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Talk Outline 

•  Problem description(s) 
–  Dolphin Whistles 
–  Sperm Whale tracking 

•  State space representations 
•  Single target tracking 
–  Kalman filter 
–  Extended Kalman filter; Unscented Kalman filter 
–  Particle filter 

•  Multi-target tracking 
–  Multiple Hypothesis Tracker 
–  Probability Hypothesis Density Filter 

•  Results 

Starts	
  Specific	
  

Ends	
  more	
  General	
  



What do I mean by Tracking? 

•  Linking together (associating) isolated detections 
from one (acoustic) source. 
–  This may correspond to physical space, e.g. following an 

animal as it moves, but not necessarily. 



Example Applications 

•  Dolphin whistles 
–  Passive acoustic monitoring: 

•  Potential for species ID 
•  Recognition of individual (signature whistles)? 

–  Tools to understand behaviours, acoustic repertoires, etc. 

•  Tracking sperm whales 
–  Following individuals, e.g. during controlled exposure 

experiments. 
–  Population surveys 

(See	
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Dolphin Whistle Detection 
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Example: “The Problem with Clicks” 



Declicking Window 
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Declicking in Action 
Analysis of One Frame 
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Applying the Median Filter in Frequency 



Dolphin Whistle Example 
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Sperm Whale Tracking 
•  Localising sperm whales using towed hydrophone 

arrays. 



Processing Chain 
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Example Dataset 
IFAW	
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State Space Modelling 

•  A tracker relies on an underlying model of how 
parameters change with time. 

•  The states (xn) are the things that characterise what 
we are looking at 
–  They may, or may not, be directly measureable.  

•  A state space model takes the form of 2 equations 
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A State Space Model for Dolphin 
Whistles 

•  State representation 

 
•  State transition 

•  Measurement 
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Kalman Filter 

•  The Kalman filter allows one to estimate the state 
sequence (xn) from the sequence of measured data 
(yn). 

•  It is optimal assuming: 
1)  The processes un and vn are Gaussian (normal). 
2)  The transitions and measurements are linear, A and B are 

independent of xn and yn (they do not have to be 
constant). 

3)  The model is accurate!! 

It’s	
  a	
  filter	
  Jim,	
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  it!	
  



Kalman Update Equations 

•  The equations for the Kalman filter can be written as: 
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Example 



Effect of Model Mismatch 
Using a Kalman filter with incorrect model parameters  
does not, in general, stop it working, it just removes the  
claim of optimality. 



Limitations of Kalman Filters 

•  Kalman filters can run into problems when: 
–  State update equations are non-linear 

•  Example: Sperm whales have an effective maximum swim speed, 
there are constraints which one might wish to apply - this leads to 
non-linearity. 

–  Noise processes may be non-Gaussian 
•  Example: Dolphin whistles commonly contain frequency jumps. 

–  Both non-linear and non-Gaussian 



Variants on the Kalman Filter 

•  The extended Kalman filter (EKF) 
–  Copes with non-linearity using local linearisation 

•  The Unscented Kalman filter (UKF) 
–  Approximates probability density functions as Gaussian 

•  Particle filters 
–  Based on point approximations (Monte Carlo methods) 



Particle Filters 

•  Sequential Monte-Carlo method: 
–  Very general (non-linear, non-Gaussian problems) 
–  Can be computationally demanding 



The Real Problem 

•  Kalman filters (and its cousins) are all assume that 
there is one source – single target tracking. 

•  Not realistic in most applications. 
•  Methods that cope with more than one source are 

called Multi-Target Trackers (MTTs). 
–  Note the number of sources is typical unknown and 

changing through time, animals start and stop vocalising 
(without informing you!) 

 



Key Components of the Solution 

•  How do we cope with a time varying, unknown, 
number of targets/sources/animals? 

•  Being robust to: 
–  Missed detections 
–  False alarms  

•  How do we link a new set of observations to the 
current list of tracks? 



