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Starts Specific

Problem description(s)
— Dolphin Whistles
— Sperm Whale tracking

State space representations
Single target tracking

— Kalman filter

— Extended Kalman filter; Unscented Kalman filter
— Particle filter

Multi-target tracking

— Multiple Hypothesis Tracker
— Probability Hypothesis Density Filter

Results

Ends more General



What do I mean by Tracking?

Tracking Results

= Ship to Address Ship From Address
40 Tum A Lum Cir 50 Micro Dr
‘Westerly, RI Jonestown, PA
™ us us
Tracking Number: 121836814276886243 Shipped on date: 05/19/2003 via GROUND

Number of pkgs in shipment: | Package Weight: 3.00 LBS Scheduled delivery date: 05/21/2003

Date Time Location Activity
9:06 ‘Westerly, RI

05/22{2003 o (us) DELIVERED
8:28  Warwick, RI

05/21/2003 o (Us) OUT FOR DELIVERY
2:52  ‘Warwick, RI

05/21/2003 o (Us) ARRIVAL SCAN
1:11  Chelmsford,

05/21/2003 o 1A (US) DEPARTURE SCAN
4:38  Chelmsford,

05/20{2003 pm M (US) LOCATION SCAN
1:14  Chelmsford,

05/20{2003 pm M (US) ARRIVAL SCAN
7:10  Saddle Brook,

05/20{2003 an NI (US) DEPARTURE SCAN

osjz0je003 431 Sadde Brook, ARRIVAL SCAN

am NI (US)

9:02 Lancaster, PA

05/19/2003 pm (Us) DEPARTURE SCAMN
4:58 Lancaster, PA

05/19/2003 pm (Us) ORIGIN SCAN

05/19/2003 6;”"": ----- - (US) BILLING INFORMATION RECEIVED

* Linking together (associating) 1solated detections
from one (acoustic) source.

— This may correspond to physical space, €.g. following an
animal as 1t moves, but not necessarily.



® DOlphln Whistles (See Doug’s and Harry’s talk
. i i . yesterday)
— Passive acoustic monitoring;:

 Potential for species ID
* Recognition of individual (signature whistles)?

— Tools to understand behaviours, acoustic repertoires, etc.

. (See Walter, Herve, Michel,
¢ Trackmg SPCTIN whales Gianni + co-workers, Doug ......

— Following individuals, e.g. during controlled exposure
experiments.

— Population surveys



Dolphin Whistle Detection
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Declicking Window
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Declicking in Action
Analysis of One Frame
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Dolphin Whistle Example
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Sperm Whale Tracking

* Localising sperm whales using towed hydrophone

e

arrays. kY




Processing Chain
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* A tracker relies on an underlying model of how
parameters change with time.

* The states (x,) are the things that characterise what
we are looking at

— They may, or may not, be directly measureable.

* A state space model takes the form of 2 equations

Describes how the states

State Update )_Cn = A)_Cn_l + C%n change with time
Measurement y = Bx + Dv Describes how what we measure
— — " (v,) relates to the states.




Current whistle frequency

* State representation _ 1
/(n)

e (n)

Current whistle chirp rate

Time between segments

e State transition

f(n)=f(n=-1)+Tr(n-1) >[1 T 0
En = zn—l + u(n)
r(n)=r(n—1)+u(n) > _O 1 _1_
. M t Plant noise
casurcmmen V= [1 O])_cn N v(n)

Measurement noise

| am assuming we are measuring only frequency.
It is possible to estimate sweep rate accurately and efficiently too.



It’s a filter Jim,
but not as we know it!

e The Kalman filter allows one to estimate the state
sequence (x,) from the sequence of measured data

(2,)-
* It is optimal assuming;:
1) The processes u, and v, are Gaussian (normal).

2) The transitions and measurements are linear, 4 and B are
independent of x, and y, (they do not have to be
constant).

3) The model 1s accurate!!



Kalman Update Equations

* The equations for the Kalman filter can be written as:

Update state estimate

Refine estimate

Error between actual measurement
and predicted measurement.



Kalman Output
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Effect of Model Mismatch

Using a Kalman filter with incorrect model parameters

does not, 1n general, stop it working, it just removes the
claim of optimality.

Kalman Output
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* Kalman filters can run into problems when:

— State update equations are non-linear

* Example: Sperm whales have an effective maximum swim speed,
there are constraints which one might wish to apply - this leads to
non-linearity.

— Noise processes may be non-Gaussian

e Example: Dolphin whistles commonly contain frequency jumps.

