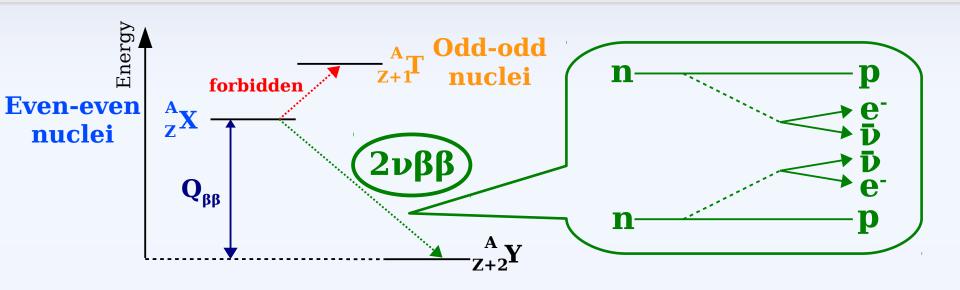
First results from the GERDA experiment

Sabine Hemmer for the GERDA collaboration Università degli Studi di Padova, INFN Padova

INFN

LNGS seminar, 21 February 2013

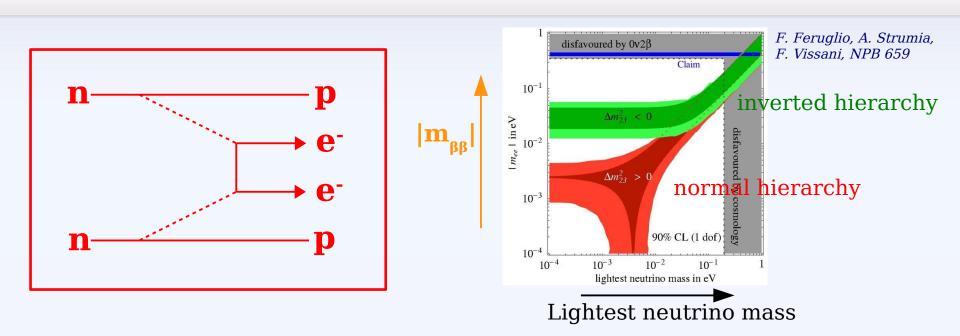

Double beta decay: 2νββ and 0νββ

- The GERDA experiment
- First results: The 2νββ half-life of ⁷⁶Ge
- A look into the future

Unveil the nature of the neutrino

 $2\nu\beta\beta$

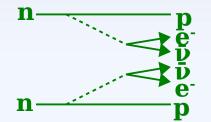
- allowed by SM
- ΔL=0
- observed in many isotopes

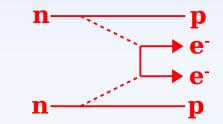

•
$$T^{2\nu}_{1/2} \sim 10^{19} - 10^{21} yr$$

•
$$(\mathbf{T}^{2\nu}_{1/2})^{-1} = \mathbf{G}^{2\nu} (\mathbf{Q}_{\beta\beta}, \mathbf{Z}) \cdot |\mathbf{M}^{2\nu}|^2$$

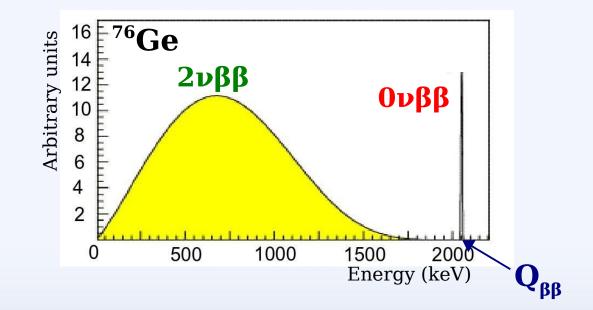
Phase space

nuclear matrix element


Ουββ



• Forbidden process in SM, needs Majorana neutrino • $\Delta L=2$ • $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}^{0\nu} (Q_{\beta\beta}, Z) \cdot |M_{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2$ Phase space $(\sim Q_{\beta\beta})^{-5}$ nuclear matrix element 21 February 2013


4

Experimental signature

Measure electron energy spectrum:

Searching in ⁷⁶Ge

$$S \sim \varepsilon \cdot f \cdot \sqrt{\frac{M \cdot t_{run}}{BI \cdot \Delta E}}$$

S: sensitivity ε: efficiency f: abundance of 0νββ isotope M: detector mass t_{run} : measurement time BI: background index ΔE : energy resolution at Q_{BB}

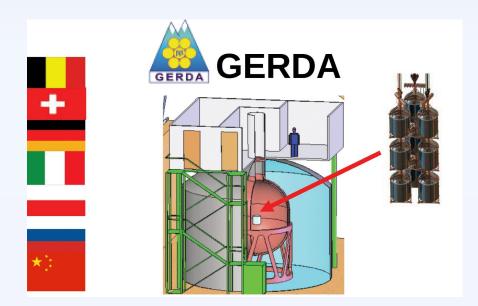
Germanium detector

Advantages of Germanium:

- High ε: Source = Detector
- **Small instrinsic BI**: High purity Ge
- **Excellent** Δ**E**: FWHM ~ (0.1-0.2)%
- Well-established technology

