

Evidence for a new boson in the search for the Standard Model Higgs particle decaying to four leptons at CMS

Dott. Marco Meneghelli

Advisors: **Prof. F.L. Navarria** Dott. F.R. Cavallo Dott. P. Giacomelli Dott. S. Braibant

The Standard Model (SM) and the Higgs boson

• The SM of elementary interactions is a QFT built on symmetry principles:

$SU_c(3) \times SU_L(2) \times U_Y(1)$

- It describes matter as composed by fermion fields that interact exchanging vector bosons
- An elementary scalar field is present in the theory
- The electroweak spontaneous symmetry breaking mechanism gives rise to the mass of the bosons W and Z and predicts the existence of a scalar boson: the Higgs
- The scalar boson couples also to fermions, via Yukawa-like interactions, introducing mass-terms in the theory Lagrangian
- The mass of the Higgs boson is a free parameter of the theory

$$V(\phi^{\dagger}\phi) = \lambda(\phi^{\dagger}\phi)^2 + \mu^2 \phi^{\dagger}\phi$$

$$SU_L(2) \times U_Y(1) \to U_{em}(1)$$

Search for the Higgs boson at the LHC

- The LHC is a proton-proton collider: CM energy: 7 - 8 TeV, Luminosity: O(10³³-10³⁴) cm⁻²s⁻¹
- Main difficulty is to discriminate signal processes against the background
 - very different final states
- Higgs production
 - − Gluon fusion: $gg \rightarrow H$
 - VBF: VV→H
 - Associate prod: HV
 - Associate top: Htt
- Best search channels:
 - H→ZZ→4I
 - H→γγ (low mass)
- Other search channels:
 - $H \rightarrow bb$ (low mass)
 - − $H \rightarrow WW \rightarrow 2I2v$
 - $H \rightarrow \tau \tau$ (low mass)

Up-to-2012 scenario

- <u>up to 2011</u>:
 - LEP and Tevatron direct exclusions (95% CL)
 - Best fit to EW/SM data suggests a light Higgs

• <u>2011</u>:

- CMS excludes m_H in [**127**,600] GeV
- ATLAS excludes
 m_H in [111.4,116.6] U [119.4,122.1] U
 [**129.2**,541] GeV

The Compact Muon Solenoid (CMS) experiment

- Studies the p-p collisions at high energy
- Compact cylindrical structure, built around the solenoid (3.8 T)
- Central silicon tracker
- Electromagnetic calorimeter (ECAL) and hadronic calorimeter (HCAL)
- Redundant muon system

Physical object reconstruction at CMS

- The particles are identified from the different behavior in the detector
- Particle Flow algorithm yields a global description of the event

Lepton reconstruction and identification at CMS

- Global and tracker muons, reconstructed matching tracker & muon system information (p_T>5, |η|<2.4)
- Particle Flow Muons
 - requirements on track components
 - energy deposits in the calorimeters

- Gaussian Sum Filter electrons, reconstructed matching tracker & ECAL information (p_T>7, |η|<2.5)
- multivariate BDT identification:
 - bremsstrahlung
 - matching tracker-ECAL
 - shower shape

Efficiency ~60 → 85 % ($p_T < 10 \text{ GeV}$) ~90 → 95 % ($p_T > 20 \text{ GeV}$)

Efficiency ~ 98%

Prompt lepton selection

- The leptons used in the analysis are required to be **isolated**, i.e. not contained in a jet
 - Lepton isolation is evaluated summing the p_T of tracks or energy deposits in a cone around the track of each lepton, and normalizing to the lepton p_T (**Iso**)
- The leptons are required to come from a **common primary vertex** to discriminate against secondary leptons
 - Significance of impact parameter: $|SIP_{3D}| = |IP_{3D}/s_{IP}| < 4$

Experimental signature:

4 isolated leptons coming from the Primary Interaction Vertex

- Resonance peak in the 4-lepton mass distribution with excellent resolution, O(GeV)
- Ratio signal:background locally of the order 1:1 ۲
 - Irreducible background: the **ZZ continuum**
 - Reducible backgrounds: Z+jets, tt, WZ, QCD
- Good sensitivity in a wide mass range $115 < m_{H} < 700 \text{ GeV}$

