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Introduction

* You need to Know!
* Fourier

« Laplace

« State Space

o Z-Transform

« SVD

e Conclusions
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Sadly a Very Maths Based
Subject!

« But Computers Do the Maths e.qg.
MATLAB, C++ etc

* Need to know conceptually what can be
done

* Need to be able to write the problem In
the appropriate mathematical format
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What is Signal Processing?

* Used to model signals and systems where
there is correlation between past and current
iInputs/outputs (in space or time)

* Two broad categories: Continuous and
Sampled processes

* A host of techniques Fourier, Laplace, State
space, Z-Transform, SVD, wavelets......

» Fast, accurate, robust and easy to implement
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Why? What can Signal
Processing Do for you?

Speed up computation e.g. Acoustic integrals by many
orders of magnitude
*Design, Understand , simulate SISO systems e.q.
Analogue Filters
*Design, Understand, simulate MIMO systems e.qg.
Hydrophones, Microphones, Arianne 5 Rockets etc.

*Design, Understand, simulate Digital filters
Design Optimal Filters e.g. Matched Filters

Parametric and non parametric System/Spectral

identification/analysis
*Design Classification Algorithms
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The Fourier Transform
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The Impulse Response h(i)

(0 h(t)

*Signals and systems are
interchangeable
*A system with an impulse
response h(s) is equivalent to a
signal h(s).



The Convolution Integral

« Given a signal s(f) and a system with an
iImpulse response A(f) then y(t)is given by

Acoustic Pulse igh pass filter (SAUND) Pulse

s(t) Bipolar \hh(t) Impulse response y(t) Electrical

The nasty impulse response is caused by a rapidly varying phase
response: Different frequencies pass through the filter at different speeds
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Acoustic Integrals in Water
and Ice

Prof. Sean Danaher
University of Northumbiria,
Newcastle UK
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A Few examples

’E /\/\/\/\/ > RC circuit

* | I H“ V U V ! R Mixed signal




Convolution Theorem

Convolution in the time domain is
Multiplication in the frequency domain
(and visa versa)

« Conceptually very useful

« Convolution very expensive computationally
(0=r7)
— Convert the signal and impulse response to the
frequency domain (Fourier Transform)

— Provided the number of points n=2"very efficient
FFTs o=nlog n

— Multiply and take Inverse Transform

At?umbria Sean Danaher
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Convolution Theorem Example
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Calculation of output

« Given a signal s(f) and a system with an imopulse
response h({) then|y(t) is given by y(t f s(t)h(t -7)dr

s(t) Bipolar h(t) Impulse response y(t) Electrical
Acoustic Pulse of Hydrophone Pulse

Alternatively take the Fourier transform of the signal (both amplitude and
phase information)

Multiply the amplitude information by the frequency response of the
Hydrophone

Adjust the phase delays
Take inverse Fourier transform
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The Frequency Response

 If A(S) is known, the frequency response can
be determined simply by putting in s=/ w
 Alternatively a Fourier Transform can be used
directly on the signal h({)

The frequency response is complex: it contains phase

information.

“The importance of the Phase response can not be
overstated!” — Paraphrased from SAUND paper (June

2004)

Y =

adu

dt

>h(s)=s y=fudteh(s)=S

1




Order Not important

For linear systems /processes
order irrelevant to result but often
not to Computational speed!
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DFT Example and FFT

Sample n points. Eight for
this example but 1024 more

J'L'. 27
—0—0-—0—
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typical
Multiply by DFT Matrix
Cooley and Tukey
introduced the first FFT
9 algorithm in 1965
2x 1| Uses redundancy in the
0 multiplies using the
3 “Butterfly”
\ Get O (n log n)
0 Rather than O(n?)
ZX'Y Latest algorithm FFTW —
fastest Fourier transform
0 in the West
2x N\




Autocorrelation

When © =0 proportional to the total
% energy in the signal

R _(t) =foo x(H)x(t +T)d~

Looks very like convolution. Indeed identical apart from the
sign.
Use a filter whose impulse response is a time reversed copy of
the original signal
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Wiener Khinchin Theorem

The Autocorrelation function and PSD are

->sin(x)/x autocorrelation

Fourier transform pairs chirp ->Top Hat in Frequency
domain

Resolution depends on
MNV\II \I\N\M frequency sweep not pulse
duration

For best resolution we need a signal with an autocorrelation of §(t)

3000

*d(t) obviously
*Also White noise
Signal Signal+Noise Matched Filter Output
2 , 5 | — S 10 | ,
—=-10dB
1 |
8 |
2 |
E)_O — 0] \'
0 |
<4\
_2 : . _5 w . _5 s .
0 1000 2000 3000 0 1000 2000 3000 O 1000 2000
mple n sample [n] sample [n]
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Matched Filter

The inverse of an all pole
filter is guaranteed to be
stable as it is an all zero
filter (does not use
feedback) This is a pre-
whitening filter

 Provided the Noise is
white a matched filter
has an impulse response
which is that of the time
reversed signal.