Disadvantages of Germanium:

- High external BI: Q_{BB}=2039keV
- Small f of ⁷⁶Ge:
 - $7.8\% \rightarrow Enrichment needed!$
- Limited sources of crystal & detector manufacturers
- Small $G^{0\nu}(Q_{\beta\beta},Z)$

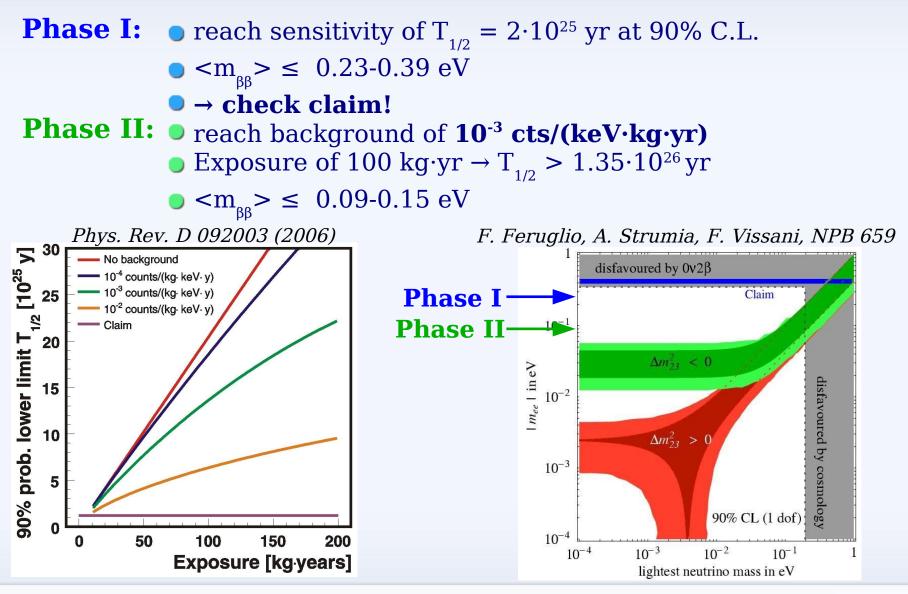

Previous ⁷⁶Ge experiments

omestake, Baksan, Canfranc
8.9
0.17
1.6·10 ²⁵ [2]

[1] Eur. Phys. J. A12, 147-154 (2001)
[2] Phys. Rev. D 65, 092007 (2002)

Claim of signal from part of HdM: $T_{1/2}$ (⁷⁶Ge) = (0.69 - 4.18)·10²⁵ yr (3 σ) (Best fit: $T_{1/2}$ (⁷⁶Ge) = 1.19·10²⁵ yr) *Phys. Lett. B 586, 198-212 (2004)*

GERmanium Detector Array (GERDA)


The GERDA collaboration

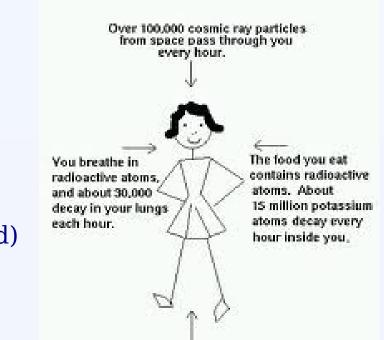
112 members, 19 institutes, 7 countries

- Bare ^{enr}Ge array in liquid Argon
- Shield: high-purity liquid Argon / H₂O
- Phase I: 18 kg enriched coaxial detectors (~86%)(HdM/IGEX)
- Phase II: add ~20 kg new enriched BEGe detectors
- For future ton scale experiment: Merge with Majorana collaboration (already open exchange of knowledge and technologies)

GERDA physics goal

Key issue: Low background rate

$$\mathbf{S} \sim \boldsymbol{\epsilon} \cdot \mathbf{f} \cdot \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}_{run}}{\mathbf{BI} \cdot \Delta \mathbf{E}}}$$


Possible backgrounds:

External:

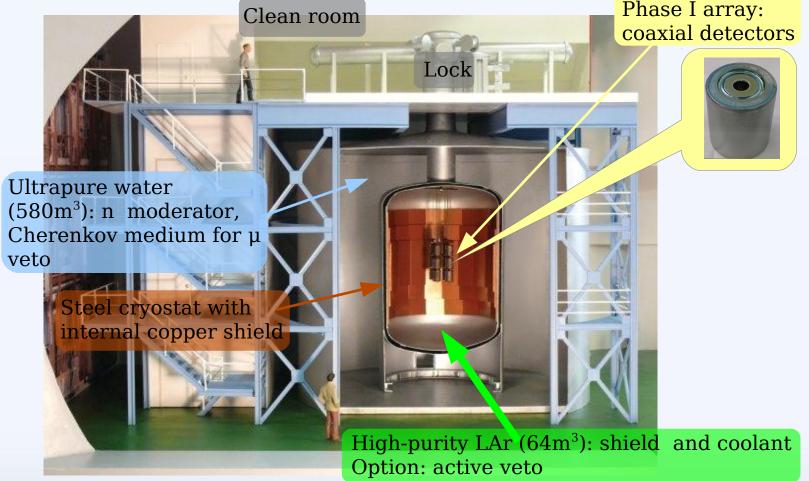
- γ from Th and U chain
- neutrons
- μ from cosmic rays (prompt and delayed)

