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Introduction 

•  You need to Know! 
•  Fourier 
•  Laplace 
•  State Space 
•  Z-Transform 
•  SVD 
•  Conclusions 
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Sadly a Very Maths Based 
Subject! 

•  But Computers Do the Maths e.g. 
MATLAB, C++ etc 

•  Need to know conceptually what can be 
done 

•  Need to be able to write the problem in 
the appropriate mathematical format 
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What is Signal Processing? 

•  Used to model signals and systems where 
there is correlation between past and current 
inputs/outputs (in space or time) 

•  Two broad categories: Continuous and 
Sampled processes 

•   A host of techniques Fourier, Laplace, State 
space, Z-Transform, SVD, wavelets…… 

•  Fast, accurate, robust and easy to implement 
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Why? What can Signal 
Processing Do for you? 

• Speed up computation e.g. Acoustic integrals by many 
orders of magnitude 

• Design, Understand , simulate SISO systems e.g. 
Analogue Filters 

• Design, Understand, simulate MIMO systems e.g. 
Hydrophones, Microphones, Arianne 5 Rockets etc. 

• Design, Understand, simulate  Digital filters 
• Design Optimal Filters e.g. Matched Filters 

• Parametric and non parametric System/Spectral 
identification/analysis 

• Design Classification Algorithms 



Sean Danaher 

-

-

-

1X( ) = ( )  
2

1( ) = ( )
2

j t

j t

x t dte

x t X de

∞

∞

∞

∞

∫

∫

ω

ω

ω
π

ω ω
π

0 6π 

0 6π 

f(t) Real ω Imaginary ω  

The Fourier Transform 

cos( ) sin( )i te t i tω ω ω= +

-1 1 

-1 1 

-1 1 

-1 1 



Sean Danaher 

The Impulse Response h(t) 

δ(t) h(t) 

• Signals and systems are 
interchangeable  

• A system with an impulse 
response h(s) is equivalent to a 

signal h(s).  

 

    h(s)        
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The Convolution Integral 
•  Given a signal s(t) and a system with an 
impulse response h(t) then y(t) is given by 

( ) ( ) ( )y t s t h t dτ τ
∞

−∞
= −∫

s(t) Bipolar  
Acoustic Pulse 

h(t) Impulse response  
high pass filter (SAUND) 

y(t) Electrical 
Pulse 

The nasty impulse response is caused by a rapidly varying phase 
response: Different frequencies pass through the filter at different speeds 
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Acoustic Integrals in Water 
and Ice    

Prof. Sean Danaher  
University of Northumbria, 

Newcastle UK 
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A Few examples 

RC circuit 

2d 

Mixed signal 
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Convolution Theorem 

•  Conceptually very useful 
•  Convolution very expensive computationally 
(o=n2) 
‒  Convert the signal and impulse response to the 
frequency domain (Fourier Transform) 

‒  Provided the number of points n=2m very efficient 
FFTs o=n log n 

‒  Multiply and take Inverse Transform 

Convolution in the time domain is 
Multiplication in the frequency domain 

(and visa versa) 
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Convolution Theorem Example 
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Calculation of output  
•  Given a signal s(t) and a system with an impulse 

response h(t) then y(t) is given by ( ) ( ) ( )y t s h t dτ τ τ
∞

−∞
= −∫

s(t) Bipolar  
Acoustic Pulse 

h(t) Impulse response  
of Hydrophone 

y(t) Electrical 
Pulse 

Alternatively take the Fourier transform of the signal (both amplitude and  
phase information) 
Multiply the amplitude information by the frequency response of the 
Hydrophone 
Adjust the phase delays 
Take inverse Fourier transform 
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The Frequency Response 
•  If h(s) is known, the frequency response can 
be determined simply by putting in s=i ω 

•  Alternatively a Fourier Transform can be used 
directly on the signal h(t) 
The frequency response is complex: it contains phase 

information. 
 “The importance of the Phase response can not be 

overstated!” – Paraphrased from SAUND paper (June 
2004) 