 If the noise is not white
run both the signal and
noise through a pre-
whitening filter

« Design a filter who's
impulse response is the
time reversed filtered
signal

y 4 \ .
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Matched Filters

M(s)

Accuracy « )
T

Need a very high
peak power or Signal
Processing

The frequency response maltches that of the signal
The phase response is adjusted to slow the transit
of the frequencies which arrive first so the signal

“bunches up”
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The Hilbert Transform

15

Converts Sine to Cosine | | | [ origia
«Useful for Envelope detection ';:33(‘);?”5“””‘
*Use a FFT to convert to frequency fl
domain
Multiply by j (i) 05
IFFT
0
-0.50
Al
-1.5 L I I I I
0 500 1000 1500 2000 2500 3000
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Laplace




The Complex Signal

The signal es' can be generalised to s=o+iw
his includes decaying and growing exponential
efc.

Kraniauskas 1992



Continuous Systems

d d"u d’u du
+al?{+aoy=bmdt—m+."+b2W+b1E+bou

m 2
_b,S" +..+b,8" +bS+b,
as"+..+as’+as+a,

If we can represent the
system in terms of a
differential equation

v",
Ve
&

Uil

then we can write h(s)
straight down
Graphically we

represent this by a
complex surface on the
s-plane
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Some simple Transfer Functions

Step Response

Step Response

u = Y RCd—y +y=u h(s)= 1 K
T ot RCs +1 206
d’y dy 1

— LC— + RC— +yv=U h S) =
T dt’ at () LCs* +RCs+1
f=rv z0:8
Fekx d?y dy 1 o
— = h(s) = 05
L e [ dt? tr qdt Figy=0 ), ms’ +rs+k| o

1 2Timeg(secf1 5 6




Poles and Zeros

_b,s"+...+bs’+bs+b,  Like all polynomials the transfer
as"+..+a,s’+as+a, function can be factorised
(s-2 )s-2, )...(S-2) Zeros are roots of the Numerator

5o D YNS=p. )(S—p,) Poles are Roots of the Denominator

h(s)

(5-2,)(S-2,,)e(S—2)— N L,

(s-p,)(s-p,) (s-p) 1
h(s) = s—-1 _ s—-1 1
s?+s+1 (s=(-0.5+0.866i))(s - (-0.5-0.866i)) l S
3
/ Ih(s)|=ll1 ,Ah(s)=01—<92—93>/
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Filter Design

Design Low pass Filter with cut off frequency of w=1. Transform to

type:
S
Frequency Scaling: S— =
0
Low pass to high pass: s — % \ /_

Low pass to band passs— 5 (; ) 1 \ — A\
Low pass to band stop s — iwzs ( ; ) +1 \ _>T
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Ty A perfect h(s) 1
Y+ Y filter? T o8
ot - S +1
Frequency
response
determine
d by
running
along the
iw axis
Pole-Zero Map Impulse Response
177 4 Perfect Phase
,:_:Zj;‘, : : 'g;z Response
¥ 5" But unstable
oyt y due to poles
by 2| on LHS of S-
/-1\-1 -0.60.60.40.20 0.20.40.60.1 0p 1 Plane
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Stability Comes at a Cost

1+s®
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[

X

2479 R34, +3¥I¥38;-5@I3J2+]

[

System now
stable but a
rapidly varying
phase response
BUTTERWORTH



Butterworth Filter
1930s

| H(w) ]~ ——

J1+ @™

Stable
Good Frequency

Response
Buterworth Impulse Response
1.2 . :
— 15t order
1t —2" order |1
— 4™ order
3 —8"order |
= 06 — 16" order |
Note Impulse response g 32" order
-Output Delay 2 %Y
*Oscillation 0.2
0 AN e — —— 4
Y
-0.2

0 10 20 30 40 50
Time(s)
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Implementation

- Passive Filters

T 1st Order Familiar
RC
— MV Y Y
;l; 2"d Order LRC

? 39 Order
T th 09

At acoustic frequencies

easiest to use op-amps.

