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The setup - Boundary driven many-body Lindblad equation

The central equation we address is the Lindblad equation for the many-body
density operator ρ(t):

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
where H is a many-body Hamiltonian with local couplings (say nn interactions),

H =
n−k+1∑

j=1

h[j,j+1]

and Lµ are Lindblad operators which act locally, near the ends of the chain,
say, only on degrees of freedom of sites 1 and n, (e.g. representing the baths).

.
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(
2LµρL†µ − {L†µLµ, ρ}

)
where H is a many-body Hamiltonian with local couplings (say nn interactions),

H =
n−k+1∑

j=1

h[j,j+1]

and Lµ are Lindblad operators which act locally, near the ends of the chain,
say, only on degrees of freedom of sites 1 and n, (e.g. representing the baths).

In the context of 1D quantum transport, the Lindblad model has been carefully
derived and discussed in: Wichterich, Herich, Breuer and Gemmer, PRE 2007

.
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Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Outline

One dimensional open (quantum many body) systems far from equilibrium:
Quantum: Quasi-free (linear) systems:

XY spin 1/2 chain: transition to long range order due to local boundary
opening (TP NJP 2008, TP and I. Pižorn PRL 2008, TP JSTAT 2010)

Strongly interacting (non-linear) systems
NESS via tDMRG: spin diffusion and quantum Fourier law, (TP and M.
Žnidarič JSTAT 2009), and long range order far from equilibrium
(numerical examples, TP and M. Žnidarič, PRL 2010)
XXZ spin 1/2 chain: exact matrix product NESS and strict lower bound on
spin Drude weight (TP PRL 2011a, TP PRL 2011b)
Exact ansatz for diffusive NESS in XX chain /w dephasing noise and
boundary driving (M. Žnidarič, JSTAT 2010)
Normal spin and charge diffusion in the Hubbard chain at infinite
temperature and half-filling (TP and M. Žnidarič, PRB 2012)

Tomaž Prosen Exact results in boundary-driven open quantum chains



Analytical solution for quasi-free fermionic systems

TP, New J. Phys. 10, 043026 (2008), JSTAT P07020 (2010)
Consider a general solution of the Lindblad equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
for a general quadratic system of n fermions, or n qubits (spins 1/2)

H =
2n∑

j,k=1

wjHjkwk = w ·Hw Lµ =
2n∑
j=1

lµ,jwj = lµ · w

where wj , j = 1, 2, . . . , 2n, are abstract Hermitian Majorana operators

{wj ,wk} = 2δj,k j , k = 1, 2, . . . , 2n
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lµ,jwj = lµ · w

where wj , j = 1, 2, . . . , 2n, are abstract Hermitian Majorana operators

{wj ,wk} = 2δj,k j , k = 1, 2, . . . , 2n

Two physical realizations:

canonical fermions cm, w2m−1 = cm + c†m,w2m = i(cm − c†m),m = 1, . . . , n.

spins 1/2 with canonical Pauli operators ~σm, m = 1, . . . , n,

w2m−1 = σx
j

∏
m′<m

σz
m′ w2m = σy

m

∏
m′<m

σz
m′
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NESS expectation values of physical observables

The expectation value of any quadratic observable wjwk in a (unique) NESS can
be explicitly computed as

〈wjwk〉NESS = δj,k + 〈1|ĉj ĉk |NESS〉 = δj,k + 4iZj,k

where Z is the solution of the Lyapunov equation

XTZ + ZX = ImM

with X := −2iH + ReM where M :=
∑
µ lµ ⊗ l̄µ.
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NESS expectation values of physical observables

The expectation value of any quadratic observable wjwk in a (unique) NESS can
be explicitly computed as

〈wjwk〉NESS = δj,k + 〈1|ĉj ĉk |NESS〉 = δj,k + 4iZj,k

where Z is the solution of the Lyapunov equation

XTZ + ZX = ImM

with X := −2iH + ReM where M :=
∑
µ lµ ⊗ l̄µ.

uniqueness

The NESS is unique iff all eigenvalues of X lie strictly away from the real line.
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Solvable example: open XY quantum spin chains

Consider magnetic and heat transport of a Heisenberg XY spin 1/2 chain, with
arbitrary – either homogeneous or positionally dependent (e.g. disordered) –
nearest neighbour interaction