1( ) ( )duy h s s y udt h s
dt s

= → = = → =∫
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f    h     g     

g    f     h     

Order Not important 

For linear systems /processes 
order irrelevant to result but often 

not to Computational speed! 
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DFT Example and FFT 
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Sample n points. Eight for 
this example but 1024 more 

typical 
Multiply by DFT Matrix 

Cooley and Tukey 
introduced the first FFT 

algorithm in 1965  
Uses redundancy in the 

multiplies using the 
“Butterfly” 

Get O (n log n) 
Rather than O(n2)  

Latest algorithm FFTW – 
fastest Fourier transform 

in the West 
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Autocorrelation 

( ) ( ) ( )xxR t x t x t d
∞

−∞
= + τ τ∫

When τ =0 proportional to the total 
energy in the signal 

Looks very like convolution. Indeed identical apart from the 
sign.  

Use a filter whose impulse response is a time reversed copy of 
the original signal  
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Wiener Khinchin Theorem 
The Autocorrelation function and PSD are 
Fourier transform pairs Chirp ->Top Hat in Frequency 

domain 
->sin(x)/x autocorrelation 
Resolution depends on 
frequency sweep not pulse 
duration  

For best resolution we need a signal with an autocorrelation of δ(t).  
• δ(t) obviously 
• Also White noise  
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Matched Filter 

•  Provided the Noise is 
white a matched filter 
has an impulse response 
which is that of the time 
reversed signal. 

•  If the noise is not white 
run both the signal and 
noise through a pre-
whitening filter 

•  Design a filter who's 
impulse response is the 
time reversed filtered 
signal 

The inverse of an all pole 
filter is guaranteed to be 
stable as it is an all zero 

filter (does not use 
feedback) This is a pre-

whitening filter 
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Matched Filters 
 

4

1E
r

∝

1Accuracy ∝
τ

 Need a very high 
peak power or Signal 
Processing M(s) 

The frequency response matches that of the signal 
The phase response is adjusted to slow the transit 
of the frequencies which arrive first so the signal 
“bunches up”  
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The Hilbert Transform 
• Converts Sine to Cosine 
• Useful for  Envelope detection 
• Use a FFT to convert to frequency 
domain 
• Multiply by j (i) 
• IFFT 

0 500 1000 1500 2000 2500 3000-1.5

-1

-0.5

0

0.5

1

1.5

 

 

original
Hilbert transform
Envelope



Sean Danaher 

Laplace 
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The Complex Signal  
The signal est can be generalised to s=σ+iω 

This includes decaying and growing exponentials  
etc. 

Kraniauskas 1992 
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Continuous Systems 
2 2
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If we can represent the 

system in terms of a 
differential equation 

then we can write h(s) 
straight down 
Graphically we 

represent this by a 
complex surface on the 

s-plane  
Kraniauskas 1992 
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Step Response 

Some simple Transfer Functions 
u y dy RC   +  y u

dt
=

1
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Poles and Zeros 
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Filter Design 
Design Low pass Filter with cut off frequency of ω=1. Transform to 

type:  

0s
s

→
ωLow pass to high pass: 

Frequency Scaling: 
0

ss
ω

→

22
0

0

1ss
Bws
ω

ω

⎛ ⎞⎛ ⎞
⎜ ⎟→ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Low pass to band pass 

12

2
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1Bws ss
ω ω

−
⎛ ⎞⎛ ⎞
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Low pass to band stop 
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Pole-Zero Map 
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Stability Comes at a Cost 

= × 

8
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1 s+
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stable but a 

rapidly varying 
phase response 
BUTTERWORTH 

- 
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Butterworth Filter 

Stable 
Good Frequency  

Response 

1930s 
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Implementation 

+ 
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4th Order 
Butterworth 
active with 2 
second order 

sections 

1st Order Familiar 
RC 

2nd Order LRC 

3rd Order 
“π” 

Passive Filters 
At acoustic frequencies 
easiest to use op-amps. 
Expensive to make high 

precision lossless inductors 
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The importance of linear Phase 
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Importance of Linear Phase

Original Pulse
Linear Phase
Cubic Phase

Provided the phase 
response of the 
hydrophone/amplifier/ 
filter system is linear 
over the region of 
interest then the pulse 
is simply delayed. If 
the phase response is 
non linear then 
distortion will occur. 