Internal:

- cosmogenic ⁶⁰Co (T_{1/2}=5.3 yr)
- cosmogenic ⁶⁸Ge (T_{1/2}=271 d)
- Radioactive surface contamination



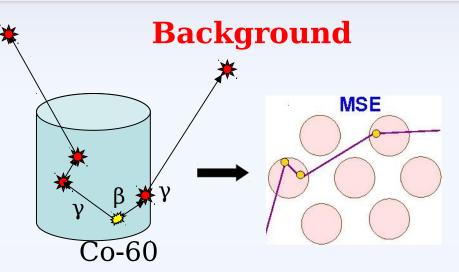
Natural radioactivity in the earth and in building materials sends over 200 million gamma rays through you every hour.


GERDA situtated in LNGS underground laboratories

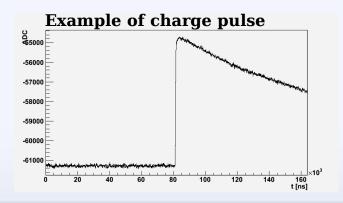
 → suppression of cosmic ray muons by factor 10⁶ by overlaying rock
 → hadronic components of cosmic

rays removed

- Graded shielding against ambient radiation
- Rigorous material selection, avoid exposure above ground for detectors

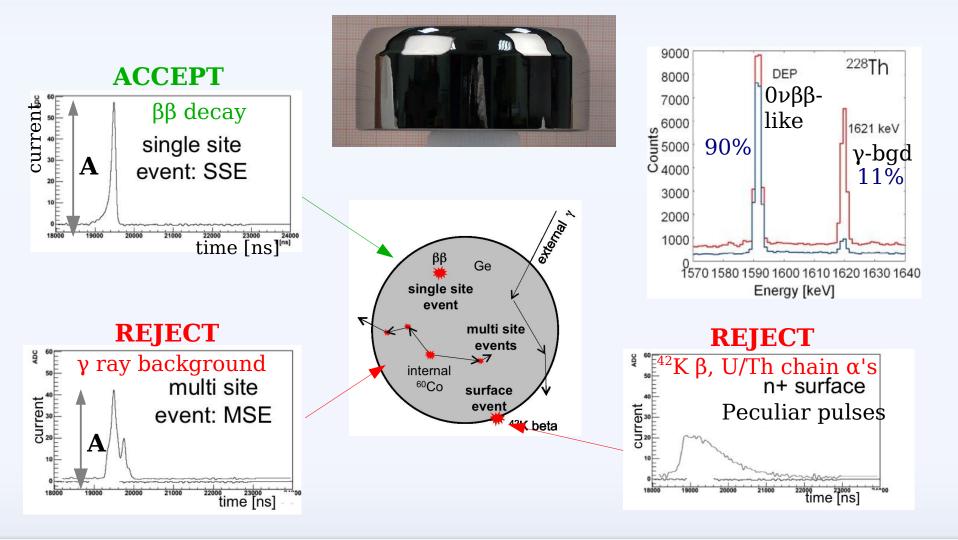

arXiv: 1212.4067

Signal Ge $\beta\beta$ β


Point-like (single-site) energy deposition inside one HP-Ge diode (Range: ~ 1 mm)

Signal analysis:

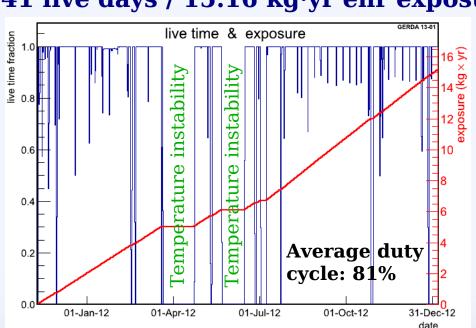
- anti-coincidence between detectors
- pulse shape analysis (PSA)



Multi-site energy deposition inside HP-Ge diode (Compton scattering)

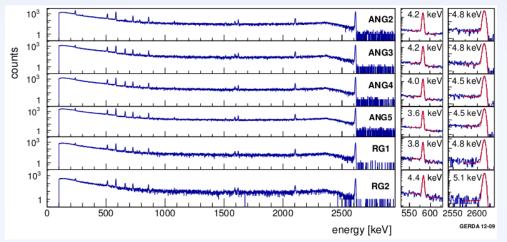
Background reduction Phase II

BEGe detectors: strongly non-linear field allows improved PSA


The GERDA experiment

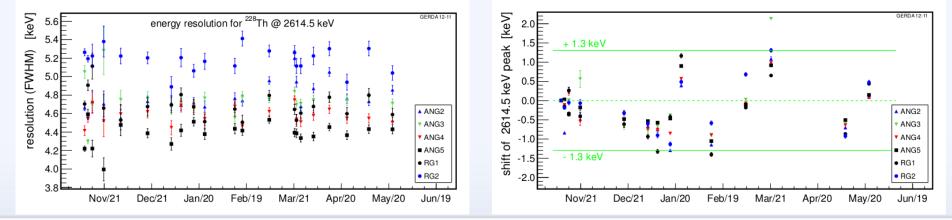
Data taking

9 November 2011: Start of Phase I All 8 enrGe + 3 natGe coaxial detectors deployed in GERDA (2 enrGe detectors cannot be used for analysis due to high leakage current)

