (non-linear, non-Gaussian problems)
 - Can be computationally demanding

The Real Problem

- Kalman filters (and its cousins) are all assume that there is one source single target tracking.
- Not realistic in most applications.
- Methods that cope with more than one source are called Multi-Target Trackers (MTTs).
 - Note the number of sources is typical unknown and changing through time, animals start and stop vocalising (without informing you!)

Key Components of the Solution

- How do we cope with a time varying, unknown, number of targets/sources/animals?
- Being robust to:
 - Missed detections
 - False alarms
- How do we link a new set of observations to the current list of tracks?

General Framework

Hypotheses

- There are many ways of combining the new measurements to the existing tracks.
- Leading to a set of hypotheses:
 - H_1 : O1 belongs to T1, O2 belongs to T2, O3 is a New Track.
 - $H_2: O1 \rightarrow T1, O3 \rightarrow T3, O2$ is NT.
 - H₃: O2 \rightarrow T1, O1 \rightarrow T2, O3 is NT
 - $H_4: O2 \rightarrow T1, O3 \rightarrow T2, O1 \text{ is } NT$
 - $H_5: O3 \rightarrow T1, O1 \rightarrow T2, O2 \text{ is } NT$
 - H₆: O3 \rightarrow T1, O2 \rightarrow T2, O1 is NT

But we don't stop there

- $H_7: O1 \rightarrow T1, O2 \text{ and } O3 \text{ are } NT$
- $H_8: O1 \rightarrow T2, O2 \text{ and } O3 \text{ are } NT$
- $H_9: O2 \rightarrow T1$, O1 and O3 are NT
- H_{10} : O2 \rightarrow T1, O1 and O3 are NT
- H_{11} : O2 \rightarrow T1, O1 and O3 are NT
- H_{12} : O2 \rightarrow T1, O1 and O3 are NT And finally
- H_{13} : O1, O2 and O3 are all NT

Note each observation is only allowed to be associated with one track.

Track Scoring

- We can allocate a cost to each track using loglikelihoods.
- The Kalman filter provides an estimate of the variance about each estimated location and the log-likelihood for a track is updated using:

$$\Delta S = \left(Tm - On\right)^2 / 2\sigma^2$$

- When we include an observation in a track, we increment that track's score using the above.
- Scores are also allocated to starting a new track, false alarms and missed detections.

Range Gating

- Using the variances from the Kalman filter we can define a confidence interval (the range gate).
- One can then only form hypotheses which link observations within the gate.
- Greatly reduces the number of hypotheses to consider.

A Single Scan MHT (Not really an MHT yet!)

- If we were to build an (overly) simplified MHT based on single scans then it might look like:
 - Get a new set of observations
 - Enumerate all of the hypotheses
 - Find the cost of each hypothesis
 - Pick the one with the highest score (log-likelihood)
 - Move to the next set of observations
- This method is essentially what is called a global nearest neighbour tracker.

MHT Principle

• An MHT defers decisions, it looks at hypotheses spanning several sets of observations.

Hypothesis Overload

- Hypotheses are updated recursively
 - The set of hypotheses at time *n* can be generate from those at time *n*-.
- This still leads to a very large number of hypotheses which need to be managed.
 - Using track gates helps
 - The different strategies for organising and maintaining hypotheses lead to different "flavours" of MHT.
 - Commonly a fixed number of hypotheses are brought forward at each step- there exist efficient algorithms for computing the *k* best solutions.

Results: Sperm Whale Tracking (MHT)

Time : s

Comments on MHTs

- Probably the most widely implemented trackers.
- Largely heuristic, there is theoretical backing for elements, but none for the overall structure.
- Complex implementation.
- Selecting parameters so the tracker functions well is not always trivial.

Model Order

- A tracker needs to cope with signals starting and stopping (to be of any use).
- A theoretical framework in which model order can change not well established.
 - Commonly one uses reversible MCMC algorithms.
 - Particle filters in which particles for different orders co-exist.
- One such framework uses the idea of Finite Set Statistics (FISST).

