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Statistical mechanics of self-gravitating systems

• A lot of theory and numerical simulations + astrophysical
observations...

• What about lab experiments?

An effective interaction mimicking gravity is needed...

Ultimate goal: a tabletop analog of a galaxy or globular cluster...

More accessible goals: find signatures of the special phase
transitions of self gravitating matter, and/or uncover new
phenomena with long-range attractive interactions



Dynamics and thermodynamics of self-gravitating systems

Setting: a large number of classical particles interacting through
(Newtonian) gravitation
+ Hamiltonian or Langevin dynamics.
Question: What is the long time behavior of such a system?
Difficulties: long-range interaction, short range singularity
→ Special features:

I no usual thermodynamic limit: properly defined scaling
parameters needed

I peculiar phase transitions: gravothermal catastrophe,
isothermal collapse

I regimes with negative specific heat

I slow relaxation to equilibrium...



Langevin equations for self-gravitating particles

ẋi = vi

mv̇i = Fi −mγvi +
√

2Dηi (t)

Potential:

1D: V = G1m2
∑
i<j

|xi − xj |

2D: V = G2m2
∑
i<j

ln |xi − xj|

3D: V = −G3m2
∑
i<j

1

|xi − xj|

• γ = D = 0: Hamiltonian dynamics; of interest in astrophysics
• γ → +∞ (overdamped limit): ∼ a discrete version of the
Patlack-Keller-Segel model in chemotaxy.



Kinetic equations

• In the appropriate scaling limit, one expects a Vlasov-Fokker-
Planck equation (physicists usually do not pay much attention to
the validity of this limiting procedure...);
f (x, v, t) = probability density for one particle:

∂f

∂t
+ v · ∇xf +

1

m
Fint [f ] · ∇vf = ∇v · (γvf + D∇vf )

Fint = −∇φint ; ∆φint = cDmρ

• Vanishing noise and friction → Vlasov equation
• Large friction limit → Smoluchowski equation

∂ρ

∂t
= ∇ ·

(
1

mγ
Fint [ρ]ρ+

D

γ2
∇ρ
)



A heuristic computation

• Assume a gaussian density profile, and compute the rms
size λ(t)

ρ =
1

(λ(t)
√

2π)D
e
− x2

2λ2(t)

1D:

λ̇ =
2D

γ
− C1λ → stable fixed point

2D:

λ̇ =
4D

γ
− C2 → critical case

3D:

λ̇ =
6D

γ
− C3

λ
→ unstable fixed point

• Note that qualitatively, this does not depend on the profile
• Experimental signature?



Outline

I Trapped cold atoms and long-range laser induced interactions

I A quasi 1D experiment
I Towards a 2D experiment?

I Theory
I Simulations
I Experimental challenges



Cold atoms

• 80’s-90’s : manipulating (trapping, cooling) atomic vapors with
lasers:
Goal: reach Bose-Einstein condensation.

• Cold atomic vapors interacting with quasi resonant lasers ∼
systems of stochastic interacting particles

→ systems also interesting for themselves



Trapped cold atoms

• Techniques developed in the 80’s, now routinely used.

Red detuned laser beams

Velocity Net force

Moving atom

Doppler effect → a friction
Spatial trapping: through a magnetic field gradient, or a dipolar
trap.



Trapped cold atoms - Multiple diffusion

• Multiple diffusion → ”Coulomb-like” repulsion (Walker, Sesko,
Wieman 90).

Net force

Photons

Atom 1

Atom 2

→ A research program: instead of considering the repulsion as a
limitation, take advantage of it to study ”plasma-like” effects in a
cloud of cold atoms.



Shadow effect

Laser attenuation → laser unbalance → effective attraction. This
effect has been known since the 80’s (Dalibard)

Atom 1 Atom 2
Laser beam Attenuated beams

I+ I-

Hypothesis: small optical thickness (weak attenuation)

I+(z) = I0e−σ̄
∫ z
−∞ ρ(s)ds ' I0

(
1− σ̄

∫ z

−∞
ρ(s)ds

)
~Fshadow ∝ I+ − I− ⇒ div(~Fshadow ) ∝ −ρ

→ a ”gravity-like” interaction...
Problem: the repulsive force is stronger...



Repulsive vs attractive

• Under normal circumstances, the repulsive force dominates
→ a kind of dissipative plasma (R. Kaiser, T. Mendonça, H.
Tercas)...
But the most spectacular collective effects are expected for
attractive forces...

• For specific geometries (cigar- or pancake shaped cloud), the
attractive force should dominate
→ something that looks like a self-gravitating system in the lab??

• Brownian self-gravitating particles in 2D: critical case, with a
finite time blow up possible...
→ an experimental realization of the collapse ??