Data and simulations

- <u>Public data</u>, collected in 2011 and 2012:
 - 5 fb⁻¹ with protons colliding at 7 TeV
 - 12 fb⁻¹ with protons colliding at 8 TeV
- MC simulations of signal and background processes using Pythia, Powheg, Madgraph and a <u>full detector simulation</u> with Geant4

$Z \rightarrow I^+I^-$: event selection

- <u>Before</u> going to the 4-lepton analysis it is useful to study the single Z decay to two leptons → high statistics → highlights the systematics
- Event selection:

Final State Radiation (FSR) recovery

Associating FSR photons to Z candidates \rightarrow gain ~2-3% of signal efficiency

Higgs 126 GeV (MC)

Single Z

(2011 data)

Estimate of sytematics using $Z \rightarrow I^+I^-$

- The not-perfect matching between data and MC highlights the presence of systematics:
 - Lepton ID, isolation and SIP
 - Trigger
 - Integrated luminosity
 - Detector calibration
- Better agreement in 7 TeV data

Mismatch data-MC	7 TeV	8 TeV	
z→μμ	1.9%	9.2%	
Z→ee	0.8%	0.7%	

14

The $H \rightarrow ZZ \rightarrow 4l$ analysis: **Event selection**

Signal modeling

- The signal yields are estimated directly from theory + MC
 - for a low mass <u>Higgs O(10) events are expected to pass the final selection</u> (summing all the final channels 4μ 4e 2e2μ)
- Systematic uncertainties on cross section
- Systematics on efficiency \rightarrow from $Z \rightarrow |+|^{-}$ systematics

Signal modeling

- The peaking mass distribution can be modeled in many ways
 - Chosen an <u>effective parameterization</u>, valid at low masses:
 Student-t + Crystal-Ball for the left tail

۲

```
The same pdf is used for Higgs masses from m<sub>H</sub>~115 GeV to m<sub>H</sub>~180 GeV,
the pdf shape is propagated making its parameters mass-dependent
```


Reducible background (Z+jets, tt)

- Data-driven method:
 - Control Region (CR) defined inverting the cuts on Isolation/SIP
 - Data collected in the CR are **fitted** to extract the Z+jets and tt yields
 - Extrapolation to Signal Region (SR) using MC
 - Mass shapes from MC
- Data yield in the CR are well understood

Reducible background

- Data-driven method:
 - large uncertainty on yields, dominated by low-MC statistics
 - still acceptable results, minor degradation of final sensitivity

Process	N _{sR} (rel.err.)		
Z+jets - 4µ	3.3 ± 1.9 (59%)		
Z+jets - 4e	2.0 ± 2.1 (105%)		
Z+jets - 2e2µ	1.7 ± 1.2 (72%)		
tt - 4µ	0.1 ± 0.1 (59%)		
tt - 4e	0.2 ± 0.1 (57%)		
tt - 2e2µ	0.7 ± 0.2 (29%)		

Irreducible background

- $qq \rightarrow ZZ/Z_{\gamma}$ $gg \rightarrow ZZ$ $ZZ \rightarrow 2I2\tau$
- The pure predictions from theory-MC are reliable
- Mass shape
 - empirical fit to the ZZ continuum
 - − Voigtian peak for the $Z \rightarrow 4I$
 - Landau convoluted with a Gaussian for $ZZ \rightarrow 2I2\tau$

Irreducible background

- A Data-driven technique is used to control the yields from data
 - **Renormalization Band (RB)** for $m_{41} > 180$ GeV (signal free region)
 - Global yield in SR renormalized to the number of events found in the RB

	RB	4μ	4e	2e2µ	тот	Global	ZZ/Zy	gg→ZZ	ZZ
	N ^{MC} _{RB}	70.36	48.91	109.18	228.45	yield SR			→2l2τ
	N ^{DATA} _{RB}	71	46	129	246	4μ	98.4 ± 11.7	5.3 ± 0.6	1.5 ± 0.2
/(6 GeV)	40	⁴ 4 i final state: L ^{7 TeV} =5.05 fb ⁻¹ , L ^{8 TeV} =11.93 fb ⁻¹					52.1 ± 7.7	3.6 ± 0.5	1.0 ± 0.1
Events	30		• data $q\overline{q} \rightarrow ZZ (Z \gamma^*)$ reducible $gg \rightarrow ZZ$ $q\overline{q} \rightarrow ZZ$				155.6 ± 13.7	10.7 ± 0.9	2.1 ± 0.2
		тт		/		тот	306.2 ± 19.6	19.6 ± 1.2	4.6 ± 0.3
	$10 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 1 & 1 & 1 & 1 & 1 \\ 0 & 200 & 250 & 300 & 350 & 400 & 450 & 500 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$					With DD technique: Statistics <u>uncertainties</u> (of the same order of systematic ones, that are now removed)			

