
Strumenti per la gestione delle immagini di

macchine virtuali

Creazione delle immagini,
Marketplaces, contestualizzazione

R. Brunetti, P. Veronesi

Agenda

• Images generation

• Marketplaces

• Contextualization

• Conclusions

2

IMAGE GENERATION

3

Generating VM Images

• Machine image creation might be a barrier to cloud adoption by
users
– Time consuming
– Usually not (or partially) integrated in the cloud stacks
– Requires knowledge of external tools

• Not completely disjoint from “contextualization”
• Perhaps it should be considered an “Admin’s problem” rather than a

“user’s problem”
– Brings some important issue on security (see

https://documents.egi.eu/document/771 : “Policy for the
endorsement and operation of VM images”)

• Getting virtual machine images from the WEB
• Creating your own images

– Manual receipts
– Images generator tools

• Oz
• BoxGrinder
• OpenNebulaApps - AppStage

4

https://documents.egi.eu/document/771

Getting virtual machine images

from the WEB
• Ubuntu images

– Canonical maintains an official set of Ubuntu-based images These accounts use ubuntu as
the login user.

– If your deployment uses QEMU or KVM, we recommend using the images in QCOW2
format. The most recent version of the 64-bit QCOW2 image for Ubuntu 12.04 is precise-
server-cloudimg-amd64-disk1.img.

• Fedora images
– The Fedora project maintains prebuilt Fedora JEOS (Just Enough OS) images for download

at http://berrange.fedorapeople.org/images .

– A 64-bit QCOW2 image for Fedora 16, f16-x86_64-openstack-sda.qcow2, is available for
download.

• OpenSUSE and SLES 11 images
– SUSE Studio is an easy way to build virtual appliances for OpenSUSE and SLES 11 (SUSE

Linux Enterprise Server) that are compatible with OpenStack. Free registration is required to
download or build images.

– For example, Christian Berendt used OpenSUSE to create a test OpenSUSE 12.1 (JeOS)
image.

• Rackspace Cloud Builders (multiple distros) images
– Rackspace Cloud Builders maintains a list of pre-built images from various distributions

(RedHat, CentOS, Fedora, Ubuntu) at rackerjoe/oz-image-build on Github.

5

http://uec-images.ubuntu.com/
http://uec-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img
http://berrange.fedorapeople.org/images
http://berrange.fedorapeople.org/images/2012-02-29/f16-x86_64-openstack-sda.qcow2
http://susestudio.com/
http://susestudio.com/a/YRUrwO/testing-instance-for-openstack-opensuse-121
https://github.com/rackerjoe/oz-image-build

Creating manually raw or QCOW2

images
O.S. rpm based

1. Get an iso;

2. Install O.S through virt-manager/virsh

command

• Qcow2/raw image

• Minimal installation

• No static network

3. Install and configure all the farming tools

needed

• Or use puppet/cloud-init/rc.local script to do

it at boot time

4. Install and configure all the application

needed

• Or use puppet/cloud-init/rc.local script to do

it at boot time

5. Edit /etc/sysconfig/network-scripts/ifcfg-

eth0 and remove the HWADDR= line.

6. Power off the vm

A receipt: http://docs.openstack.org/trunk/openstack-

compute/admin/content/manually-creating-qcow2-

images.html

• Windows based

1. Get an iso;

2. Install O.S through virt-manager/virsh command

– OpenStack (KVM) presents the disk using a

VIRTIO interface while launching the

instance. Hence the OS needs to have

drivers for VIRTIO. So download a virtual

floppy drive containing VIRTIO drivers from

the following location

http://alt.fedoraproject.org/pub/alt/virtio-

win/latest/images/bin/ and attach it during

the installation

• Qcow2/raw image

• Minimal installation

• No static network

1. Install and configure all the farming tools needed

• Or use a management tool to do it at boot time

2. Install and configure all the application needed

• Or use a management tool to do it at boot time

3. Power off the vm

A receipt: http://docs.openstack.org/trunk/openstack-

compute/admin/content/creating-a-windows-image.html

6

http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin/

Tools for creating images

There are several open-source third-party tools available that simplify
the task of creating new virtual machine images.