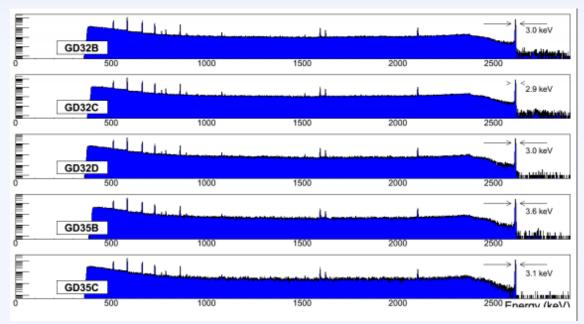

7 July 2012: Insert **5 enrGe BEGe** detectors (Remove 2 ^{nat}Ge detectors)

9 Nov 2011 - 5 Jan 2013: 341 live days / 15.16 kg·yr enr exposure

Energy resolution


Calibration spectra for ^{enr}Ge detectors with ²²⁸Th source

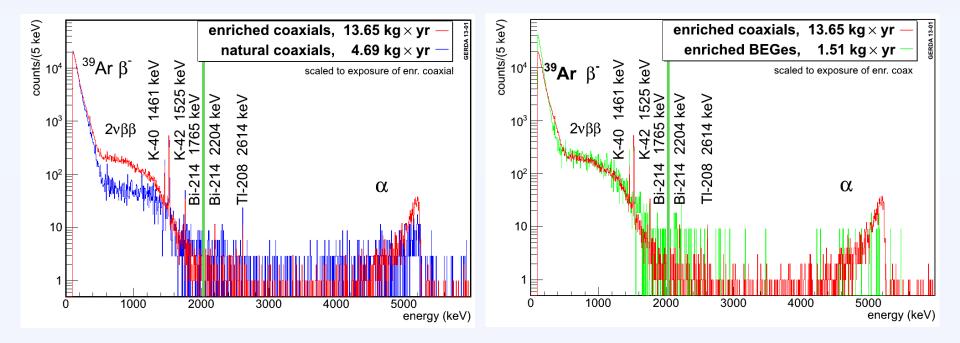
Mass weighted average for FWHM at $Q_{BB} = 4.5 \text{ keV}$


Stability of the resolution

Stability of the energy scale

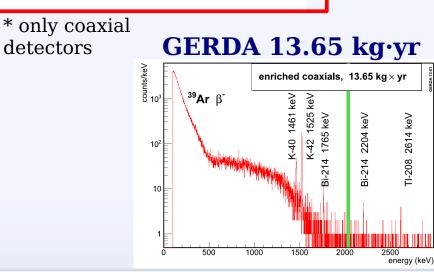
First BEGe's in GERDA

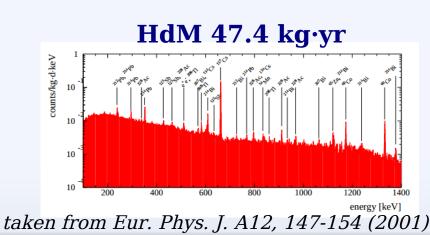
Calibration spectra



Energy resolution and PSA properties

Detector	E resolution [keV]	A/E res.	A/E res. HADES
Agamennone (GD32B)	2.88 ± 0.02	1.5%	0.8%
Andromeda (GD32C	2.84 ± 0.02	1.7%	1.3%
Anubis (GD32D)	2.96 ± 0.04	1.7%	1.6%
Achilles(GD35B)	3.61 ± 0.05	1.9%	0.6%
Aristoteles(GD35C)	3.09 ± 0.06	1.7%	1.7%

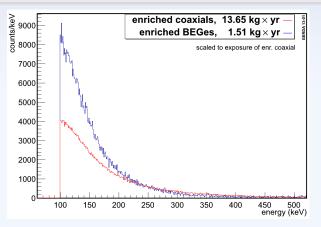

Energy spectra



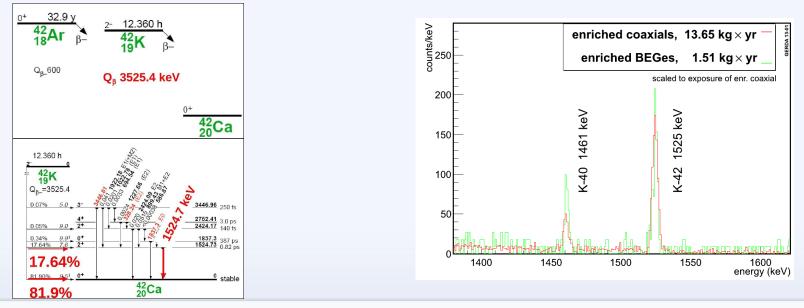
Data blinded between 2019 keV and 2059 keV