Expensive to make high
precision lossless inductors

1

~ §2+0.7654s+1 S2 +1.8478s+1

s*+2.61318°+3.4142s%°+2.6131s+1
1 1

X X

/i

4th Order
— Butterworth
active with 2
second order

sections



The importance of linear Phase

Will a bipolar acoustic pulse give a bipolar

electrical pulse?
Importance of Linear Phase Provided the phase
1 L L L : response of the
ﬂ — Original Pulse hydrophone/amplifier/
081 —LinearPhase |1 fijter system is linear
06 —Cubic Phase | ~over the region of
T interest then the pulse
__04L | is simply delayed. If
§ the phase response is
E 0.2} /\ /\ /\ 4 non linear then
= distortion will occur.
2 o [\ I /\vf\vf\vf\unvf\vavﬂvﬂvAvAvA e _
9 V v v v A linear phase
% -0.2f 4 response gives a
E oul Both systems co_ns.tant group delay
' . this is analogous to
have unity locity i
06l ) Il | group velocity in
?am over_ a continuous systems
requencies
0.8} _
I dé dw
-1 [ [ [ [ —

0 0.2 0.4 0.6 0.8 1

. Time (ms) d d k
@ﬂ?ﬂa Sean Danaher a)



Recovering Phase information

e.g. RonaData It is trivial to design digital
filters which have a constant

e SN group delay d¢/da) and hence
~ causal no phase distortion
0.1} ~_non causal
>
g
S 0.05
<
:% If however we know the
005! filter response e.g.
. Butterworth we can run
the data through the filter
0.1, 0.2 0.4 0.6 0.8 1 1.2 backwards.

3

time (s) x 10

Mﬂgﬁa Sean Danaher



transmit more difficult

Fairly flat response when in
receive mode, but in transmit the
amplitude typically depend on
hydrophone acceleration:
Velocity drives acoustic
production

Impedance matching between
hydrophone and water typically
gives another derivative term

Mgﬂ?ﬂa Sean Danaher



State Space Analysis
MIMO systems
Mode 1 Mmixed Mechanical/electrical models etc

Matrix Based Method

X1

Mode 14 %L= AX+BU E is
Y=CX+DU

n
>

+B

All modern control
algorithms use SS Y, .
Mode 100 methods. zz f
)l = ¢ |™|+D
Pictured 20000 state v %

simulation of a square membrane:
(100x100 masses 2 states x and v)
A Matrix 400x10° elements
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SS Implementation

States Inputs  States are degrees of
freedom of the system.
Things that store

energy
= s «Capacitor Voltages
sInductor currents
*Positions and
NE Velocities of masses

States

Outputs
P C < | dVv
c |f X=VC=>IC=CE=C&

A is of size States x States di
: : . i
B is of size States x Inputs it x=I, =V, = L™ LX
C is of size Outputs x States

if x = position = %= velocity
D is of size Outputs x Inputs

if x = velocity = %= acceleration
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Simple Example LC

dVv al
| = ¢V =(-)L-+
- V = | =l 0 C 10
T~ L= e L /8 A= C=( )
X1=Vc C)8f=X2 Yi=X _1 0 0 1
L

3<
Il

L L)8§=_X1 Yo =%
Maths simple to
implement

Response to Initial Conditions

§ Example shows
g9 | the behaviour
° with an initial 1V

§ * on the Capacitor
g (1F) and 1A
1\ ] flowing through
l | the inductor (1H)
O-O.ﬁ 7
-1
-1.5

~0 5 10 15 20 25 30 35 40

Time (sec)
northumbria Sean Danaher
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Imp

1=

F=x/S 1
RC
a| K
F=ma m
0
F=rv 1
c=| R
0
\/in -Ve
R
_>
J AVAVAY,

[ Bl

39 order simulation.
Do we need higher?