A linear phase 
response gives a 
constant group delay 
this is analogous to 
group velocity in 
continuous systems 

Will a bipolar acoustic pulse give a bipolar 
electrical pulse? 

Both systems 
have unity 
gain over all 
frequencies d d

d dk
θ ω
ω
≡
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Recovering Phase information 
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S+N 
causal 
non causal 

It is trivial to design digital 
filters which have a constant 

group delay dφ/dω and hence 
no phase distortion 

If however we know the 
filter response e.g. 

Butterworth we can run 
the data through the filter 

backwards. 

This increases the order of the filter by a factor of 2 

e.g. RonaData 
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transmit more difficult 

Fairly flat response when in 
receive mode, but in transmit the 
amplitude typically depend on 
hydrophone acceleration: 
Velocity drives acoustic 
production 
Impedance matching between 
hydrophone and water typically 
gives another derivative term 
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State Space Analysis 
MIMO systems 

Mixed Mechanical/electrical models etc 
Matrix Based Method  

X = AX +BU
Y = CX +DU
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. . .
y uxPictured 20000 state  

simulation of a square membrane: 
(100x100 masses 2 states x and v) 
A Matrix 400x106 elements 

All modern control 
algorithms use SS 

methods.   

Mode 1 

Mode 14 

Mode 100 
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A B 

D C 

SS Implementation 

if

if

if position velocity
if velocity acceleration

c C
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dVx V I C Cx
dt
dix I V L Lx
dt

x x
x x
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States Inputs 

States 

Outputs 

States are degrees of 
freedom of the system. 

Things that store 
energy 

• Capacitor Voltages 
• Inductor currents 

• Positions and 
Velocities of masses 

A is of size States × States 
B is of size States × Inputs 

C is of size Outputs × States 
D is of size Outputs ×  Inputs 
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Simple Example LC  
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Simple Hydrophone Model 

Mass
m

F=rv

F=ma

F=x/S
F=KVc

Vc
KvIc

inV Vc
R
−

Vin

1 2 3, ,Cx V x v x x= = = Heart of Hydrophone 
Piezo electric crystal 
Piezo electric effect 

 

Omni works 
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breathing 
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Simulated Hydrophone signal 
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3rd order simulation. 
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Fitted response
Actual response

5th Order Good enough for current hydrophones 
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40 

Simulation of 8 hydrophone array 
TX 

How Many Hydrophones needed for linear array? 
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25

5 for each hydrophone

50 25

60 

150 
60 

55 10
10

10

*All dimensions in centimeter

Water 
level

Laboratory at  Northumbria University 
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Ch1 

Ch2 

Ch3 

Ch4 

Ch5 

Ch6 

Ch7 

Ch8 

8 Channels hydrophone Tx  

Bipolar pulse 
output from  
Channel 1 
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Deployment  at ANTARES (France) 
8 channel transmitter module 

Deployment  at ANTARES 
17 September 2011 
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Digital Filters 
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The Digital Filter 

0 1 2 0 1 21 2 1 2[ ] [ ] [ ] .... [ ] [ ] [ ] ....a y n a y n a y n b u n bu n b u n+ − + − + = + − + − +

The digital filter is simple! Based 
upon sampled sequences  
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( )1 1
2

[ ] [ ] [ ]y n x n x n= + −

Simple moving  
average Filter 

Crude low-pass 
Called FIR or 

MA 

Negative coefficients =>Causal 
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4    58 
9    67 