Background lines

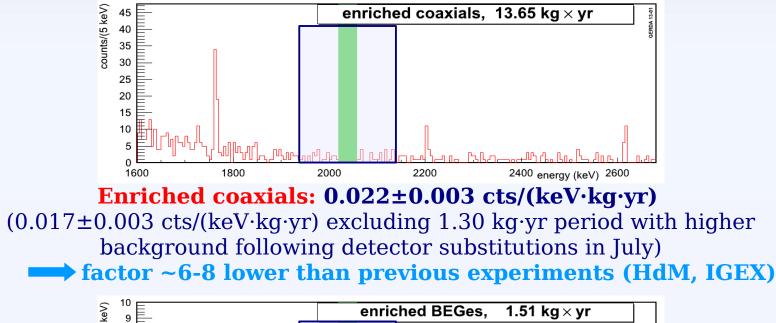
		^{nat} Ge (3.17 kg·yr)		^{enr} Ge (6	.10 kg·yr) *	HDM (71.7 kg·y	^{;)} Rate HdM,
isotope	energy	tot/bck	rate	tot/bck	rate	rate	
	[keV]	[cts]	$[cts/(kg\cdot yr)]$	[cts]	$[cts/(kg \cdot yr)]$	$[cts/(kg\cdot yr)]$	enrcoaxial
⁴⁰ K	1460.8	85 / 15	$21.7^{+3.4}_{-3.0}$	125 / 42	$13.5^{+2.2}_{-2.1}$	181 ± 2	13
⁶⁰ Co	1173.2	43 / 38	< 5.8	182 / 152	$4.8^{+2.8}_{-2.8}$	55 ± 1	11
	1332.3	31 / 33	< 3.8	93 / 101	< 3.1	51 ± 1	11
^{137}Cs	661.6	46 / 62	< 3.2	335 / 348	< 5.9	282 ± 2	> 48
^{228}Ac	910.8	54 / 38	$5.1^{+2.8}_{-2.9}$	294 / 303	< 5.8	29.8 ± 1.6	- 10
²⁰⁸ Tl	$968.9 \\583.2$	$64 / 42 \\ 56 / 51$	$6.9^{+3.2}_{-3.2}$ < 6.5	247 / 230 333 / 327	$2.7^{+2.8}_{-2.5}$ < 7.6	$17.6 \pm 1.1 \\ 36 \pm 3$	
11	2614.5	9 / 2	$2.1^{+1.1}_{-1.1}$	10 / 0	$1.5^{+0.6}_{-0.5}$	16.5 ± 0.5	11
²¹⁴ Pb	352	740 / 630	$34.1^{+12.4}_{-11.0}$	1770 / 1688	$12.5^{+9.5}_{-7.7}$	138.7 ± 4.8	11
²¹⁴ Bi	609.3	99 / 51	$15.1^{+3.9}_{-3.9}$	351 / 311	$6.8^{+3.7}_{-4.1}$	105 ± 1	
	1120.3	71 / 44	$8.4^{+3.5}_{-3.3}$	194 / 186	< 6.1	26.9 ± 1.2	~10
	1764.5	23 / 5	$5.4^{+1.9}_{-1.5}$	24 / 1	$3.6^{+0.9}_{-0.8}$	30.7 ± 0.7	
	2204.2	5 / 2	$0.8^{+0.8}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5	

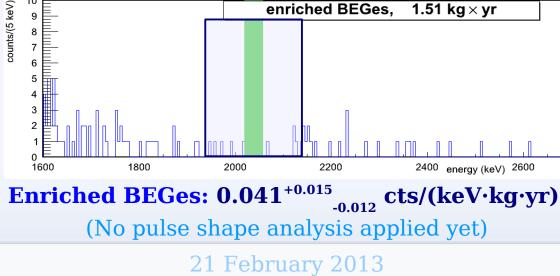


Background from Argon


³⁹Ar

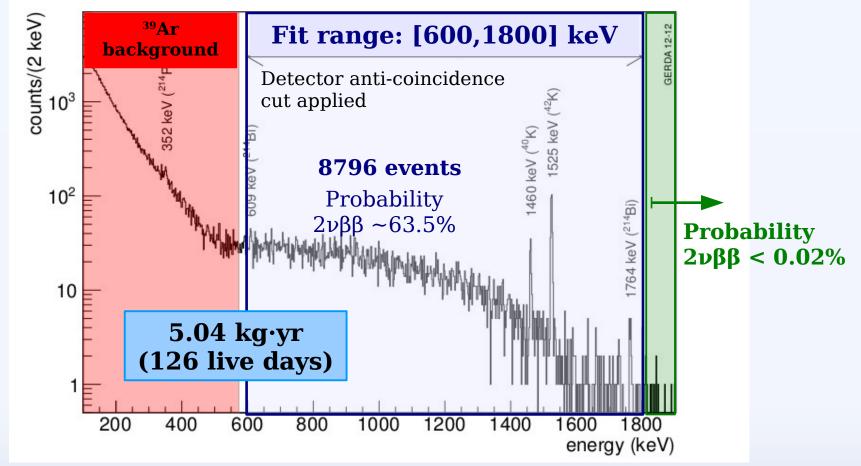
- 1.01 Bq/kg, T_{1/2}=269 yr
- pure β emitter, Q-value=565 keV
 - \rightarrow below region of interest