•Oz (KVM)
– Oz is a command-line tool that has the ability to create images for common Linux

distributions. Rackspace Cloud Builders uses Oz to create virtual machines,
see rackerjoe/oz-image-build on Githubfor their Oz templates. For an example
from the Fedora Project wiki, see Building an image with Oz.

•BoxGrinder (KVM, Xen, VMWare)
– BoxGrinder is another tool for creating virtual machine images, which it calls

appliances. BoxGrinder can create Fedora, Red Hat Enterprise Linux, or CentOS
images. BoxGrinder is currently only supported on Fedora.

•VMBuilder (KVM, Xen)

– VMBuilder can be used to create virtual machine images for different hypervisors.

– The Ubuntu 12.04 server guide has documentation on how to use VMBuilder.

•VeeWee (KVM)

– VeeWee is often used to build Vagrant boxes, but it can also be used to build KVM images.

– See the doc/definition.md and doc/template.md VeeWee documentation files for more details.

•imagefactory

– imagefactory is a new tool from the Aeolus project designed to automate the building, converting, and uploading
images to different cloud providers. It includes support for OpenStack-based clouds.

7

http://aeolusproject.org/oz.html
https://github.com/rackerjoe/oz-image-build
https://fedoraproject.org/wiki/Getting_started_with_OpenStack_Nova#Building_an_Image_With_Oz
http://boxgrinder.org/
https://launchpad.net/vmbuilder
https://help.ubuntu.com/12.04/serverguide/jeos-and-vmbuilder.html
https://github.com/jedi4ever/veewee
http://vagrantup.com/
https://github.com/jedi4ever/veewee/blob/master/doc/definition.md
https://github.com/jedi4ever/veewee/blob/master/doc/template.md
http://imgfac.org/
http://www.aeolusproject.org/

Oz: Overview
https://github.com/clalancette/oz/wiki

• Command line tool to create images for the most common Linux and Windows

distributions

• Uses KVM and libvirt to create images

• Uses a Template Description Language (XML) to define

– O.S. (The input can be a ISO or an URL)

– Repository

– Which packages have to be installed

– Which files have to be created during the installation

– Which commands have to be executed

• TDL specifications at:

– https://github.com/clalancette/oz/blob/master/docs/tdl.rng

• Is part of AEOLUS http://www.aeolusproject.org

• Supported O.S. can be seen with: oz-install -h

• Currently supported architectures are:

– i386, x86_64

• Currently supported distros are:

– Fedora: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

– Fedora Core: 1, 2, 3, 4, 5, 6

– RHEL 2.1: GOLD, U2, U3, U4, U5, U6

– RHEL/CentOS 3: GOLD, U1, U2, U3, U4, U5, U6, U7, U8, U9

– RHEL/CentOS/Scientific Linux 4: GOLD, U1, U2, U3, U4, U5, U6,

U7, U8, U9

– RHEL/CentOS/Scientific Linux{,CERN} 5: GOLD, U1, U2, U3, U4,

U5, U6, U7, U8

– RHEL/OEL/CentOS/Scientific Linux{,CERN} 6: 0, 1, 2, 3

– Ubuntu: 6.06[.1,.2], 6.10, 7.04, 7.10, 8.04[.1,.2,.3,.4], 8.10, 9.04,

9.10, 10.04[.1,.2,.3], 10.10, 11.04, 11.10, 12.04

– Windows: 2000, XP, 2003, 7, 2008

– RHL: 7.0, 7.1, 7.2, 7.3, 8, 9

– OpenSUSE: 10.3, 11.0, 11.1, 11.2, 11.3, 11.4

– Debian: 5, 6

– Mandrake: 8.2, 9.1, 9.2, 10.0, 10.1

– Mandriva: 2005, 2006.0, 2007.0, 2008.0

8

https://github.com/clalancette/oz/blob/master/docs/tdl.rng
http://www.aeolusproject.org/

Oz - File .tdl
<template>

<name>centos-6.3</name>  Univoco

<description>centos 6.3</description>

<os>

<name>CentOS-6</name>

<version>3</version>  Esattemente una delle versioni supportate ottenute col comando oz-install -h