Trackers Based on FISST

- The solution produced by FISST is generally in tractable and needs to be approximated.
- These trackers don't explicitly solve the track association problem, this needs an additional final step.
- There are various methods for achieving this...
 - Probability Hypothesis Density (PHD) trackers, in various guises:
 - Gaussian Mixtures (GM-PHD)
 - Sequential Monte Carlo (SMC-PHD)
 - Cardinalised PHD (CPHD)

Other methods too including the multi-Bernoulli filters
..... It's a zoo out there

Gaussian Mixture PHD Algorithm

Algorithm 5.1: GM-PHD Filter

$\left[\left\{ w_{k k}^{(i)}, m_{k k}^{(i)}, P_{k k}^{(i)} \right\}_{i=1}^{J_k} \right] = \texttt{GM-PHD} \left[\left\{ w_{k-1}^{(i)}, m_{k-1}^{(i)}, P_{k-1}^{(i)} \right\}_{i=1}^{J_{k-1}}, Z_k \right]$		
Prediction Stage: Prediction for Newborn Target:		
Set $i=0$ Predict weights, means and the associated covariances of Gaussian mixture density according to	the	
for $j = 1, \dots, j_{\gamma,k}$ i := i + 1	(5.31)	
$w_{k k =1}^{(l)} = w_{k k}^{(j)}$	(5.32)	
$m_{(i)}^{(i)} = m_{(j)}^{(j)}$	(5.33)	
$P^{(i)} = P^{(j)}$	(5.34)	
$r_{k k-1} = r_{\gamma,k}$ end	(5.54)	
Prediction for Spawning target:		
for $j = 1, \dots, j_{\beta,k}$		
i = i + 1	(5.35)	
$w_{k k-1}^{(l)} = w_{k-1}^{(l)} w_{\beta,k}^{(j)}$	(5.36)	
$m_{k k-1}^{(l)} = d_{\beta k-1}^{(j)} + F_{\beta k-1}^{(j)} m_{k-1}^{(l)}$	(5.37)	
$P^{(l)} = O^{(j)} + F^{(j)} P^{(l)} \left(F^{(j)}\right)^T$	(5.38)	
$k k-1 = \langle \beta, k-1 \rangle + \langle \beta, k-1 \rangle + \langle \beta, k-1 \rangle$ end	(0.00)	
end		
Prediction for Persistent Target:		
for $j = 1,, j_{k-1}$ i := i + 1	(5.39)	
$w_{\mu\nu}^{(i)} = p_{S,k} w_{\nu}^{(j)}$	(5.40)	
$m_{(i)}^{(i)} = F_{i} \cdot m_{(j)}^{(j)}$	(5.41)	
$P^{(i)} = O_{i} + F_{i} + P^{(j)}(F_{i-1})^{T}$	(5.42)	
$r_{k k-1} = \forall k-1 + r_{k-1}r_{k-1} \forall k-1$	(3.12)	
$J_{k k-1} = i$	(5.43)	
Update Stage:		
for $j = 1,, J_{k k-1}$		
$\eta_{k k-1}^{(j)} = H_k m_{k k-1}^{(j)}$	(5.44)	
$S_{k k}^{(j)} = R_k + H_k P_{k k-1}^{(j)} (H_k)^T$	(5.45)	
$K_{k k}^{(j)} = P_{k k-1}^{(j)} (H_k)^T \left[S_{k k}^{(j)} \right]^{-1}$	(5.46)	
$P_{\mu\nu}^{(j)} = \begin{bmatrix} \mathbb{I} - K_{\mu\nu}^{(j)} + \mathbb{I} \\ \mathbb{I} - K_{\mu\nu}^{(j)} + \mathbb{I} \end{bmatrix} P_{\mu\nu}^{(j)}$	(5.47)	
K K [K K ^] K K -1		
end Update GM components:		
for $j = 1, \dots, J_{k k-1}$		
$w_k^{(j)} = (1 - p_{D,k}) w_{k k-1}^{(j)}$	(5.48)	
$m_k^{(j)} = m_{k k-1}^{(j)}$	(5.49)	
$P_k^{(j)} = P_{k k-1}^{(j)}$	(5.50)	
end		
Set $l \coloneqq 0$ for each $z \in Z$		
$l \coloneqq l + 1$	(5.51)	
for $j = 1,, J_{k k-1}$		
$w_k^{(IJ_{k k-1}+J)} = p_{D,k} w_{k k-1}^{(J)} \mathcal{N}\left(z; \eta_{k k-1}^{(J)}, S_{k k}^{(J)}\right)$	(5.52)	
$m_k^{(lJ_{k k-1}+j)} = m_{k k-1}^{(j)} + K_{k k}^{(j)} \left(z - \eta_{k k-1}^{(j)}\right)$	(5.53)	
$m_k^{(I_{k k-1}+j)} = P_{k k}^{(j)}$	(5.54)	
end		
$w_k^{(lJ_{k k-1}+j)} \coloneqq \frac{w_k^{(lJ_{k k-1}+j)}}{\kappa_k(z) + y_{l-k k-1}^{(lJ_{k k-1}+j)}} \text{ for } j = 1, \dots, J_{k k-1}$	(5.55)	
$J_k = l J_{k k-1} + J_{k k-1}$	(5.56)	