General Framework 
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Hypotheses 
•  There are many ways of combining the new 

measurements to the existing tracks. 
•  Leading to a set of hypotheses: 

–  H1: O1 belongs to T1, O2 belongs to T2, O3 is a New Track. 
–  H2: O1→ T1, O3 → T3, O2 is NT. 
–  H3: O2→ T1, O1 → T2, O3 is NT 
–  H4: O2→ T1, O3 → T2, O1 is NT 
–  H5: O3→ T1, O1 → T2, O2 is NT 
–  H6: O3→ T1, O2 → T2, O1 is NT 
But we don’t stop there …… 
–  H7: O1→ T1, O2 and O3 are NT 
–  H8: O1→ T2, O2 and O3 are NT 
–  H9: O2→ T1, O1 and O3 are NT 
–  H10: O2→ T1, O1 and O3 are NT 
–  H11: O2→ T1, O1 and O3 are NT 
–  H12: O2→ T1, O1 and O3 are NT 
And finally 
–  H13: O1, O2 and O3 are all NT 

 

Note	
  each	
  observa6on	
  is	
  
only	
  allowed	
  to	
  be	
  associated	
  
with	
  one	
  track.	
  	
  



Track Scoring 

•  We can allocate a cost to each track using log-
likelihoods. 

•  The Kalman filter provides an estimate of the 
variance about each estimated location and the log-
likelihood for a track is updated using: 

 
•  When we include an observation in a track, we 

increment that track’s score using the above. 
•  Scores are also allocated to starting a new track, false 

alarms and missed detections. 

( )2 2/ 2S Tm OnΔ = − σ



Range Gating 

•  Using the variances from the Kalman filter we can 
define a confidence interval (the range gate). 

•  One can then only form hypotheses which link 
observations within the gate. 

•  Greatly reduces the number of hypotheses to 
consider. 

Predicted	
  track	
  posi6on	
  



A Single Scan MHT 
(Not really an MHT yet!) 

•  If we were to build an (overly) simplified MHT based 
on single scans then it might look like: 
–  Get a new set of observations   
–  Enumerate all of the hypotheses 
–  Find the cost of each hypothesis 
–  Pick the one with the highest score (log-likelihood) 
–  Move to the next set of observations 

•  This method is essentially what is called a global 
nearest neighbour tracker. 



MHT Principle 
•  An MHT defers decisions, it looks at hypotheses 

spanning several sets of observations. 
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Hypothesis Overload 

•  Hypotheses are updated recursively 
–  The set of hypotheses at time n can be generate from those 

at time n-. 
•  This still leads to a very large number of hypotheses 

which need to be managed. 
–  Using track gates helps 
–  The different strategies for organising and maintaining 

hypotheses lead to different “flavours” of MHT. 
–  Commonly a fixed number of hypotheses are brought 

forward at each step- there exist efficient algorithms for 
computing the k best solutions. 



Results: Sperm Whale Tracking (MHT) 



Comments on MHTs 

•  Probably the most widely implemented trackers. 
•  Largely heuristic, there is theoretical backing for 

elements, but none for the overall structure. 
•  Complex implementation. 
•  Selecting parameters so the tracker functions well is 

not always trivial. 



Model Order 

•  A tracker needs to cope with signals starting and 
stopping (to be of any use). 

•  A theoretical framework in which model order can 
change not well established. 
–  Commonly one uses reversible MCMC algorithms. 

•  Particle filters in which particles for different orders co-exist. 

•  One such framework uses the idea of Finite Set 
Statistics (FISST). 



Trackers Based on FISST 

•  The solution produced by FISST is generally in tractable 
and needs to be approximated. 

•  These trackers don’t explicitly solve the track association 
problem, this needs an additional final step. 

•  There are various methods for achieving this… 
–  Probability Hypothesis Density (PHD) trackers, in various 

guises: 
•  Gaussian Mixtures (GM-PHD) 
•   Sequential Monte Carlo (SMC-PHD) 
•  Cardinalised PHD (CPHD) 

–  Other methods too including the multi-Bernoulli filters 
….. It’s a zoo out there 



Gaussian Mixture PHD Algorithm 



Results: Dolphin Whistle (PHD) 



Conclusions 

•  Tracking has the potential to extend what can be 
achieved autonomously ….. it is not perfect and 
definitely not a panacea … but is under utilised. 

•  MHTs are ad hoc (to a large extend) and can take 
effort to tune to a problem …. but are still useful. 

•  PHD trackers have considerable promise, they are 
computationally reasonable (despite the large number 
of equations it takes to define the algorithm!) 





Chirp Rate Estimation: Methods 

•  There are a range of methods that can be used to 
estimate the rate of change of frequency of a 
narrowband signal in noise. 
–  Based on the curvature of the peak in the FT 
–  The cubic phase transform (CPT) 
–  Fractional Fourier Transform (FrFT) 
–  Reassignment based method 
–  Maximum likelihood 



Chirp Rate Estimation: Performance 


