

UNIVERSITÀ DI BOLOGNA

MEASUREMENT OF THE ZZ PRODUCTION CROSS SECTION AND LIMITS ON ANOMALOUS NEUTRAL TRIPLE GAUGE COUPLINGS WITH ATLAS

Presented by Alberto Mengarelli

Supervisors: Prof. Antonio Zoccoli Dott. Benedetto Giacobbe

OUTLINE

Introduction to the measurement

- Analysis overview (Event selection, Background estimate, ZZ candidate distributions)
- Measurements:
 - pp--> ZZ cross section results @ $\sqrt{s} = 7$ TeV
 - Unfolded differential distributions
 - Limits on nTGC
- Conclusions

Introduction 1/2

- pp-->ZZ^(*)-->4I production is a rare process but with clear signature and low background
- Gluon-gloun fusion contribution is $\sim 6 \%$ of the cross section

-Predicted SM ZZ total cross section at $\sqrt{s} = 7$ TeV value is 5.89^{+0.22} pb.

Introduction 2/2

• Stringent SM test of the structure of the electroweak sector

-Enhancement of cross section could imply new physics such as nTGC

Luminosity of the Sample

- More than 5 fb⁻¹ of total integrated Luminosity delivered by LHC in 2011
- ATLAS data taking efficiency of ~94%

ATLAS 2011 Z Counting Analysis

ATL-PHYS-INT-2012-049

and luminosity uncertainty

Uncertainty Source	$\delta \mathscr{L}/\mathscr{L}$	$\mathscr{E}[\%]$
Data Year	2010	2011
Bunch Population Product	3.1	0.5
Other vdM		
Calibration Uncertainties	1.3	1.4
Afterglow Correction		0.2
BCM Stability		0.2
Long-Term Consistency	0.5	0.7
μ Dependence	0.5	0.5
Total	3.4	1.8

- An uncertainty estimation of 3.9% (preliminary) used in this analysis

 Further studies led to a lower uncertainty value on 2011 sample

The ATLAS Detector

General purpose experiment

- Inner Detector tracker
 - EM calorimeter
 - Hadronic calorimeter
- Muon detector

All main ATLAS subsystems are used to perform the measurement

Lepton Selection

- Events with only charged leptons in the final state are used

Muons

- Combine Muon Spectrometer tracks with Inner Detector tracks

```
- Kinematic cuts: |\eta| < 2.7 , p_{_{T}} > 7~GeV
```

Electrons

- Combine electromagnetic clusters with Inner Detector tracks

- Kinematic cuts: $|\eta| < 3.16$, $p_{_{T}} > 7~GeV$

Apply requirements to leptons on ID track isolation, calorimeter isolation and longitudinal and transverse impact parameters to reject particle not coming from IP and fake leptons

Triggered lepton must have $p_{\tau} > 25$ (20) GeV for electrons (muons)

Event Selection

Display of a selected ZZ-> $\mu^+\mu^-\mu^-\mu^-event$ with m^{4µ} = 239.7 GeV and p_T^{4µ} = 22.0 GeV Events with exactly four leptons passing previous selection

Same-flavour opposite-sign pairs. Minimizing $|m_{12} - m_z| + |m_{34} - m_z|$

ZZ selection

Both pairs required to be on-shell: $66 < m_{_{7}} < 116 \text{ GeV}$

ZZ* selection

 Z_1 required to be on-shell: $66 < m_{Z1} < 116 \text{ GeV}$ while Z_2 : $m_{Z2} > 20 \text{ GeV}$

Background Estimate

Main backgrounds are $Z \rightarrow l^+l^-$ with additional jets or photons, t- tbar, single-top and other diboson processes (WW, WZ). All involve one or more fake leptons

We can measure the number of selected leptons (L) and number of lepton-like jets that fail one or two of the lepton ID cuts (J)

The estimated background is:

$$N_{4\ell}^{\text{fake}} = (N_{LLLJ} - N_{LLLJ}^{ZZ}) \times FF - N_{LLJJ} \times FF^2$$

$$FF(p_{\mathrm{T}},\eta) = \frac{FF(p_{\mathrm{T}}) \times FF(\eta)}{\langle FF(p_{\mathrm{T}},\eta) \rangle}$$