Simplifying assumptions

I Photon absorption and reemission time scale very short (±
OK ?)
→ we can average over this short time scale

I Small optical width hypothesis (± OK)
→ the laser intensities disappear, replaced by an effective
interaction

I The radiation pressure force is linearized in vz (Dangerous!)
→ it is decomposed into

1. A linear friction ∝ −vz
2. The shadow effect

I Diffusion coefficient taken to be space independent (Probably
wrong, but not crucial).

→ a system of SDE for interacting particles

The validity of the assumptions depend of course on the
experimental realization.



Vlasov-Fokker-Planck description

• System of interacting particles → a non linear Fokker-Planck
equation taken as starting point
Discrete effects are neglected here (validity? Not completely clear)

∂f

∂t
+ v · ∇xf +

1

m
(Ftrap + Fint [f ]) · ∇vf = ∇v · (γvf + D∇vf )

with Fint = interaction force: ”Coulomb-like” multiple diffusion +
”gravitation-like” shadow effect



Reduction to D = 1 for a cigar shaped cloud

Further simplifying assumption:
Fast transverse equilibration (± OK ?)
→ Transverse degrees of freedom integrated out
→ an effective 1D Vlasov Fokker Planck equation

∂f

∂t
+ v

∂f

∂z
+ (−ω2

0z + Fint [f ](z))
∂f

∂v
=

∂

∂v

(
γvf + D

∂f

∂v

)
→ in principle, equation identical to Vlasov-Fokker-Planck for 1D

self gravitating Brownian particles



Theoretical predictions, 1D case

• No phase transition; equilibrium density profile

ρ(z) =
c

cosh2(z/L)

• Asymptotic dynamics: convergence to the equilibrium profile
• The size L ∝ 1/N



The experiment
• Experiment: Maryvonne Chalony, David Wilkowski (Institut Non
Linéaire de Nice)
• Strontium; size ∼ 500µm; temperature ∼ 2µK ; number of
atoms N ∼ 105.

Oven Slower 
Zeeman

Sr 
Beam



Experimental signatures: cloud’s size

Theory, in the self gravitating limit (trap=negligible): L ∝ 1/N
L = cloud’s size; N = number of atoms
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N vs 1/L. Red: T ' 1.5µK , Blue: T ' 2.1µK ; the theory includes the trap.

→ qualitative agreement; difficult to be more precise...
At least, the size decreases when the number of particles increases.



Experimental signatures: density profile

Theory, in the self-gravitating limit (trap=negligible):

ρ(z) =
N

2L

1

cosh2(z/L)

Experimental profile vs theory with 1/rα forces, α = −1, 0, 1/2.



Experimental signatures: breathing frequency

Effective interaction are turned on → relaxation to the new
”self-gravitating” stationary state through breathing oscillations.

Theory: the breathing frequency depends on the compression
factor c and the force exponent α

ωbr = ω0

√
(3− α)(c2 − 1) + 4

c=cloud’s size without interaction/ cloud’s size with interaction
α= force exponent; α = 0 for 1D gravity.

Experiment: the breathing frequency is measured and compared
with the theory including the experimentally measured compression
factor, varying α.



Frequency vs compression

c2

Experimental frequency ratio (ω/ω0)2 vs compression factor c2

Theory = dashed line. From top to bottom, force exponent α = 0, 1, 2.



Some caveats

I Linearization in velocity
→ the force felt by an atom actually depends on its velocity!
This is a serious problem: in the experiments that have been
performed, the force is ”gravitation-like” in a velocity
averaged sense...

I The optical thickness is actually 0.2 ≤ b ≤ 0.6; this is not
very small... The optical thickness is also difficult to measure
precisely.

I The theoretical predictions depend very sensitively on the
laser detuning, which is difficult to set precisely.

→ the analogy with a self-gravitating system is only qualitative,
and the comparison with the theory cannot be really precise...



Reduction to D = 2 for a pancake shaped cloud
Same simplifying assumption as in 1D:
Fast transverse equilibration (± OK ?)
→ Transverse degrees of freedom integrated out
→ An effective 2D Vlasov Fokker Planck equation

∂f

∂t
+ v∇rf + (−ω2

0r +
1

m
Fint [f ](r))∇vf = ∇v · (γvf + D∇vf )

F x
int [ρ](x , y) = −c

∫∫
ρ(x ′, y ′)δ(y − y ′)sgn(x − x ′)dx ′dy ′

F y
int [ρ](x , y) = −c

∫∫
ρ(x ′, y ′)δ(x − x ′)sgn(y − y ′)dx ′dy ′

→ ∇ · Fint = −4cρ
→ Fint similar to 2D gravity (or Keller-Segel), but Fint is not a
gradient!