<arch>x86_64</arch>

<install type='url'>  Tipi supportati: url (sorgenti) o iso

<url>http://centos.mirrors.chicagovps.net/6.3/os/x86_64/</url>

</install>

<disk>

<size>50</size>

</disk>

<rootpw>password</rootpw>

</os>

<files>

<file name='/root/test1.txt'> file di prova </file>

</files>

<commands>

<command name="copy"> cp /root/test1.txt /root/test2.txt </command>

<command name='config-monitoring'>

chkconfig gmond on

sed -i "s/allowed_hosts=127.0.0.1/allowed_hosts=openstack-01.cnaf.infn.it/g" /etc/nagios/nrpe.cfg

chkconfig nrpe on

</command>

</commands>

<repositories>

<repository name='epel-repo'>

<url>http://download.fedoraproject.org/pub/epel/6/x86_64/</url>

<signed>False</signed>

<persisted>True</persisted>

</repository>

</repositories>

<packages>  I pacchetti vengono installati dai tool nativi dei SO (yum, apt-get, etc)

<package name='ganglia-gmond'/>

<package name='nrpe'/>

<package name='nagios-plugins'/>

</packages>

</template>

• oz-install –d3 <TDL_FILE>
– genera un file XML libvirt

– genera una immagine .dsk che contiene solo il sistema
operativo

• oz-customize –d3 <TDL_FILE>
<LIBVIRT_XML_FILE>

– comandi di post-installazione, operazioni sui file,
installazione di repository e di pacchetti, customizzare
l'immagine

– il file .dsk viene modificato per contenere i comandi di
post-installazione

• oz-install –d3 –u <TDL_FILE>
– Installa e customizza, e’ alternativo all’uso dei 2 comandi

precedenti

• Centos 6.3

– Funziona sia da url che da iso

• OpenSUSE 11.4

– Funziona solo da iso

– Non sono supportate versioni piu’ recenti

9

BoxGrinder-features

• It creates linux based appliances. Many distributions are
already supported using dedicated plugins,
– Up to now Fedora,RedHat,ScientificLinux and CentOS

distributions are supported.

• Allows to specify both remote and local yum repositories,

• Post install instructions can be used to customize appliances,
(ie. prepare them for the contextualization phase or to create
users.)

• It is however not suitable for creating appliances which are
not linux-based.

http://boxgrinder.org

10

boxgrinder

• BoxGrinder creates virtual appliances from a plain text

(YAML) Appliance Definition file.

Appliance Definition File BoxGrinder Appliance

11

MARKETPLACES

12

Marketplaces
• Sharing VM images:

– Increases the usability of our
clouds

– Allows to share knowledge
– Attracts new users
– Allows a better control over VM

instances

• But…
– Brings security issues (see JSP

doc:
https://documents.egi.eu/documen
t/771)

• Endorsement
• Integrity
• Access
• Control of image “sprawl”

• OpenNebula (AppMarket)
• StratusLab

13

https://documents.egi.eu/document/771

• It is not an image repository but
an image registry

• Designed to be a “public” registry.
– Everyone can download an appliance
– Only “Developers” (people who have a valid account) can

upload.
– Possibility to define different “catalogues”
– Images are tagged with MD5/RSA signatures
– Images may reside on any backend storage which is

reachable through an URL
• Can be run standalone (tested)

or integrated in OpenNebula
• Interfaces:

– GUI
– command line (appmarket)
– RESTfull

OpenNebulaApps (AppMarket)

14

StratusLab Marketplace

• Basically derived from OpenNebula
(AppMarket?) with
some improvements:
– Image signing with X509 certs

– Validation

– Possibility to define local policies
• Endorsers black/white lists

• Images black/white lists

– “Upload the image to cloud, grid, or web storage
area” (C. Loomis EGI UF 2011)

• Not clear what does it mean….

15

StratusLab Marketplace

16

CONTEXTUALIZATION

17

Contextualization

• Tipically is the end-phase of the VMs
provisioning

• Should not depend on the local environment;
– a VM must rather adapt to the environment.

• Contextualization should be as much as
possible “self-consistent”.