Fake Factors FF, the ratio of "selected" leptons to "leptonlike" jets in data, are measured using Z tag method

ZZ> ⁺ ⁻ ⁺ ⁻	ZZ selection	ZZ* selection
Expected D.D. bkg	0.9 ± 1.1 ± 0.7	9.1 ± 2.3 ± 1.3
Predicted MC bkg	1.5 ± 0.4	8.3 ± 1.3

Good agreement between Data Driven and MC background estimation

Observed Events

Signal prediction using PowhegBox (NLO) MC generator with CT10 PDF set.

Candidate Distributions

- Invariant mass distribution of the leading and subleading Z without the window mass cut
- Red line regions correspond to the mass window cut for the ZZ selection

Candidate Distributions

- Invariant mass (top) and transverse momentum (bottom) of the four lepton system
- Good agreement between data and Monte-Carlo

Fiducial & Total Cross Section Definition

Acceptances Definition

Reconstruction Acceptance Factor C_{ZZ}

 Extrapolates the number of reconstructed events to the true number of events in the fiducial phase space

 $C_{ZZ} = \frac{N_{Reconstructed\ ZZ}^{MC\ Pass\ All\ Cuts} \cdot SF}{N_{Generated\ ZZ}^{MC\ Fiducial\ Volume}}$

Total Acceptance Factor Azz

 Correction applied to extrapolate from the fiducial volume to the full phase space

$A_{ZZ} =$	$N_{Generated \ ZZ}^{MC \ Fiducial \ Volume}$
	$N^{MC\ All}_{Generated\ ZZ}$

$\ell^-\ell^+\ell^-\ell^+$ channel	A_{ZZ}	C_{ZZ}
ZZ^* Selection	$0.757 \pm 0.001 \pm 0.019$	$0.542 \pm 0.002 \pm 0.022$
ZZ Selection	$0.804 \pm 0.001 \pm 0.010$	$0.552 \pm 0.002 \pm 0.021$

Syst. unc. from measurement ---> Czz

Syst. unc. from theory ---> Azz

Source %	ee	ee	μμ	$\mu\mu$	ee	$\mu\mu$	11	11	
Reconstruction Uncertainties	ZZ	ZZ^*	ZZ	ZZ^*	ZZ	ZZ^*	ZZ	ZZ^*	
e energy resolution	< 0.1	< 0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
e energy scale	0.5	0.6	-	-	0.1	0.1	0.1	0.2	
e identification efficiency	5.5	6.0	-	-	2.7	2.8	2.4	2.5	
e reconstruction	3.9	4.0	-	-	1.9	2.0	1.7	1.7	
e isolation/z0/d0Sig	3.3	3.6	-	-	1.6	1.7	1.4	1.5	
μ momentum resolution	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	J
μ momentum scale	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
μ reconstruction efficiency	-	-	1.2	1.2	0.6	0.6	0.7	0.7	
μ isolation/z0/d0Sig	-	-	2.2	2.4	1.1	1.2	1.3	1.3	
IP Resolution	< 0.1	< 0.1	0.4	0.4	0.3	0.3	0.3	0.3	J
Trigger	< 0.1	< 0.1	0.3	0.4	0.1	0.2	0.2	0.2	
Total Reconstruction Uncertainty (C_{ZZ})	7.5	8.1	2.6	2.7	3.9	4.1	3.5	3.7	
Theoretical Uncertainties	ZZ		ZZ*						
MC Generator Difference (C_{ZZ})	1.6			1.5					
PDF & Scale (A_{ZZ})	0.6			2.5					
MC Generator Difference (A_{ZZ})	1.1			0.2					
Total (A_{ZZ})	1.3			2.5					
Total (C_{ZZ})	7.7	8.3	3.0	3.1	4.2	4.3	3.9	4.0	
Luminosity	3.9								

Dominant uncertainties from electron and muon Reconstruction, Identification and Isolation

Evaluated using Sherpa MC

Evaluated using CT10 pdf error set changing factorization and renormalization scale by a – factor 2