H =
n−1∑
m=1

(
Jx
mσ

x
mσ

x
m+1 + Jy

mσ
y
mσ

y
m+1

)
+

n∑
m=1

hmσ
z
m (1)

which is coupled to two thermal/magnetic baths at the ends of the chain,
generated by two pairs of canonical Lindblad operators

L1 =
1
2

√
ΓL

1σ
−
1 L3 =

1
2

√
ΓR

1 σ
−
n

L2 =
1
2

√
ΓL

2σ
+
1 L4 =

1
2

√
ΓR

2 σ
+
n (2)

where σ±m = σx
m ± iσy

m and ΓL,R
1,2 are positive coupling constants related to bath

temperatures/magnetizations. e.g. if spins were non-interacting the bath
temperatures TL,R would be given with ΓL,R

2 /ΓL,R
1 = exp(−2h1,n/TL,R).
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m ± iσy
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1,2 are positive coupling constants related to bath

temperatures/magnetizations. e.g. if spins were non-interacting the bath
temperatures TL,R would be given with ΓL,R

2 /ΓL,R
1 = exp(−2h1,n/TL,R).

Similar models were recently considered e.g. in Karevski and Platini PRL 2009,
and Clark, Prior, Hartmann, Jaksch and Plenio PRL2009 & arXiv:0907.5582

Tomaž Prosen Exact results in boundary-driven open quantum chains



Quantum phase transition far from equilibrium in XY chain

TP & I. Pižorn, PRL 101, 105701 (2008)

Jx
m = (1 + γ)/2

Jy
m = (1− γ)/2,

hm = h

C(j , k) = 〈σz
j σ

z
k〉 − 〈σz

j 〉〈σz
k〉

0 Γ 1

0

h

1

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

-Cres

00.0010.002
0

0.5

1.

1.5

Re Β

Im
Β

h=0.9 > hc

-Π -2 -1 0 1 2 Π

Φ

0 0.001 0.002

Re Β

h=0.3 < hc

hc = 1− γ2
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Fluctuation of spin-spin correlation in NESS and "wave resonators"

Near neQPT: Scaling variable z = (hc − h)n2
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Near neQPT: Scaling variable z = (hc − h)n2

Scaling ansatz: C2j+α,2k+β = Ψα,β(x = j/n, y = k/n, z)
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Fluctuation of spin-spin correlation in NESS and "wave resonators"

Near neQPT: Scaling variable z = (hc − h)n2

Scaling ansatz: C2j+α,2k+β = Ψα,β(x = j/n, y = k/n, z)
Certain combination Ψ(x , y) = (∂/∂x + ∂/∂y )(Ψ0,0(x , y) + Ψ1,1(x , y)) obeys
the Helmholtz equation!!!(

∂2

∂x2 +
∂2

∂y2 + 4z
)

Ψ = ”octopole antenna sources”
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Interacting many-body semigroups:
quantum diffusion and long range order in NESS

tDMRG simulations of NESS for locally interacting boundary driven spin chains
(method as described in TP & M. Žnidarič, JSTAT P02035, 2009).
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Interacting many-body semigroups:
quantum diffusion and long range order in NESS

tDMRG simulations of NESS for locally interacting boundary driven spin chains
(method as described in TP & M. Žnidarič, JSTAT P02035, 2009).

Example, toy model: Locally boundary driven XXZ spin 1/2 chain:

H =
n−1∑
j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆σz

j σ
z
j+1)

and symmetric magnetic-Lindblad boundary driving:

LL
1 =

√
1
2

(1− µ)εσ+
1 , LR

1 =

√
1
2

(1 + µ)εσ+
n ,

LL
2 =

√
1
2

(1 + µ)εσ−1 , LR
2 =

√
1
2

(1− µ)εσ−n .
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If ∆ > 1 the model exhibits diffusive transport for small driving, and negative
differential conductance for large driving µ ≡ f .