Perfect Integrator 
1[ ] [ ] [ ]y n y n x n= − +

Called IIR 
or  
AR 
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The Z Transform and 
Sampled Signals 

( ) [ ]
n

n

n
X z x n z

=∞
−

=−∞
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1
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n n

n

if x X z z z

if x a a X z az
az

− −

=∞
−

−
=

= ⇒ = + +

= ⇒ = =
−∑

Geometric sequences are of prime interest because 

( ) [ ]i t i ntu t e u t eω Ω= ⇒ = is a geometric sequence 
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Poles must be inside the 
unit circle for stability 

/10, 1θ = π =l

/5, 0.95θ = π =l

/14, 1.05θ = π =l

A few z transforms 
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Frequency 
response 

simply 
determined by 
running around 
the unit circle 
π Corresponds 
to the Nyquist 

Frequency 
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Simple Transfer Function 
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Notch Filter 
5 5

5 5

( )( )( )
( 0.95 )( 0.95 )

y[n]=x[n]-1.6180x[n-1]+x[n-2] 
+1.5371y[n-1]-0.9025y[n-2]
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Using the Fourier Transform is seldom the 
best way to get a spectrum. Normally 
methods based around 
•  Autocorrelation (AC) 
• Linear Prediction are used 
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Autocorrelation 

Linear Prediction 
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First 500 of 2048 data points 

AC method 
Use FT of AC 
To get PSD 

All pole filter driven by white 
noise. Need to choose the 

order with care. But can now 
reproduce the spectrum 

Spectral Analysis 
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Compression and feature extraction 

FFT does not compress 
Often need to extract features in a few parameters 
 
DSP people use FIR and IIR filters and system identification 
Statisticians use MA, AR, ARMA, ARMAX models 
Human speech compression possibly the most advanced form of 
signal processing 
Historically these models are called vocoders 
Very possibly these techniques can be applied to marine mammals  
Modern mobile standards such as GSM are based on CELP – Code 
Excited Linear Prediction  
The first CELP algorithm around ‘94 took c 24 hours to code 5 mins of 
speech 
Initial development done by the US military for secure communiaction 
Rapidly advanced to work in real time. Mobile telephone companies 
poured a lot of money into algorithm development. 
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Human Speech 

Vocal tract acts like a resonator. There are typically a 
number of resonances called formants  
We solve the equation 
 

][][...]3[]2[]1[][ 321 neknyanyanyanyany k +−+−+−+−=

This is an IIR filter, an ARX process or a linear predictor  
LPC10 has 10 coefficients (k=10) 
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Hearing LPC in action 

64k 

933 

2.4k 

  

gain vocal tract 
filter 

pitch 

noise 

voiced/unvoiced 
switch 

synthesized 
speech 
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• 8 bit 8kHz 

• Split speech into 
frame 240 samples 
long 

• Use LPC10 to 
estimate spectrum 

• Reconstruct  

933 

1.2k 



Sean Danaher 

SVD 
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Singular Value Decomposition 

W        L       VT 

( ) ( ) ( ) Decompose the Data 
matrix into 3 

matrices. 
When multiplied we 
get back the original 

data. 
W and V are unitary. 

L contains the 
contribution from 

each of the 
eigenvectors in 

descending order 
along main diagonal. 

We can get an approximation of 
the original data by setting the L 
values to zero below a certain 

threshold  

Similar techniques are used in 
statistics CVA, PCA and Factor 

Analysis 
Based on Eigenvector Techniques 

Good SVD algorithms exist in ROOT and MATLAB 
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SVD II 
Somewhere between vector five 
and seven we get the “Best” 
representation of the data 

• Better than the observation as 
noise filtered out 

• Highly compressed (only 1-2% 
of original size e.g. 6/500x1.5) 

• Have basis vectors for data so 
can produce “similar” data+++ 

• Use it before going to 
classification or clustering 
algorithms 

SVD done on 
Noisy data 
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Conclusions 

•  Only Scratched the surface 
•  Questions 