Cross Section Results

Fiducial cross sections

 $\sigma_{ZZ \to \ell^- \ell^+ \ell^- \ell^+}^{\text{fid}} = 25.4^{+3.3}_{-3.0}(\text{stat.})^{+1.2}_{-1.0}(\text{syst.}) \pm 1.0(\text{lumi.})(\text{fb})$

 $\sigma_{ZZ^* \to \ell^- \ell^+ \ell^- \ell^+}^{\text{fid}} = 29.8^{+3.8}_{-3.5} (\text{stat.})^{+1.7}_{-1.5} (\text{syst.}) \pm 1.2 (\text{lumi.}) (\text{fb})$

Unfolded Differential Distributions

• Goal: Plot p_{τ}^{z} , m^{zz} , $\Delta \phi(I,I)$

• Use MC truth (x) & MC reconstructed (y) to find the response matrix A used for unfolding

• Use A to unfold the distribution found in data

Bayesian iterative unfolding method used

MC Closure Tests

Closure tests are performed to check the unfolding framework using MC distribution as pseudo-data

Using same MC (PowhegBox) The unfolded and truth disributions are found to match exactly Additional systematics evaluated using the difference in using Response Matrix from Sherpa MC

Unfolded Distributions: P_{τ}^{z}

The distributions are normalised to the ZZ fiducial cross-section previously defined

Unfolded data distributions in agreement with SM prediction

Unfolded Distributions: m^{zz} , $\Delta \varphi(l, l)$

- The uncertainty on the unfolded distributions is dominated by the statistical uncertainty
- Consistency with the SM predicted distributions

Lagrangian with general ZZV couplings parametrised using two CP-violating (f_4^{V}) and two CP-conserving (f_5^{V}) parameters

$$L = \frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

$$f_i^V(s) = \frac{f_{i0}^V}{(1 + s/\Lambda_{FF}^2)^n}$$

Benchmark reference: Baur&Rainwater, PRD62 113011 (2000)

• n = 3

- Λ_{FF} is the scale for new physics
 Λ_{FF}=2 TeV preserves unitarity, less general
 - No Form Factor violates unitarity at high energy, no model assumptions

Anomalous Triple Gauge Couplings

- Shape difference between SM and TGC distributions
- Enhanced yields at high p_T^Z predicted if any nTGC, not observed in data

Anomalous Triple Gauge Couplings Reweighting procedure

Differential cross section has quadratic dependence on nTGC's

- Yield coefficients in each p₊ bins are derived
- Sherpa MC generator sample with $f_{A}^{\gamma} = 0.0$; $f_{5}^{\gamma} = -0.1$; $f_{A}^{z} = 0.0$; $f_{2}^{2} = 0.0$ used

$$R(\vec{x}) = \frac{L_{prof}(\vec{x})}{\max[L_{prof}(\vec{x}')]}$$

Limits are set using a maximum profile likelihood ratio

if 95% of pseudo experiments have larger profile likelihood ratio than actual experiment did, the nTGC value is rejected at 95% CL

Anomalous Triple Gauge Couplings

Conclusions

- pp-->ZZ total cross section measurement at \sqrt{s} = 7 TeV is consistent with SM prediction
- Measured unfolded differential distributions of $P_{\tau}^{\ z},m^{zz}$ and $\Delta \phi^{(I,I)}$

are consistent with SM

 Limits on nTGC set using P^z_T distribution measured with 4.64 fb⁻¹ statistics show no deviation from SM prediction and are the most stringent so far

http://arxiv.org/abs/1211.6096To be published
soon in JHEPTo be published
and limits on anomalous ZZZ and ZZ\gamma couplings with the
ATLAS detector

BACKUP SLIDES

Cross section results

The profile likelihood function for the cross section is the product of a Poisson probability distribution (P) and Gaussian distribution function for each of the nuisance parameters (C_{zz} , A_{zz} , N^{bkg} , L) affected by a systematic uncertainty. The Poisson function for the number of observed events N^{obs} is

$$P(\sigma, C_{ZZ}, N^{bkg}; N^{obs}) = \frac{e^{-(s(\sigma, C_{ZZ}) + N^{bkg})} \cdot \left(s(\sigma, C_{ZZ}) + N^{bkg}\right)^{N^{obs}}}{N^{obs}!}$$

where the number of signal events is a function of the cross section, the background N^{bkg} and other quantities such as the integrated luminosity and correction factors.