⁴²Ar


GERDA proposal: ⁴²Ar/^{nat}Ar < 3 x 10⁻²¹ (*Barabash et al. 2002*) **GERDA measurement:** Count rate at 1525 keV ~ 2 times expectation

Region of Interest

Background rate in ROI ($Q_{BB} \pm 100$ keV, blinded window excluded)



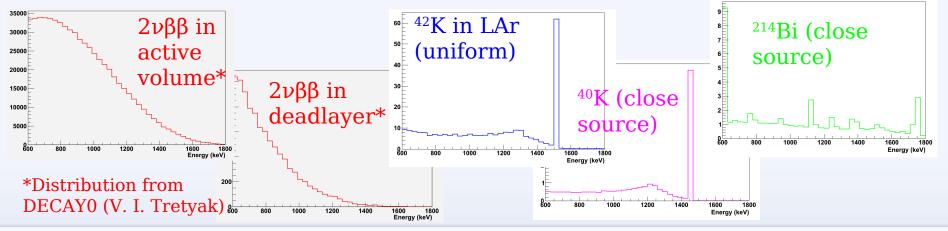
Measurement of
$$T^{2\nu}_{1/2}$$
: Data set

First 126 live days of the 6 enrGe detectors:

Sum energy spectrum

Measurement of T^{2v}_{1/2}: Fit

Binned maximum likelihood approach


Ingredients:

• 6 energy spectra from enrGe detectors (30 keV bins)

Single detector energy spectrum:

• Model: Simulated spectra of $2\nu\beta\beta$, ${}^{42}K$, ${}^{40}K$, ${}^{214}Bi$ for each detector

Measurement of T²^ν_{1/2}: Fit

Binned maximum likelihood approach

Ingredients:

• Information on active masses and enrichment fractions:

detector	total mass	active mass	⁷⁶ Ge isotopic
	(g)	(g)	abundance $(\%)$
ANG2	2833	$2468 {\pm} 121 {\pm} 89$	86.6 ± 2.5
ANG3	2391	$2070 {\pm} 118 {\pm} 77$	88.3 ± 2.6
ANG4	2372	$2136{\pm}116{\pm}79$	86.3 ± 1.3
ANG5	2746	$2281{\pm}109{\pm}82$	85.6 ± 1.3
RG1	2110	$1908 {\pm} 109 {\pm} 72$	85.5 ± 2.0
RG2	2166	$1800 \pm 99 \pm 65$	85.5 ± 2.0
	11000	orrelated cor	related
	unco		l'uluu

Average active mass fraction: (86.7±4.6(uncorr.)±3.2(corr.))%

Average enrichment fraction: (86.3±2)%

Measurement of T²^ν_{1/2}: Fit

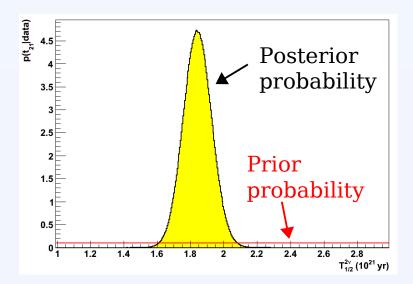
Binned maximum likelihood approach

Tool:

 Bayesian Analysis Toolkit BAT Caldwell A., Kollar D., and Kröninger K. 2009 Comput. Phys. Comm. 180 2197

Directions:

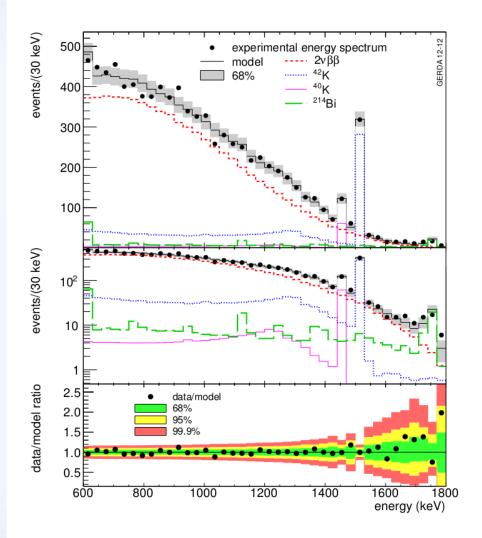
- Define the parameters:
 - Active detector masses (6+1)
 - Fraction of enrichment in ⁷⁶Ge (6)
 - Background contributions (3x6)
 - $T^{2\nu}_{1/2}$ common to all detectors (1)


nuisance parameters

- Run the fit
- Integrate over all nuisance parameters to derive posterior for $T^{2\nu}_{1/2}$