— Both non-linear and non-Gaussian




* The extended Kalman filter (EKF)

— Copes with non-linearity using local linearisation

* The Unscented Kalman filter (UKF)

— Approximates probability density functions as Gaussian

e Particle filters

— Based on point approximations (Monte Carlo methods)



Particle Filters | "™~
| i
|

. ! Il\llulf.t{fu,..%w ;“‘m FO I:
* Sequential Monte-Carlo method: T
— Very general (non-linear, non-Gaussian problems)

— Can be computationally demanding

10— VT




Real

Kalman filters (and its cousins) are all assume that
there 1s one source — single target tracking.

Not realistic 1n most applications.

Methods that cope with more than one source are
called Multi-Target Trackers (MTTs).

— Note the number of sources 1s typical unknown and

changing through time, animals start and stop vocalising
(without informing you!)



How do we cope with a time varying, unknown,
number of targets/sources/animals?

Being robust to:
— Missed detections
— False alarms

How do we link a new set of observations to the
current list of tracks?



General Framework

Kalman
Predictions
for T1 and T2

Tracks

New
observations

n-2 n-1

Time —

n-3




* There are many ways of combining the new
measurements to the existing tracks.

. Leadmg to a set of hypotheses:

. OI belongs to T1, O2 belongs to T2, O3 is a New Track.
01— T1,03 — T3 02 1s NT.

m

4 02— T1,03 = T2,011s NT
5-03—=TI1,01 = T2,021s NT
— H;: 03— T1,02 = T2,011is NT
But we don’t stop there ......
— H,: O1—=TI1, O2 and O3 are NT
— Hg: Ol— T2, 02 and O3 are NT
— Hy: 02— T1, Ol and O3 are NT
— H,;: 02— T1, Ol and O3 are NT
— H,;: 02— TI, Ol and O3 are NT
H,,: 02— T1, Ol and O3 are NT
And finally
— H;;: O1, 02 and O3 are all NT

H,:
H;: 02— T1,01 = T2,03 1s NT
H
H

Note each observation is
only allowed to be associated
with one track.

T1C€>

®

T2

n-4 n-3 n-2 n-1 n




We can allocate a cost to each track using log-
likelihoods.

The Kalman filter provides an estimate of the
variance about each estimated location and the log-
likelihood for a track 1s updated using:

AS = (Tm -On)’ /20
When we include an observation 1n a track, we
increment that track’s score using the above.

Scores are also allocated to starting a new track, false
alarms and missed detections.



A O A A

\ Predicted track position /

* Using the variances from the Kalman filter we can
define a confidence interval (the range gate).

* One can then only form hypotheses which link
observations within the gate.

* Greatly reduces the number of hypotheses to
consider.



* If we were to build an (overly) sismplified MHT based
on single scans then 1t might look like:
— Get a new set of observations
— Enumerate all of the hypotheses
— Find the cost of each hypothesis
— Pick the one with the highest score (log-likelihood)

— Move to the next set of observations

* This method is essentially what is called a global
nearest neighbour tracker.



MHT Principle

 An MHT defers decisions, it looks at hypotheses
spanning several sets of observations.

| i . Formhypotheses 1o make decisions
T1 ’ : i using thks data | back here




* Hypotheses are updated recursively
— The set of hypotheses at time n can be generate from those
at time n-.
* This still leads to a very large number of hypotheses
which need to be managed.
— Using track gates helps
— The different strategies for organising and maintaining
hypotheses lead to different “flavours” of MHT.
— Commonly a fixed number of hypotheses are brought

forward at each step- there exist efficient algorithms for
computing the k£ best solutions.



Time-delay : samples @ 48 kHz

Results: Sperm Whale Tracking (MHT)

Time-delay : samples @ 48 kHz

Time-delay : samples @ 48 kHz

50

-50




Probably the most widely implemented trackers.

Largely heuristic, there 1s theoretical backing for
elements, but none for the overall structure.

Complex implementation.

Selecting parameters so the tracker functions well 1s
not always trivial.



* A tracker needs to cope with signals starting and
stopping (to be of any use).

e A theoretical framework in which model order can
change not well established.

— Commonly one uses reversible MCMC algorithms.
* Particle filters in which particles for different orders co-exist.

 One such framework uses the 1dea of Finite Set
Statistics (FISST).



The solution produced by FISST 1s generally in tractable
and needs to be approximated.

These trackers don’t explicitly solve the track association
problem, this needs an additional final step.

There are various methods for achieving this...