 0.01
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Transition to long-range order in NESS (PRL 105, 060603 (2010))
C (r) = 〈σz

(n+r)/2σ
z
(n−r)/2〉 − 〈σ

z
(n+r)/2〉〈σ

z
(n−r)/2〉

10
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(r
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Critical anisotropy appears to be ∆c ≈ 0.91 (!?)
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XX spin 1/2 chain with bulk dephasing: exact diffusive NESS

Take boundary driven XX spin chain (∆ = 0) and in addition put local bulk
dephasing with Lindblads Lj = γσz

j . [M. Žnidarič, JSTAT, L05002 (2010)]

ρNESS = 1 +
n∑

j=1

ajσ
z + b

n−1∑
j=1

Jj +O(µ2)

where Jj = σx
j σ

y
j+1 − σ

y
j σ

x
j+1 is the spin current and

a1 = −b/ε−µ, aj = −b(1/ε+ε+2γ(j−1))−µ, an = −b(1/ε+2ε+2(n−1)γ)−µ,

b = − µ

ε+ 1/ε+ (n − 1)γ
.
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XX spin 1/2 chain with bulk dephasing: exact diffusive NESS

Take boundary driven XX spin chain (∆ = 0) and in addition put local bulk
dephasing with Lindblads Lj = γσz

j . [M. Žnidarič, JSTAT, L05002 (2010)]

ρNESS = 1 +
n∑

j=1

ajσ
z + b

n−1∑
j=1

Jj +O(µ2)

where Jj = σx
j σ

y
j+1 − σ

y
j σ

x
j+1 is the spin current and

a1 = −b/ε−µ, aj = −b(1/ε+ε+2γ(j−1))−µ, an = −b(1/ε+2ε+2(n−1)γ)−µ,

b = − µ

ε+ 1/ε+ (n − 1)γ
.

The solution yields the spin Fick’s law (spin diffusion),
〈(σz

j − σz
k)〉 ∝ µ(j−k)

n , 〈Jj 〉 ∝ µ
n .
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ε+ 1/ε+ (n − 1)γ
.

The solution yields the spin Fick’s law (spin diffusion),
〈(σz

j − σz
k)〉 ∝ µ(j−k)

n , 〈Jj 〉 ∝ µ
n .

The higher orders, say O(µ2) have also been calculated analytically and predict
‘hydrodynamic long range order’ [observed in nonequilibrium classical
exclussion processes (see e.g. Derrida JSTAT 2007)]

Cj=xn,k=yn =
(2µ)2

n
x(1− y)
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Charge and spin diffusion in infinite temperature 1D Hubbard model

Hamiltonian is rewritten from fermionic to spin-ladder formulation:

H = −t
L−1∑
i=1

∑
s∈{↑,↓}

(c†i,sci+1,s + h.c.) + U
L∑

i=1

ni↑ni↓,

= − t
2

L−1∑
i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 + τx

i τ
x
i+1 + τy

i τ
y
i+1) +

U
4

L∑
i=1

(σz
i + 1)(τ z

i + 1).

And the following simplest boundary driving channels are considered:

L1,2 =
√
ε(1∓ µ)σ±1 , L3,4 =

√
ε(1± µ)σ±L

L5,6 =
√
ε(1∓ µ) τ±1 , L7,8 =

√
ε(1± µ) τ±L

[TP and M. Žnidarič, PRB 86, 125118 (2012)]

Tomaž Prosen Exact results in boundary-driven open quantum chains



Diffusion in 1D Hubbard model: DMRG results, PRB 86, 125118 (2012).
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Explicit solutions possible in two regimes:

Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain

Tomaž Prosen
Department of Physics, FMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

(Received 15 June 2011; published 19 September 2011)

An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of

an anisotropic Heisenberg XXZ spin-1=2 chain which is driven far from equilibrium with a pair of

Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator

of a finite system of size n is—apart from a normalization constant—a polynomial of degree 2n! 2 in the
coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer

operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1=n2

scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative

extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)].

DOI: 10.1103/PhysRevLett.107.137201 PACS numbers: 75.10.Pq, 02.30.Ik, 03.65.Yz, 05.60.Gg

Introduction.—The Heisenberg model [1] of coupled
quantum spins 1=2 is the oldest many-body quantum
model of strong interactions. In spite of being extremely
simple, it exhibits (in particular, its anisotropic version, the
XXZ model) a rich variety of equilibrium and nonequilib-
rium physical behaviors. In nature, it provides an excellent
description of the so-called spin-chain materials [2],
and it is believed to provide the key for understanding
various collective quantum phenomena in low-dimensional
strongly interacting systems, such as magnetic or super-
conducting transitions in two dimensions. Although the
equilibrium (thermodynamic) properties of the XXZ chain
are well understood in terms of the Bethe ansatz [3], as
the model represents a paradigmatic example of quantum
integrable systems, its nonequilibrium properties at finite
temperature are subject to lively debate [4].