Measurement of $T^{2\nu}_{1/2}$: Fit result

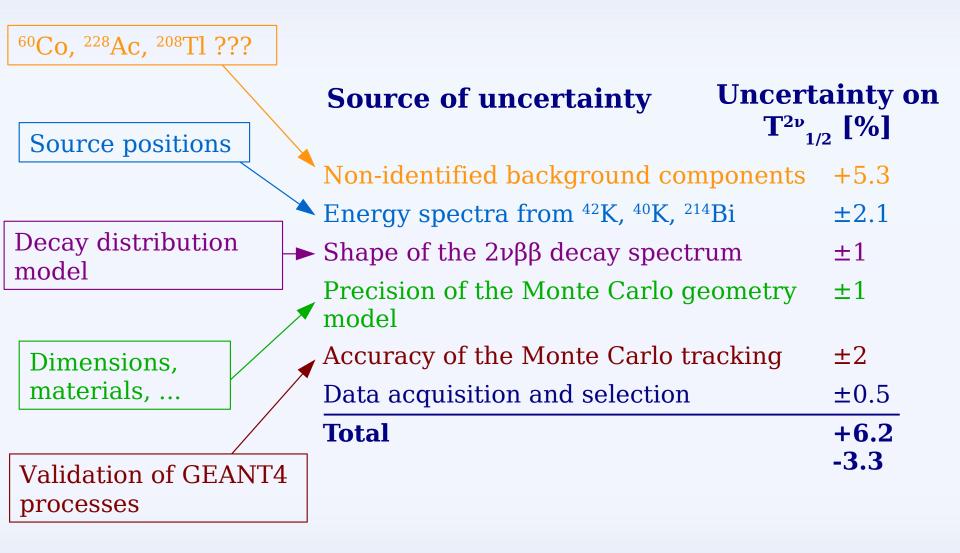
 $T^{2\nu}_{1/2}$ = (1.84^{+0.09}_{-0.08}) · 10²¹ yr (smallest interval 68%)


Uncertainty includes uncertainties on nuisance parameters, especially on active masses and enrichment fractions

Crosscheck:

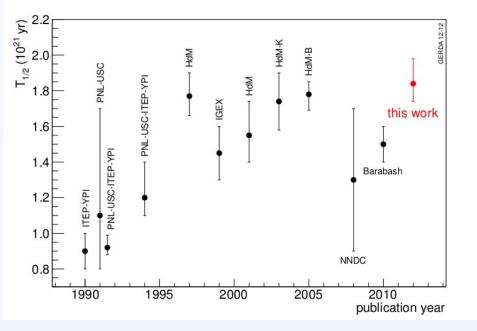
Fit each detector separately \rightarrow results mutually consistent ($\chi^2/\nu=3.02/5$)

Measurement of T^{2v}1/2: Fit result


Data: 8796 events

Best fit model: 8797.0 events 2νββ: 80% ⁴²K: 14% ²¹⁴Bi: 4% ⁴⁰K: 2%

Signal to background: 4:1


p-value: 0.77

Measurement of T²^v_{1/2}: Systematics

Measurement of $T^{2\nu}_{1/2}$: Result

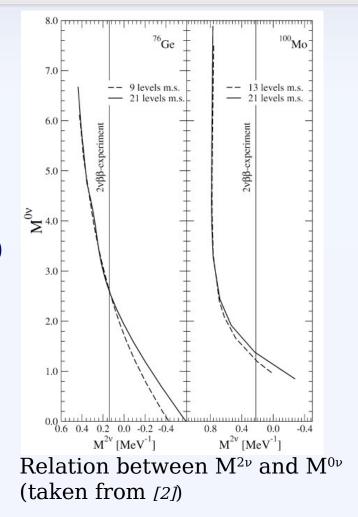
Final result: (1.84^{+0.09} +0.11 -0.08 fit -0.06 syst) \cdot 10²¹ yr = (1.84^{+0.14} -0.10) \cdot 10²¹ yr

Superior signal-to-background ratio

 \rightarrow uncertainty comparable to previous measurements despite much smaller exposure

Good agreement with re-analysis of HdM data HdM-K: Nucl. Instrum. Methods A 513, 596 (2003) HdM-B: Phys. Part. Nucl. Lett. 2, 77 / Pisma Fiz. Elem. Chast. Atom. Yadra 2, 21 (2005)

Measurement of $T^{2\nu}_{1/2}$: Matrix element


Calculate **M²** (with phase space factor from [1]):

 $0.133^{+0.004}_{-0.005} \ MeV^{-1}$

 \rightarrow decrease by 11% compared to [2]

 \rightarrow well consistent with M^{2v} derived from (d,²He) and (³He,t) charge exchange reactions

Relation between $M^{2\nu}$ and $M^{0\nu}$ [2]: \rightarrow Decreasing $M^{2\nu} \implies$ decreasing $M^{0\nu}$ \implies Increase of predicted $T^{0\nu}_{1/2}$ by 15%

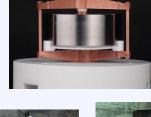
[1] Kotila J., and Iachello F. 2012 Phys. Rev. C 85 034316 [2] Rodin V. A., Fässler A., Šimkovic F. and Vogel P. 2006 Nucl. Phys. A 766 107; erratum: 793 (2007) 213

Phase II detector production

Production of 30 new ^{enr}Ge BEGe detectors (~20 kg):

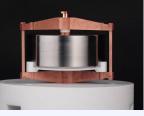
Crystal pulling at Canberra: Oak Ridge, TN, USA