• Two possible approaches:
– Get everything from the user provided template

and data.
– Use an external source of information. The VM

“pulls” his configuration from somewhere when it
starts

18

OpenNebula approach

• Very simple (but effective)
approach using an ISO
image (OVF
recommendation)

• The ISO contains all the
scripts, config. and data
needed to contextualize the
VM

• Everything must be
referenced inside the
“CONTEXT” section on the
template definition file

• VM must only mount it and
execute the master script if
present.

19

CONTEXT = [

hostname = "MAINHOST",

ip_private = "$NIC[IP, NETWORK=\"public net\"]",

dns = "$NETWORK[DNS, NETWORK_ID=0]",

root_pass = "$IMAGE[ROOT_PASS, IMAGE_ID=3]",

ip_gen = "10.0.0.$VMID",

files = "/service/init.sh /service/certificates.$UID

/service/service.conf"

]

CONTEXT=[

ETH0_IP = "$NIC[IP, NETWORK=\"public\"]",

ETH0_NETWORK = "$NETWORK[NETWORK_ADDRESS,

NETWORK=\"public\"]",

ETH0_MASK = "$NETWORK[NETWORK_MASK, NETWORK=\"public\"]",

ETH0_GATEWAY = "$NETWORK[GATEWAY, NETWORK=\"public\"]",

ETH0_DNS = "$NETWORK[DNS, NETWORK=\"public\"]",

]

Using Cloud-Init

• Python package and a set of associated scripts which can be used to

automate the initialization of a virtual machine instance, ie. it can be used to

automatically mount the ephemeral disk.

• Available on Ubuntu for some time, but has only recently become available

on CentOS 6 / Red Hat Enterprise Linux

20

cloud-init start running: Fri, 01 Feb 2013 12:57:57 +0000. up 21.27 seconds

found data source: DataSourceEc2

Starting cloud-init-cfg:

Starting system message bus: [OK]^M

Mounting other filesystems: [OK]^M

Starting cloud-init-cfg: ============================

My name is /var/lib/cloud/instance/scripts/part-001

I was input via user data

============================

ec2:

ec2: ###

ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----

ec2: 1024 f3:06:f9:85:92:78:be:37:7b:65:5a:11:12:32:d4:a3 /etc/ssh/ssh_host_dsa_key.pub (DSA)

ec2: 2048 97:51:4d:a0:11:ec:ef:47:42:38:ec:04:a8:b8:bb:76 /etc/ssh/ssh_host_key.pub (RSA1)

ec2: 2048 2c:37:60:2c:87:a5:b0:13:79:b9:44:ec:dc:77:6b:3e /etc/ssh/ssh_host_rsa_key.pub (RSA)

ec2: -----END SSH HOST KEY FINGERPRINTS-----

ec2: ###

-----BEGIN SSH HOST KEY KEYS-----

[…]

-----END SSH HOST KEY KEYS-----

cloud-init boot finished at Fri, 01 Feb 2013 12:58:05 +0000. Up 29.02 seconds

Automount ephemeral disk

as ext3 under /mnt

Ssh user key

Just a bash script

mount

/dev/mapper/VolGroup00-LogVol00 on / type ext4 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0")

/dev/vda1 on /boot type ext4 (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

/dev/vdb on /mnt type ext3 (rw,_netdev)

Using an External Tool

• Using an ENC (External Node Classifier) and
a configuration management system

• At bootime (and runtime) a client service on
the VM asks a server which kind of node the
VM is supposed to be.
– Examples:

• The Foreman + puppet

• Chef

• The server maintains a list of “receipts” to
configure the nodes

21

OpenNebulaApps (AppStage)

• AppStage performs the automatic
installation and configuration
of the software stack that constitutes
an application environment
(step forward to PaaS)

• Integrated in the OpenNebula VM workflow
• Uses “chef-solo” to perform the installation and

configuration of the software stack
– http://docs.opennebula.pro/features
– http://wiki.opscode.com/display/chef/Chef+Solo

• Can be “end-user”, but requires a significant skill and
knowledge (chef, json …)

• Can be a powerful tool for the admins to create and
distribute complex software platforms (PaaS) that
users can instantiate

22

http://docs.opennebula.pro/features
http://wiki.opscode.com/display/chef/Chef+Solo

Ok, where do we go from here?