Ground states of strongly correlated systems generically
satisfy area laws [5] for block entropy characterizing bi-
partite quantum entanglement, so they can be efficiently
described by the so-called matrix product states or more
general tensor networks [6]. Matrix product states of small
rank can provide even an exact description of ground
states, say, in valence bond solids exemplified by the
famous Affleck-Kennedy-Lieb-Tasaki model [7]. In fact,
even Bethe ansatz eigenfunctions can be written in terms of
matrix product states [8]. On the other hand, by using the
approach of open quantum systems and Markovian master
equations [9], nonequilibrium steady states (NESSs) of
large one-dimensional locally interacting and dissipation-
less quantum systems put between a pair of unequal macro-
scopic reservoirs [10,11] can be described in terms of a
fixed point, or ‘‘ground state’’ in the Liouville space, for a
Hermitian superoperator with non-Hermitian boundary
terms [12]. Application of the density matrix renormaliza-
tion group for a simulation of such problems showed that a
sort of super area law is generically valid, and the density
operator of NESSs can be well described by a matrix
product operator (MPO) of low rank [13]. However, no

far-from-equilibrium analogues of the Affleck-Kennedy-
Lieb-Tasaki model have been known so far, and the pur-
pose of this Letter is to show an explicit construction of an
exact MPO form of NESSs for a boundary-driven XXZ
spin chain. More precisely, a matrix element of the many-
body density operator is a contraction of a very appealing
ladder tensor network (LTN).
We have recently proposed a new method [14] to solve

for a Liouvillian fixed point of the XXZ chain, perturba-
tively in the system-bath-coupling constant. This method,
which expresses the NESS in the form of a MPO with near-
diagonal infinite rank matrices—reminiscent of a classical
Markov process in the auxiliary space—suggests new ways
of integrability of strongly nonequilibrium quantum lattice
gasses and appears to be unrelated to the Bethe ansatz.
In this Letter, we show that—quite nontrivially—a fully
nonperturbative extension of this method exists (in the
strong driving limit of maximal bias, ! ¼ 1 in notation
of Ref. [14]), with the constituent matrices satisfying the
same cubic matrix algebra (essentially different from
quadratic algebras characterizing exactly solvable classical
probabilistic lattice gasses, the so-called exclusion pro-
cesses [15]), but with modified boundary relations. From
our exact analysis, we (i) prove ballistic transport (size n
independent spin current) in the easy-plane regime,
(ii) derive coupling independent cosine spin profiles,
1=n2 scaling of the spin current, and long-range spin-spin
correlations in the isotropic regime, and (iii) prove insulat-
ing behavior in the easy-axis regime with kink-shaped spin
profiles and exponentially (in n) decaying currents. We
note that the physics of the near-equilibrium XXZ chain
is essentially different. There, one has perturbative and
numerical evidence of spin diffusion [16,17] in the
easy-axis regime and alternative superdiffusive anomalous
scaling in the isotropic point [16] indicating very rich
phenomenology of the model.
Nonequilibrium steady state.—We consider the

Markovian master equation in the Lindblad form [9,11]
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Open XXZ Spin Chain: Nonequilibrium Steady State and a Strict Bound on Ballistic Transport

Tomaž Prosen
Department of Physics, FMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
(Received 7 March 2011; revised manuscript received 11 April 2011; published 27 May 2011)

An explicit matrix product ansatz is presented, in the first two orders in the (weak) coupling parameter,

for the nonequilibrium steady state of the homogeneous, nearest neighbor Heisenberg XXZ spin 1=2 chain
driven by Lindblad operators which act only at the edges of the chain. The first order of the density

operator becomes, in the thermodynamic limit, an exact pseudolocal conservation law and yields—via the

Mazur inequality—a rigorous lower bound on the high-temperature spin Drude weight. Such a Mazur

bound is a nonvanishing fractal function of the anisotropy parameter ! for j!j< 1.