For the total cross section

$$s(\sigma_{ZZ}^{\text{tot}}, C_{ZZ}) = \sigma_{ZZ}^{\text{tot}} \times C_{ZZ} \times A_{ZZ} \times \text{BR}_{\text{comb}}(ZZ \to \ell^- \ell^+ \ell^- \ell^+) \times \mathcal{L}$$

$$BR_{comb} = 4 \times 0.033662^2 = 4.5 \times 10^{-3}$$

Differential cross section has quadratic dependence on nTGC's

• F_{...}: SM contribution

- F_": coefficients consisting of contributions from anomalous couplings (expected signal yield in each bin as a function of the **nTGC** parameter)
- $d\sigma_{\rm SM+TGC} = F_{00} + f_{4}^{\gamma}F_{01} + f_{4}^{Z}F_{02} + f_{5}^{\gamma}F_{03} + f_{5}^{Z}F_{04}$ + $(f_{4}^{\gamma})^{2} F_{11} + f_{4}^{\gamma} f_{4}^{Z} F_{12} + f_{4}^{\gamma} f_{5}^{\gamma} F_{13} + f_{4}^{\gamma} f_{5}^{Z} F_{14}$ + $(f_4^Z)^2 F_{22} + f_4^Z f_5^\gamma F_{23} + f_4^Z f_5^Z F_{24}$ + $(f_5^{\gamma})^2 F_{33} + f_5^{\gamma} f_5^Z F_{34}$ $+ (f_5^Z)^2 F_{44}$
 - Yield coefficients in each pT bins are derived
 - Sherpa MC generator sample with $f_{a}^{\gamma} = 0.0$, $f_{5}^{\gamma} = -0.1$ $f_{a}^{Z} = 0.0$ $f_{5}^{Z} = 0.0$ used to calculate the reweighted coefficients above

Likelihood function: Poisson probability with Gaussian terms for nuisance parameters and N_{sig} expressed as functions of nTGC coefficients

$$L(\vec{x}, \vec{\beta}) = \prod_{i=1}^{m} P(N_{\text{data}}^{i}, \mu^{i}(\vec{x}, \vec{\beta})) \times \frac{1}{(2\pi)^{m}} e^{-\frac{1}{2} \left(\vec{\beta} \cdot C^{-1} \cdot \vec{\beta} \right)},$$
$$\mu^{i}(\vec{x}, \vec{\beta}) = N_{\text{sig}}^{i}(\vec{x})(1 + \beta_{i}) + N_{\text{bkg}}^{i}(1 + \beta_{i+m}).$$

$$N_{\text{sig}} = (Y_{\text{SM}} + Y_{f_i^V} \cdot f_i^V + Y_{f_i^V f_i^V} \cdot (f_i^V)^2) \cdot \mathcal{L} \cdot C_{ZZ}.$$

Anomalous Triple Gauge Couplings

- Pseudo experiments are performed fluctuating the data around the oserved N_{events}
- Limits are calculated by setting deltaLog likelihood to 1.92

No FF	Couplings expected observed	f ₄ [-0.017,0.017]±0.0005 [-0.020,0.020]	f ₅ ^γ [-0.015,0.015]±0.0004 [-0.017,0.017]	f ₄ ^Z [-0.017,0.017]±0.0005 [-0.020,0.020]	f ₅ ^Z [-0.015,0.015]±0.0004 [-0.017,0.017]
Λ _{FF} = 2 TeV	expected	[-0.038,0.038]±0.0010	[-0.031,0.032]±0.0008	[-0.039,0.038]±0.0010	[-0.032,0.032]±0.0008
	observed	[-0.044,0.044]	[-0.037,0.037]	[-0.045,0.045]	[-0.037,0.038]