We can talk days and days but then we
need to start to try some solution

•Image generation:

– Setup a pilot installation of BoxGrinder
and/or Oz service and make it available
to “everyone”

• Authn/Authz ??

•Marketplace:

– Setup an instance of SLM and/or
AppMarket

• SLM seems to be more “featured” but
… it’s not mainstream (sustainability?)

– Start distributing some images which
can be “popular” (PBS/LFS servers?,
WNs?, LAMP appliances?...)

•Contextualization:
– Setup an ENC/CMS and make it

available to “everyone”

– Some volunteer for looking at
AppStage?

23

Let’s take some real use case !!

What about preparing a small survey?

MORE SLIDES

24

• Can be “end-user”, but requires a
significant skill and knowledge
(chef, json …)

• Can be operated standalone (not tested),
but is designed to be integrated in O.N.

• RESTfull API (doc. work in progress)

• Can be a powerful tool for the admins to
create and distribute complex software
platforms (PaaS) that users can instantiate

OpenNebulaApps (AppStage)

25

Openstack - Image

management
• You can use OpenStack Image Services for discovering, registering,

and retrieving virtual machine images.
– The service includes a RESTful API that allows users to query VM image metadata and retrieve the actual image with

HTTP requests, or you can use a client class in your Python code to accomplish the same tasks.

• VM images made available through OpenStack Image Service can be
stored in a variety of locations from simple file systems to object-
storage systems like the OpenStack Object Storage project, or even
use S3 storage either on its own or through an OpenStack Object
Storage S3 interface.

• The backend stores that OpenStack Image Service can work with are
as follows:

– OpenStack Object Storage - OpenStack Object Storage is the highly-available object storage project in OpenStack.

– Filesystem - The default backend that OpenStack Image Service uses to store virtual machine images is the
filesystem backend. This simple backend writes image files to the local filesystem.

– S3 - This backend allows OpenStack Image Service to store virtual machine images in Amazon’s S3 service.

– HTTP - OpenStack Image Service can read virtual machine images that are available via HTTP somewhere on the
Internet. This store is readonly.

• Replicating images across multiple data centers
– The image service comes with a tool called glance-replicator that can be used to populate a new glance server using

the images stored in an existing glance server. The images in the replicated glance server preserve the uuids,
metadata, and image data from the original.

Ref: http://docs.openstack.org/trunk/openstack-compute/admin/content/ch_image_mgmt.html26

About StratusLab
• StratusLab grew from an informal, academic

collaboration in 2008 into a formal project co-
funded by the European Commission, to
develop an open source IaaS cloud
distribution.

• Now, StratusLab is an open collaboration of
institutes (CNRS, SixSq, GRNET, and TCD)
and individuals that continue to evolve the
software and provide support for StratusLab
sites and users.

• Focus on supporting grid services

• Based on OpenNebula

27

StratusLab Marketplace
Credits: https://indico.egi.eu/indico/materialDisplay.py?contribId=8&sessionId=6&materialId=slides&confId=207

• The Marketplace is at the center of the image handling
mechanisms in the StratusLab cloud distribution. It contains
metadata about images and serves as a registry for shared
images.

• There are two primary use cases for images in the cloud:
– creating new images and making them available

– instantiating a referenced image.

• Interfaces
– REST interface

• Exposes a simple HTTP-based REST interface

• Easy to program against in all languages

– Web interface
• REST interface also allows browsing via a web browser

• Signed entries can also be uploaded via the browser

28

Some details
Image metadata

• Must conform to a defined schema

• Uses the RDF-XML format

• Must be cryptographically signed with a (grid) certificate

• Must contain image ID and checksums to make connection to image

• May contain location elements with image content URL(s)

Typical Marketplace workflow:

• Create image from scratch or based on existing image

• Upload the image to cloud, grid, or web storage area

• Create the metadata for the image

• Sign the metadata with your (grid) certificate

• Upload the signed metadata to the Marketplace

StratusLab cloud will validate image before running it:

• stratus-policy-image: invokes site policy to determine if the referenced image can be used;

includes endorser white lists, checksum black lists, etc.

• stratus-download-image: will download a validated image to be used by a VM instance; uses

the location URL(s) in the metadata entry

29