DOI: 10.1103/PhysRevLett.106.217206 PACS numbers: 75.10.Pq, 02.30.Ik, 03.65.Yz, 05.60.Gg

Introduction.—Exactly solvable models which exhibit
certain generic physical properties are of paramount im-
portance in theoretical physics, in particular, in condensed
matter and statistical physics where one of the key open
issues is the transport in low dimensional strongly interact-
ing quantum systems. An example par excellence of such
models is an anisotropic Heisenberg XXZ spin 1=2 chain
with a constant nearest neighbor spin interaction which, in
spite of it being Bethe ansatz solvable [1], still offers many
puzzles. For example, at high temperature and vanishing
external magnetic field, it is not clear even if the model
exhibits ballistic or diffusive spin transport [2]. The ques-
tion is of long-lasting experimental interest [3]. Recently,
theoretical study of interacting many-body systems has got
a new impetus by invoking the methods of open quantum
systems and Markovian master equations (MMEs) [4] in
the study of quantum transport far from equilibrium [5,6].

We consider MME in the Lindblad form

d!ðtÞ
dt

¼$i½H;!ðtÞ&þ
X

k

2Lk!ðtÞLy
k $ fLy

k Lk;!ðtÞg (1)

for an open XXZ spin 1=2 chain with the HamiltonianH ¼Pn$1
j¼1 ð2"þj "$jþ1 þ 2"$j "þjþ1 þ !"z

j"
z
jþ1Þ, where "(j ¼

1
2 ð"x

j ( "y
jÞ, "z

j, j ¼ 1; . . . ; n are Pauli operators on a

tensor product space ðC2Þ)n, with symmetric Lindblad

driving acting on the edges of the chain only, L1;2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2"ð1(#Þ

q
"(1 , L3;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2"ð1*#Þ

q
"(n . In this Letter we

construct an exact nonequilibrium steady state (NESS)
solution of this model in the regime of weak coupling
(small ") with the method which seems to be unrelated
to the Bethe ansatz and expresses NESS in the form of a
homogeneous matrix product operator. Such an ansatz has
been employed earlier for exact solutions of classical
many-body stochastic processes [7], however with an im-
portant distinction that here the constructing auxiliary
matrices satisfy cubic instead of quadratic algebraic rela-
tions. Our solution gives birth to a spin-current related
conservation law of an infinite chain, which is almost local

(pseudolocal) in the metallic regime j!j< 1, and hence is
used in a Mazur inequality [8] to bound the spin Drude
weight and prove ballistic transport for certain values of
anisotropy !, while for others we use efficient numerical
computation. We observe that the graph of the Mazur
bound versus ! exhibits a fractal structure.
Boundary driven XXZ chain.—NESS !1 ¼ limt!1!ðtÞ

is a fixed point of the flow (1)

$ iðadHÞ!1 þ "D̂!1 ¼ 0; (2)

where ðadHÞ! :¼ ½H;!& and

D̂ :¼ 1

2
ð1þ#ÞD̂þ þ

1

2
ð1$#ÞD̂$; (3)

with D̂(! :¼ 2"(1 !"*1 $ f"*1 "(1 ;!gþ 2"*n !"(n $
f"(n "*n ;!g: Note the distinct roles of two bath parameters:
coupling strength " controls the strength of coupling to the
spin baths at the edges of the chain, while driving strength
# controls the nonequilibrium forcing due to unequal
average spin polarizations of the two baths. For example,
in the common derivation of the master equation (1) [4]
weak coupling (small ") is a standard assumption, whereas
the linear response physics would be mimicked by taking
small # at nonsmall " (see, e.g., [9,10]).
Here we address far-from-equilibrium physics within

the regime of weak coupling, so we formally expand
NESS in terms of the coupling parameter ":

!1 ¼
X1

p¼0

ði"Þp!ðpÞ: (4)

Plugging the ansatz (4) into the fixed point condition (2)
results in an operator valued recurrence relation

ðadHÞ!ðpÞ ¼ $D̂!ðp$1Þ; (5)

for the sequence f!ðpÞg, with the initial condition !ð0Þ ¼
2$n1, which is an infinite temperature equilibrium state.
Theorem.—Solutions of (5) in the first two orders read

2n!ð1Þ ¼ #ðZ$ ZyÞ; (6)
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..and very recently, even for more general boundary conditions:

Exact Matrix Product Solution for the Boundary-Driven Lindblad XXZ Chain

D. Karevski,1 V. Popkov,2,3 and G.M. Schütz4

1Institut Jean Lamour, Department P2M, Groupe de Physique Statistique, Université de Lorraine, CNRS, B.P. 70239,
F-54506 Vandoeuvre les Nancy Cedex, France

2Dipartimento di Fisica, Università di Firenze, via Sansone 1, 50019 Sesto Fiorentino Firenze, Italy
3Max Planck Institute for Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany

4Institute of Complex Systems II, Forschungszentrum Jülich, 52428 Jülich, Germany
(Received 29 November 2012; published 24 January 2013)

We demonstrate that the exact nonequilibrium steady state of the one-dimensional Heisenberg XXZ
spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product

ansatz for the nonequilibrium density matrix where the matrices satisfy a quadratic algebra. This algebra

turns out to be related to the quantum algebra Uq½SUð2Þ$. Coherent state techniques are introduced for the
exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad

terms that correspond to two different completely polarized boundary states. We show that this boundary

twist leads to nonvanishing stationary currents of all spin components. Our results suggest that the matrix

product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad

boundary terms.

DOI: 10.1103/PhysRevLett.110.047201 PACS numbers: 75.10.Pq, 03.65.Yz, 05.60.%k

The nonequilibrium behavior of open quantum systems
has become accessible through recent advances in artifi-
cially assembled nanomagnets consisting of just a few
atoms [1] or in the study of quasi-one-dimensional spin
chain materials like SrCuO2 where many transport charac-
teristics are measurable experimentally [2,3]. In particular,
it is desirable to understand the interplay between many-
body bulk properties (e.g., magnon excitations or magne-
tization currents in quantum spin systems) and local
pumping (applied to the boundary of a system) driving
the system constantly out of equilibrium. A good starting
point is provided by the anisotropic Heisenberg model [4]

H ¼ J
X

k

½!x
k!

x
kþ1 þ !y

k!
y
kþ1 þ!ð!z

k!
z
kþ1 % "0Þ$; (1)

of coupled spins. The pure quantum version of this model
is exactly solvable by the Bethe ansatz. Interestingly,
within linear response theory, i.e., close to equilibrium, it
was found that at a finite temperature a diffusive contribu-
tion to the Drudeweight appears [5–7], which is at variance
with the long-held belief that integrability protects the
ballistic nature of transport phenomena. Unfortunately,
the Bethe ansatz fails in the more relevant context of
open far-from-equilibrium systems where these questions
can be addressed directly in terms of the Lindblad master
equation [8]

d

dt
" ¼ %i½H;"$ þDLð"Þ þDRð"Þ; (2)

for the reduced density matrix " associated to the chain
(here and below we set @ ¼ 1). The dissipative terms
DL;Rð"Þ ¼ DL;R"DL;Ry % 1=2f"; DL;RyDL;Rg with the
Lindblad operators DL;R acting locally at the open ends

of the quantum chain (see below) describe the coupling to
external reservoirs that drive a current through the system
and thus keep the system in a permanent nonequilibrium
steady state. Indeed, using dissipative dynamics for the
preparation of quantum states is becoming a promising
field of research [9,10].
Significant progress has been achieved very recently in

two remarkable papers by Prosen [11,12] who observed
that the exact stationary density matrix for the XXZ chain
with one specific pair of Lindblad boundary terms can be
constructed explicitly in the matrix product operator form
[13] by a matrix product ansatz (MPA) somewhat reminis-
cent of the matrix product ansatz of Derrida et al. [14] for
the stationary distribution of purely classical stochastic
dynamics. With an explicit representation of the matrix
algebra, Prosen was then able to compute analytically
various physical quantities of interest. However, in contrast
to Ref. [14], where the matrices satisfy a quadratic algebra,
the matrices of Refs. [11,12] satisfy a cubic algebra which
arises from a peculiar local cancellation mechanism
involving three neighboring sites in the quantum chain.
This feature is significant since, due to the lack of a general
representation theory for cubic algebras, this approach
does not lend itself easily to generalization to other open
quantum systems with other cubic algebras or even small
modifications of the original problem such as boundary
fields or other Lindblad terms for the XXZ chain which
would require a different representation. Indeed, the wide
applicability of the MPA of Ref. [14] derives from the fact
that many quadratic algebras (which include all Lie alge-
bras through their commutation relations) have explicitly
known representations, which is crucial for the exact com-
putation of physical observables [15].
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NESS: The weak coupling perturbation expansion

The formal expansion

L̂ρ∞ = 0,

L̂ = −i ad H + εD̂,

ρ∞ =
∞∑

p=0

(iε)pρ(p)

implies an operator-valued recurrence:
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NESS: The weak coupling perturbation expansion