— Probability Hypothesis Density (PHD) trackers, in various
guises:
* Gaussian Mixtures (GM-PHD)

* Sequential Monte Carlo (SMC-PHD)
* Cardinalised PHD (CPHD)

— Other methods too including the multi-Bernoull: filters

..... It’s a zoo out there



Algorithm 5.1: GM-PHD Filter

Vet
© O pli) - O @ p®
[{w,(}k My P,ﬂ'k} 1] _GMfPHD[{wk' e ,P,‘il}i=1 ,Z,c]

Algorithm 5.2:
~ (i) ~(i) (l) Jmax @ ) pd
[{ Wijger Mg B klk =PRN [{ka‘ My 1 klk} T U-fmax]

Given T 1is truncatlon threshold, U=Merging Threshold , Jmax =

Pruning for GM-PHD filter

Prediction Stage:
Prediction for Newborn Target:
set i=0
Predict weights, means and the associated covariances of the
Gaussian mixture density according to
for j=1,..0pk

“E:"“ ” (63D Maximum allowable number of Gaussilan terms
wlh = wh) (532) ] i @
0, =m? (533) Set =0 and fund the index [ for which wy, 1is above the
A, =84 (534 truncation threshold T i.e.
end
A . . . (i) }
Prediction for Spawning target: = = .
for j=1.)px I [-’- 12, ]klwk|k (5.58)
for =12, k-1 while [#¢
i=i+1 (5.35)
Wit = i) (536) l=1+1
O _ 40 RO . . . .
Mides = ey + Fgioamicy . (637 Find the index [ €] that maximizes Wiglgc
Pk(fi 1= ka 1 F}'Z 1Pk(£) (F;IIZ_ ) (5.38) _ argmax_ (i)
end = ek (5:59)

end

Prediction for Persistent Target: Find the set of indices of the means of Gaussian components

for j=1,.., k-1
i=i+1 (5.39)

that are within distance U from the Gaussian components with

w@_y = posw®s (5.40) highest weight .
) 9, -
s = Fecam? (541 L= { (m (;)) (B2) " (m, - m2)
=3 el (my, —m P, My, —m <U 5.60
Plflk- = Qk-1+ Fi— 1Pk 1(Fk D7 (5.42) | klk Kk el klk klk ( )
end
Jue-r =1 G4 Calculate the weights, means and covariances according to
Update St.age ~(I) (0
Construction of PHD updates components using KF Wklk = Wk|k (561)
for j=1,. Ik|k -1
’7k|k 1 _Hkml((JBc 1 (5.44) .iEL1
SO = Ry + He P9 (H )T (5.45) ~ (D) @ (0
kI’(t}) 3 . B (fﬁ -1 Mg = (1) Wik M (562)
Km Py HOT [Sklk (546) Wik 21
P =[1- k| PR, (5.47)
end "'(!) (0 (i) (I)
Update GM components: k|k ([) Z k|k( |k ( k|k mklk k|k mk|k (5 63)
for j= 1 oo k-1 k"‘ IEL
Wk =(1- pnk)ka -1 (5:48)
md =md, | (5.49)
Y = p® (5.50)
ona k=t Set [=I\L (5.64)
set =0 . ey end while
or each z€Z
1
l=1+1 (5.51) W (@) pld)
for F= 1 i If > Jmax then replace {Wklk‘ k|k'Pk|k} by those of the [nax
w7 = posanf s N (e ) 552 largest weights.
k=t _ )y ) (z -9 ) (5.53)
k klk-1 1 Bk k-1
m’(‘llklk—i"’]) - Pk({;z (5.54)
end
o Ukik-1 )

Ure-1+1) i=
Wi xk(z)+2]""‘" Tren 0] = Lo Jie-1 - (5.55)

end
Jie = Ukre=1 + Jejk-1 (5.56)



Results: Dolphin Whistle (PHD)

O Measurement
+ GM-PHD filter estimate

Frequency(kHz)

600

Time Step



* Tracking has the potential to extend what can be
achieved autonomously ..... it 1s not perfect and
definitely not a panacea ... but 1s under utilised.

 MHTs are ad hoc (to a large extend) and can take
effort to tune to a problem .... but are still useful.

* PHD trackers have considerable promise, they are
computationally reasonable (despite the large number
of equations 1t takes to define the algorithm!)






* There are a range of methods that can be used to
estimate the rate of change of frequency of a
narrowband signal 1n noise.

— Based on the curvature of the peak in the FT
— The cubic phase transform (CPT)

— Fractional Fourier Transform (FrFT)

— Reassignment based method

— Maximum likelihood



Curvature Method
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—FrFT
— ML
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