Algorithm 5.2: Pruning for GM-PHD filter
$\left[\left\{\widetilde{w}_{k k}^{(i)}, \widetilde{m}_{k k}^{(i)}, \widetilde{P}_{k k}^{(i)}\right\}_{i=1}^{J_{max}}\right] = \Pr \left[\left\{w_{k k}^{(i)}, m_{k k}^{(i)}, P_{k k}^{(i)}\right\}_{i=1}^{J_k}, T, U, J_{max}\right]$
Given T is truncation threshold, $U = Merging$ Threshold , $J_{max} =$
Maximum allowable number of Gaussian terms
Set $l \coloneqq 0$ and fund the index i for which $w_{k k}^{(i)}$ is above the
truncation threshold T i.e.
$I = \left\{ i = 1, 2, \dots, J_k w_{k k}^{(i)} > T \right\} $ (5.58)
while $I \neq \phi$
$l \coloneqq l + 1$
Find the index $i \in I$ that maximizes $w_{k k}^{(i)}$
$j \coloneqq \arg\max_{i \in I} \max_{k k}^{(i)} \tag{5.59}$
Find the set of indices of the means of Gaussian components
that are within distance \boldsymbol{U} from the Gaussian components with highest weight
$L \coloneqq \left\{ i \in I \mid \left(m_{k k}^{(i)} - m_{k k}^{(j)} \right)^{\mathrm{T}} \left(P_{k k}^{(i)} \right)^{-1} \left(m_{k k}^{(i)} - m_{k k}^{(j)} \right) < U \right\} $ (5.60)
Calculate the weights, means and covariances according to
$\widetilde{w}_{k k}^{(l)} = \sum w_{k k}^{(l)} \tag{5.61}$
ieL
$\widetilde{m}_{k k}^{(l)} = \frac{1}{\widetilde{w}_{k k}^{(l)}} \sum_{i \in L} w_{k k}^{(i)} m_{k k}^{(i)} $ (5.62)
$(1 1 \nabla (a (a a) (a) (a) (a) (a) $

$$\widetilde{P}_{k|k}^{(l)} = \frac{1}{\widetilde{w}_{k|k}^{(l)}} \sum_{i \in L} w_{k|k}^{(i)} \left(P_{k|k}^{(i)} + \left(\widetilde{m}_{k|k}^{(l)} - m_{k|k}^{(i)} \right) \left(\widetilde{m}_{k|k}^{(l)} - m_{k|k}^{(i)} \right)^T \right)$$
(5.63)

(5.64)

Set
$$I \coloneqq I \setminus L$$

If $l > J_{max}$ then replace $\left\{ w_{k|k}^{(i)}, m_{k|k}^{(i)}, P_{k|k}^{(i)} \right\}_{i=1}^{l}$ by those of the J_{max} largest weights.

Results: Dolphin Whistle (PHD)

Conclusions

- Tracking has the potential to extend what can be achieved autonomously it is not perfect and definitely not a panacea ... but is under utilised.
- MHTs are *ad hoc* (to a large extend) and can take effort to tune to a problem but are still useful.
- PHD trackers have considerable promise, they are computationally reasonable (despite the large number of equations it takes to define the algorithm!)

Chirp Rate Estimation: Methods

- There are a range of methods that can be used to estimate the rate of change of frequency of a narrowband signal in noise.
 - Based on the curvature of the peak in the FT
 - The cubic phase transform (CPT)
 - Fractional Fourier Transform (FrFT)
 - Reassignment based method
 - Maximum likelihood

Chirp Rate Estimation: Performance