The formal expansion

L̂ρ∞ = 0,

L̂ = −i ad H + εD̂,

ρ∞ =
∞∑

p=0

(iε)pρ(p)

implies an operator-valued recurrence:

[H, ρ(0)] = 0,

( ad H)ρ(p+1) = −D̂(ρ(p)), p = 0, 1, 2, . . .
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NESS: The weak coupling perturbation expansion: explicit solution

2nρ(0) = 1,

2nρ(1) = µ(Z − Z †),

2nρ(2) =
µ2

2
(Z − Z †)2 − µ

2
[Z ,Z †].
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NESS: The weak coupling perturbation expansion: explicit solution

2nρ(0) = 1,

2nρ(1) = µ(Z − Z †),

2nρ(2) =
µ2

2
(Z − Z †)2 − µ

2
[Z ,Z †].

Z =
∑

(s1,...,sn)∈{+,−,0}n
〈L|As1As2 · · ·Asn |R〉σ

s1 ⊗ σs2 · · · ⊗ σsn
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NESS: The weak coupling perturbation expansion: explicit solution

2nρ(0) = 1,

2nρ(1) = µ(Z − Z †),

2nρ(2) =
µ2

2
(Z − Z †)2 − µ

2
[Z ,Z †].

Z =
∑

(s1,...,sn)∈{+,−,0}n
〈L|As1As2 · · ·Asn |R〉σ

s1 ⊗ σs2 · · · ⊗ σsn

A0 = |L〉〈L|+ |R〉〈R|+
∞∑
r=1

cos (rλ) |r〉〈r |, cosλ ≡ ∆

A+ = |L〉〈1|+ c
∞∑
r=1

sin
(
2
⌊

r +1
2

⌋
λ

)
|r〉〈r +1|,

A− = |1〉〈R| − c−1
∞∑
r=1

sin
((

2
⌊ r
2

⌋
+1
)
λ
)
|r +1〉〈r |,
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The cubic algebra

[A0,A±A∓] = 0,

{A0,A2
±} = 2∆A±A0A±,

2∆{A2
0,A±} − 4A0A±A0 = {A∓,A2

±} − 2A±A∓A±,
2∆[A2

0,A±] = [A∓,A2
±].

The boundary relations:

〈L|A− = 〈L|A+A−A+ = 〈L|A+A2
− = 0,

A+|R〉 = A−A+A−|R〉 = A2
+A−|R〉 = 0,

〈L|A0 = 〈L|, A0|R〉 = |R〉. 〈L|A+A−|R〉 = 1.
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Transfer matrix calculation of observables

Mj = 〈σz
j 〉 = ε2µ〈L|Tj−1VTn−j |R〉,

Cj,k = 〈σz
j σ

z
k〉 = ε2µ2〈L|Tj−1VTk−j−1VTn−k |R〉, j < k,

T = |L〉〈L|+ |R〉〈R|+ 1
2

(|L〉〈1|+ |1〉〈R|)

+
∞∑
r=1

{
cos2(rλ) |r〉〈r |+ c2

2
sin2
(
2
⌊
r +1
2

⌋
λ

)
|r〉〈r +1|

+
c−2

2
sin2
((

2
⌊ r
2

⌋
+1
)
λ
)
|r +1〉〈r |

}
,

V =
|L〉〈1|
2
− |1〉〈R|

2
+
∞∑
r=1

{
c2

2
sin2
(
2
⌊
r +1
2

⌋
λ

)
|r〉〈r +1|

−c−2

2
sin2
((

2
⌊ r
2

⌋
+1
)
λ
)
|r +1〉〈r |

}
,
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Mazur bound on infinite temperature spin Drude weight

Let Qk be conserved quantities dQk/dt = 0:

Dn = lim
t→∞

β

2nt

∫ t

0
dt′〈J(t′)J〉 ≥ β

4
DMazur :=

β

2n

∑
k

(J,Qk)2

(Qk ,Qk)
,
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Mazur bound on infinite temperature spin Drude weight

Let Qk be conserved quantities dQk/dt = 0:

Dn = lim
t→∞

β

2nt

∫ t

0
dt′〈J(t′)J〉 ≥ β

4
DMazur :=

β

2n

∑
k

(J,Qk)2

(Qk ,Qk)
,

We take Q = i(Z − Z †) satisfying [H,Q] = −2iσz
1 + 2iσz

n, being almost
conserved (E.Ilievski and T. Prosen, Comm. Math. Phys 2012: The Mazur
bound can still be used rigorously in thermodynamic limit!)