Results

- Data excess peaking around 126
 GeV over the almost flat background
- A statistical analysis is necessary to evaluate its significance

[110,180]	4μ	4e	2e2µ	тот
ZZ	11.2	5.5	19.3	36
ggZZ	0.4	0.2	0.9	1.6
<i>212</i> τ	0.9	0.5	1.8	3.3
Red.	2	1.4	1.6	5.5
Total bkg	14.5	7.7	23.7	45.8
Obs	20	14	26	60

22

The $Z \rightarrow 41$ peak

- The Z→4l peak is a benchmark to test the capability to correctly reconstruct a 4l-peak
 - we fit correctly its position, and we have an estimate of 4I-mass resolution

[70,100] GeV	4μ	4e	2e2µ	тот
MC	20	5.8	15.8	41.6
DATA	30	8	9	47

Statistical analysis – the CLs method

- Statistical analysis performed with the **profile likelihood method**:
 - Observable: $m_{41} \rightarrow$ distributions specified under S+B and B hypotheses
 - Parameter of interest: μ = XS/XS_{SM}
 - Modeling of systematic uncertainties θ
- Significance of an excess:

$$q_0 = -2\lograc{L(data|b(\hat{ heta}_0))}{L(data|\hat{\mu}\cdot s(\hat{ heta})+b(\hat{ heta}))} \qquad \hat{\mu} \geq 0$$

 \rightarrow Hat (^) if fitted to data

$$p_0 = P(q_0 \ge q_0^{obs} | b)$$

95% CL upper limits → exclusions:

Statistical analysis – Upper limits

- Excluded mass range at 95% CL: > 130 GeV
- Excess wrt background at low mass prevents to exclude the signal here

Statistical analysis – Results

Largest excess wrt backround at $m_{H} = 126 \text{ GeV}$: local significance 4.1 σ

Measurement of properties

- Fit to cross section: $\mu = \sigma/\sigma_{SM} = 1.03 \pm 0.36$
- Graphical fit to the **mass**: **m**_H = **126.2** ± **0.55 GeV**

Final Results

- The event distribution is in good agreement with SM expectations
- **Peak around 126 GeV** over the almost flat background, compatible with what expected for the SM Higgs

Conclusions

- The results for the SM Higgs search at CMS in the H→ZZ→4l search channel have been presented. This search makes use of the excellent detector performances in reconstructing physical objects
- Data-driven techniques to control the background help to avoid biases
- The search sees an excess in data compatible with the Standard Model Higgs boson → local significance 4.1 standard deviations
- The fitted cross section is 1.03 ± 0.36 the standard model prediction
- The fitted **mass** is **126.2 ± 0.55 GeV**
- The analysis can be considered a cross-check of the CMS official one
- More precise results require more data:

22 fb⁻¹ collected by the end of 2012 at 8 TeV

Backup

Z→II

Reducible bkg- Fit in CR

Irreducible bkg

Full mass spectrum

Upper limits

37

Local p-value

Event display – 4mu 7 TeV

Event display – 4e 7 TeV

Event display – 2e2mu 8 TeV

2012: a historic year

4th July 2012: the CMS and ATLAS collaborations announce the observation of a new boson with a mass ~125 GeV, with a local significance of ~5σ in both experiments

Official CMS results on $H \rightarrow ZZ \rightarrow 4I$

• The previous results must be considered a cross-check of the official ones

Official CMS results on $H \rightarrow ZZ \rightarrow 4I$

- Largest excess wrt backround at m_H = 126 GeV: local significance 4.5σ
- Excluded mass range at 95% CL: [113,116] U [129,720] GeV
- cross section: $\mu = 0.8^{+0.35}_{-0.28}$
- mass: m_H = 126.2 ± 0.6 (stat) ± 0.2 (syst)