At-l}lmbria
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Vo

yd rophone Model

S a3

/Amplitude (Arbitrary)
h o »

~
(=]

S~

&

35 40 45
Time (eq. cm)

30

50

) = =X Heart of Hydrophone .
Omni works
Piezo electric crystal o
a0 Piezo electric effect  breathi
1 0 T T T T T T T
ol s %>
0 por- i
0 /
1 20} |||II' \ Inbut 40
y I »
D- E 0 gwf Beam X Bounce II| | \ 7
0 0 % | ]
L S e e NP RN J i «—
AV O iem
10 Beam _i
ol \ ﬁ I = I Oe A
26 28 30 32 1§|4me o as:) 38 40 42 44 A: 0. 0 9|
Simulated Hydrophone signal o=be- 3

Gaussian

cross-sectiq/\




5t Order Good enough for current hydrophones

A laboratory Tank

Step input Hydrophone step response
6 ; ; ; Underwater acoustic testing 1.5,
5- e Step input Il_vdroplfone Acoustic Ilydrophone 1L
» Transmitter - — Receiver
4L (Tx) o (Rx) 05
’>\ - _ . .
o 3L Hydrophone S
3 MATLAB Software response o Of
'é_ 21 Computer | Simulated Minimis!ng § 0
: 0g se s 0.5,
< 4L > \lllo(d;I PO ] the difference g-
“leim™ “fminsearch™ < 1
0 Isim i r -
B [ *II (s) (hydrophone) Hydro
Desired hone -1.54
-1 : : : ol B ..r- | Phone
0.2 0 0.2 0.4 bipolar ™| X@=Y (@/H@w| IFFT e
Time (ms) signal ol . . .
-0. 0 0.2 0.4
P "
H(s) 0.7153s°-0.10635+0.003833 Time (ms)
.S.'| : { L - yi -
0012257+ 0.043275% + 0.9415% + 1.7545" + 16,655+ 8.978 Bipolar acoustic pulse 10kHz
Hydrophone driving pulse for bipolar 10 kHz 1.5 . _ _
2 : -
or g Fitted response
0 1 ~— -Actualresponse |
> S
()
5. S o -8
8 5
Ke) >
q L = -1 4
5L
-2 E r r
0 5 10 15 . _
2 ' 1.2

0 1 2 3 4 5 6 Time (us) 08 09 1

11 .
. Time (ms) time (ms) 39 39
northumbria Sean Danaher
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How Many Hydrophones needed for linear array?

/

o

Simulation of 8 hydrophone array
X

@gﬂ?ﬂa Sean Danaher



Laboratory at Northumbria University

< 150 .
25 50 | 25
Qg skd=:

+10000 o8

60l | 55 - j .—_t__;::10
Water 5 for each hydrophone cez==Y

level
*All dimensions in centimeter

Mmbria Sean Danaher
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8 Channels hydrophone Tx

Ch1 Chb
Ch2 Ché
Bipolar pulse
output from
Ch3 Channel 1 ch7
Ch4 Ch8
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Deployment at ANTARES (France)

8 channel transmitter module
Deployment at ANTARES
17 September 2011

8 H1
Tm

B H2
Tm

8H3

H4

B H5
1m

3
Tm He

S H7

BHg
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Digital Filters




The Digital Filter

The digital filter is simple! Based
upon sampled sequences

a,ylnl+ayln-1]+a,y[n-2]+....=bu[n] + buln -1] + b,u[n -2] +....

Negative coefficients =>Causal

Simple moving 1 0: 5 Perfect Integratorg 13
avTrage Filter 6 >‘ 4 Nul=Nw-11+x] g 93
yIn] = 5(x[n] +x[n-1]) .5 Called iR 7 30
2 32
Crude low-pass 8 >"8 5 or 4 36
Called FIRor 5 i»ﬁ.s AR 9 45
MA 0 2.5 9 54

8 5 4
4 ~~ 6 4 58
9 67

\
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The Z Transform and
Sampled Signals

N =co

X(z) = E x[n]z™"

N=—0c0

if x=13,4= X(z)=1+3z"+4z"

. _ 2 =n=oo -1\" _
if x =1,a,a°,...= X(2) ;(az )

u(t)=e" = ult]=e

1Qnt
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A few z transforms

0=mn/10,1 =1
3, i
1 2| | h(z)= 1
/\ {,,T”mhr ,r”mhr @ 72 —2c0s( F\ 2" +1
0 \/3 ! 11“““1 , 10
-2 ]
-1 3 | | ‘ | | y[n] = x[n]+2cos( ) yln-1]-y[n-2]
0 5 10 15 20 25 30
-1 0 1
0=mn/14,1 = 1'05 : Poles must be inside the
1 /\ 5 IIIII | |III 1| unit circle for stability
0
*
0 \J* 0 |
-10 :
-1 1% 5 10 15 20 25 30
0=m /51 _ O 95 , 20 Frequency Response