DMazur =
1
4

lim
n→∞

n
〈L|Tn|R〉 .
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Mazur bound on infinite temperature spin Drude weight

Let Qk be conserved quantities dQk/dt = 0:

Dn = lim
t→∞

β

2nt

∫ t

0
dt′〈J(t′)J〉 ≥ β

4
DMazur :=

β

2n

∑
k

(J,Qk)2

(Qk ,Qk)
,

We take Q = i(Z − Z †) satisfying [H,Q] = −2iσz
1 + 2iσz

n, being almost
conserved (E.Ilievski and T. Prosen, Comm. Math. Phys 2012: The Mazur
bound can still be used rigorously in thermodynamic limit!)

DMazur =
1
4

lim
n→∞

n
〈L|Tn|R〉 .

Jordan decomposition of the transfer matrix T yields explicit fractal
dependence:

DMazur (∆ = cos(πl/m)) =
1
2

(1−∆2)
m

m − 1
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Non-perturbative NESS (arbitrary coupling)

ρ∞ = ( tr R)−1R, R = SS†, S =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1⊗σs2 · · ·⊗σsn

A0 = |0〉〈0|+
∞∑
r=1

a0
r |r〉〈r |,

A+ = iε|0〉〈1|+
∞∑
r=1

a+
r |r〉〈r+1|,

A− = |1〉〈0|+
∞∑
r=1

a−r |r+1〉〈r |,

a0
r = cos (rλ) + iε

sin (rλ)

2 sinλ
,

a+
2k−1 = c sin (2kλ) + iε

c sin ((2k−1)λ) sin (2kλ)

2(cos ((2k−1)λ) + τ2k−1) sinλ
,

a+
2k = c sin (2kλ)− iε

c(cos (2kλ) + τ2k)

2 sinλ
,

a−2k−1 = −
sin ((2k−1)λ)

c
+ iε

cos ((2k−1)λ) + τ2k−1

2c sinλ
,

a−2k = −
sin ((2k+1)λ)

c
− iε

sin (2kλ) sin ((2k+1)λ)

2c(cos (2kλ) + τ2k) sinλ
.
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Exactly the same cubic algebra (!)

[A0,A±A∓] = 0,

{A0,A2
±} = 2∆A±A0A±,

2∆{A2
0,A±} − 4A0A±A0 = {A∓,A2

±} − 2A±A∓A±,
2∆[A2

0,A±] = [A∓,A2
±].

with modified boundary relations:

〈0|A− = 〈0|A+(A−A+ − iε1) = 〈0|A+A2
− = 0,

A+|0〉 = (A−A+ − iε1)A−|0〉 = A2
+A−|0〉 = 0,

〈0|A0 = 〈0|, A0|0〉 = |0〉, 〈0|A+A−|0〉 = iε.
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Explicit calculation of the profiles/correlators for the isotropic case ∆ = 1

[T, [T,V]] = −ε
2

4
(2V + {T,V}),

〈0|(T− V) = 〈0|, (T + V)|0〉 = |0〉,
〈0|Tn|0〉
〈0|Tn−1|0〉 ' ε

2
(

(4n − 3)2

32π2 − α
)

+ 1 +O(n−1),

In the continuum limit M(x ≡ j−1
n−1 ) := 〈σz

j 〉 we get ODE M ′′ = −π2M /w b.c.
M(0) = −M(1) = 1

M(x) = cos(πx) +O(
1
n

)

Similarly for the 2-point correlator C(x ≡ j−1
n−1 , y ≡

k−1
n−1 ) := 〈σz

j σ
z
k〉 − 〈σz

j 〉〈σz
k〉,

C(x , y) =
π

4n
f (min(x , y),max(x , y)) +O(

1
n2 )

f (x , y) = 2πx(y − 1) sin(πx) sin(πy)

+ cos(πx)((1− 2y) sin(πy) + π(y − 1)y cos(πy)).
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Conclusions

t-DMRG in Liouville space is an efficient simulation technique to capture
non-equilibrium steady states of 1D quantum chains

Non-equilibrium boundary driving allows for exact solutions in some cases:
emerging "non-equilibrium integrability" (?)

Spin and charge diffusion observed in certain fully coherent strongly
interacting systems, even in some cases where the bulk is Bethe Ansatz
integrable (!)
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