Theory, 2D self gravitating system

• Take trapped Brownian self gravitating particles in 2D.
• There is a critical temperature Tc such that:

T ≥ Tc → smooth equilibrium profile

T < Tc → Dirac peak in finite time

• Analytical tool: there is a Lyapunov functional (free energy)

J = T

∫
f ln f +

∫
1

2
v2f +

1

2

∫
φ[f ]f

which decreases in time.



Theory, pancake shaped cloud

Overdamped case, to simplify → one dimensionless parameter Θ

∂ρ

∂t
= ∇ · (F[ρ]ρ+ Θ∇ρ)

Fx [ρ](x , y) = −c

∫∫
ρ(x ′, y ′)δ(y − y ′)sgn(x − x ′)dx ′dy ′

Fy [ρ](x , y) = −c

∫∫
ρ(x ′, y ′)δ(x − x ′)sgn(y − y ′)dx ′dy ′

Question: What happens to the blow-up?
Problem: No free energy; our main analytical tool disappears!



Heuristic idea

• Assume a gaussian profile

ρ(x , y , t) =
1

2πλ2(t)
e
− x2+y2

2λ2(t)

And look for an equation for λ

λ̇ = 4Θ− 2
√

2

π

→ a critical parameter is predicted, like in 2D...



Heuristic computation, made rigorous...

• Classical and quick way to prove the existence of a finite time
blow up for Keller-Segel (or overdamped 2D gravity)= compute
the second moment m2(t) =

∫
x2ρ; here

ṁ2 = −2m2 + 4Θ−
∫
|x − x ′|ρ(x , y , t)ρ(x ′, y , t)dxdx ′dy

−
∫
|y − y ′|ρ(x , y , t)ρ(x , y ′, t)dxdydy ′

Red term is scale invariant. Can we prove that:

red term < −c < 0 ?

No, there are special profiles ρ such that the red term tends to 0...

→ Analytical tools??



Numerics, finite diference scheme

• Method: Finite difference scheme; implicit for the diffusion,
explicit for the nonlinear term (inspired by Saito for chemotaxy)
• Difficulty: When concentration increases, the time-step necessary
to ensure stability decreases...
• Results: There seems to be a critical parameter Θc ' 0.15 such
that

Θ > Θc → a smooth stationary profile

Θ < Θc → blow up

caveats: the spatial step is not very small; difficult to reach high
densities...



Numerics, finite difference scheme

Θ = 0.2 ; Central density vs Time, varying the grid size.
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T=0.2. Central density vs time, varying the spatial resolution

→ There seems to be no collapse...



Numerics, finite difference scheme

Θ = 0.1 ; Central density vs Time, varying the grid size.
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No convergence when the step decreases; → Collapse?



Numerics, with particles

• A natural way to simulate the Smoluchowski equation:
overdamped Langevin equations

ṙi = Fd(ri ) +
√

2Θηi (t)

• Difficulty: the two body interaction is not smooth at all

Kx = δ(y − y ′)sgn(x − x ′) , Ky = δ(x − x ′)sgn(y − y ′)

→ numerically, one needs to regularize the δ, introducing a new
length scale σ
→ the convergence properties of the discrete process when σ → 0
are not proved.
• With these caveats, the result is similar as above with Θc ' 0.12



Back to experiments

• Using dipolar trap, a pancake shaped trap is ”easy” to do.

• Using the experience of the 1D setting, it is possible to have an
idea of the parameter regime reachable in a Strontium experiment.
Θ ' Θc is in principle attainable.

• A precise quantitative agreement between model and experiment
is too optimistic (see the 1D experiment...); we may expect a
qualitative agreement.

• More numerical work is needed to convince the experimentalists
it is worth doing the experiment!



Other experimental proposals

• Some proposals in the literature (list probably not exhaustive!):

I O’Dell et al. (2000): Bose-Einstein Condensate + intense
off-resonant laser beams

I Dominguez et al. (2010): capillary interactions between
colloids at a fluid interface ∼ 2D gravity.

I Golestanian (2012): colloids driven by temperature gradients;
temperature field induced by the colloids

To my knowledge, no experimental implementation of these ideas...



Conclusions

I A cigar-shaped cold atomic cloud qualitatively described by a
1D self-gravitating model

I A finite time blow up is conjectured in a Smoluchowski
equation similar to Keller-Segel or 2D self-gravity, but
without free energy

I This equation models a cold atom experiment with a
pancake-shaped cloud; the blow up regime seems close to be
experimentally reachable.

I Outstanding theoretical questions remain:
I does the blow-up exists? how to prove it?
I if indeed it exists, what exactly does it look like?
I is the particles approximation correct?