; £ 13 azlﬂllll T”T'qp‘m"xuv 0
r \J 1| l Iy %

1% 5 10 15 20 25 30

0 F 0.2 fl%4 , 0;‘6 0.8 1
Ur:?smgmeria Sean Danaher raction of Nyquist frequency




Simple Transfer Function

h(z) = z-0.5
z+0.5
y[n] = x[n]-0.5x[n-1] 29
-0.5y[n-1 <7
£
Frequency 1|
response 0.5
simply \ \ \ ‘
determined by THequenty (nygist=t]* !
running around |
the unit circle §,
w Corresponds &
to the Nyquist I,
.\ Frequency ol

—_1 ‘ ‘ . ‘
| H(Z) |_ 1 5 % 0.2 frequgh4cy (Nngigt=1) 08 !
LH(z)=1,0,- 46,

/ﬂﬁhumbﬂ& SearDanatier—
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Notch Filter

(z-e5)z-e"5)

h(z) = - -

(z-0.95¢5)(z-0.95¢ 5)
y[n]=x[n]-1.6180x[n-1]+x[n-2]
+1.5371y[n-1]-0.9025y[n-2]

At_h\umbria Sean Danaher
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B

F_=1000Hz

[

§0.8 /
= 0.6/ 0 .
N
“ 1
0.2
1 0 1
00 100 200 300 400 500
Signal buried in 100Hz frequency
1.5 \ Recovered signal
1] | |
oL
i
-0.5 l[’ ” ” H
-1/
-1.
0 005 0.1. 015 02 0.25
Time



Spectral Analysis

First 500 of 2048 data points

,Amplitude
o

100 200 300 400 500
Sample number

Amplitude(Relative)

0.04

i
0.02 |

—ac ||
— [pc

I “ L \“ ““\
Mo HH ol “|w A ‘

‘\r|‘

0
0
At-l}lmbria
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0.2 0.4 0.6 0.8 1
Sean Dana ngquency (relative)

Using the Fourier Transform is seldom the
best way to get a spectrum. Normally
methods based around

» Autocorrelation (AC)

Linear Prediction are used

Autocorrelation

;
AC method :05
Use FT of AC ¢
TogetPSD E°
0350 100 50 o 50 100 150
Lo
Linear Prediction

a,y[n]l+ayln-1]+a,y[n-2]....=e[n]
All pole filter driven by white
noise. Need to choose the
order with care. But can now
reproduce the spectrum



Compression and feature extraction

FFT does not compress
Often need to extract features in a few parameters

DSP people use FIR and IIR filters and system identification
Statisticians use MA, AR, ARMA, ARMAX models

Human speech compression possibly the most advanced form of
signal processing

Historically these models are called vocoders

Very possibly these techniques can be applied to marine mammals
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Human Speech

Vocal tract acts like a resonator. There are typically a
number of resonances called formants
We solve the equation

yinl=ay|n-1]+a,y[n-2]+a,y[n-3]+...a,y[n—-k]+e[n]

This is an lIR filter, an ARX process or a linear predictor
LPC10 has 10 coefficients (k=10)
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Hearing LPC in action

pi*tch voiced/unvoiced 8 blt 8kHZ
switch . .
LT ~— *Split speech into
O—O—» . ocal tract. thesized frame 240 samples
64k gamn F ' filler | syglpegz;lze P
" long
% -Use LPC10 to
b .
933 b | estimate spectrum
*Reconstruct
933 & spectrum of frame 48 > Impulse Response
H
h ; 5!
_ 5 1
% 4 So5
1.2k 2 0
| 0.5
® 1000 2000 3000 4000 19 10 20 30 40
2.4k Frequency (Hz) Sample [n]

7

& .
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Singular Value Decomposition

) (Y (§)

We can get an approximation of
the original data by setting the L
values to zero below a certain
threshold

Similar techniques are used in
statistics CVA, PCA and Factor
Analysis
Based on Eigenvector Techniques
Good SVD algorithms exist in ROOT and MATLAB

@ﬂ?ﬂa Sean Danaher

Decompose the Data
matrix into 3
matrices.
When multiplied we
get back the original
data.

W and V are unitary.
L contains the
conftribution from
each of the
eigenvectors in
descending order
along main diagonal.



Somewhere between vector five
and seven we get the “Best”

SV D I I representation of the data
*Better than the observation as
noise filtered out

*Highly compressed (only 1-2%
of original size e.g. 6/500x1.5)

Have basis vectors for data so
can produce “similar” data+++

*Use it before going to
classification or clustering
algorithms
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Conclusions

* Only Scratched the surface
* Questions
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