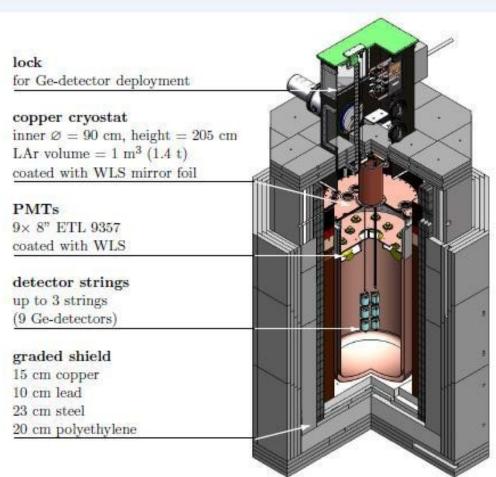
Transport to Mol, Belgium

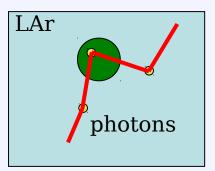

BEGe detector diode production: Olen, Belgium

BEGe acceptance tests: Hades, Belgium (Tests of detector performance and properties)

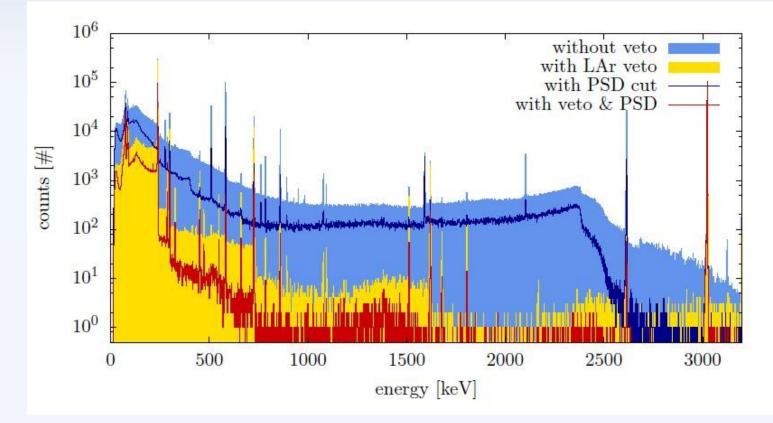
Electrical contacting : Olen, Belgium


Phase II detectors almost ready!





Liquid Argon readout

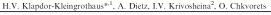


LArGe: Low-background test facility at LNGS

Detection of coincident LAr scintillation light to discriminate background

Phase II background reduction

Operation of Phase II proto-type detector in LArGe: Combining **PSD of BEGe detector and LAr veto**: Measured suppression factor for a ²²⁸Th source at $Q_{_{\beta\beta}}$: ~ 5.10³ Also other designs using SiPM's investigated \rightarrow avoid additional background!


Conclusions

- GERDA Phase I collected about 15 kg·yr of enr data so far
- Background in ROI about factor 1/10 compared to previous experiments
- First result using 5 kg·yr of data: T²^ν_{1/2} = (1.84^{+0.14}_{-0.10}) · 10²¹ yr The GERDA Collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110
- Phase II detectors produced and tested
 - **2013 will be very exciting year:**
 - Unblinding
 - T^{0v}_{1/2} results
 - Transition to Phase II

Additional material

HdM claim

Data acquisition and analysis of the ⁷⁶Ge double beta experiment in Gran Sasso 1990–2003

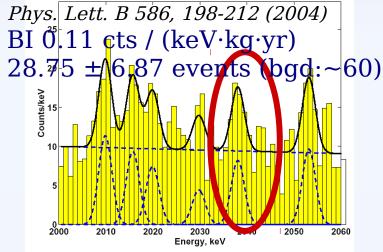
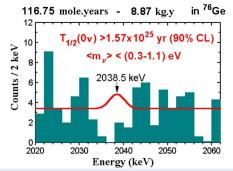



Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in 76 Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

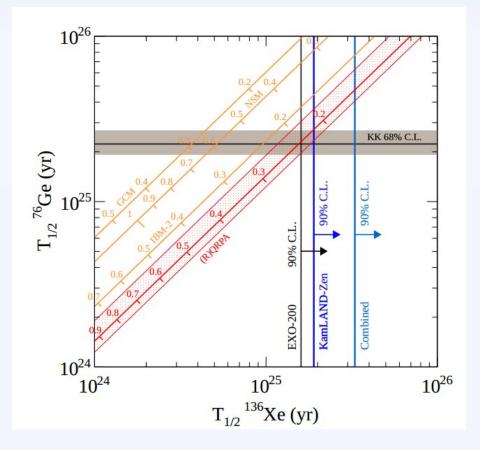
Comparison: IGEX

- Nov 1990 May 2003
- 71.7 kg·yr
- **4.2** $\sigma/6\sigma$ evidence for $0\nu\beta\beta$

 (0.69 - 4.18)·10²⁵ yr (3σ) Best fit: 1.19·10²⁵ yr *Phys. Lett. B 586, 198-212 (2004)*

 $2.23^{+0.44}_{-0.31}$ ·10²⁵ yr Mod. Phys. Lett. A 21, 1547-1566 (2006) Criticism in arXiv: 1210.7432

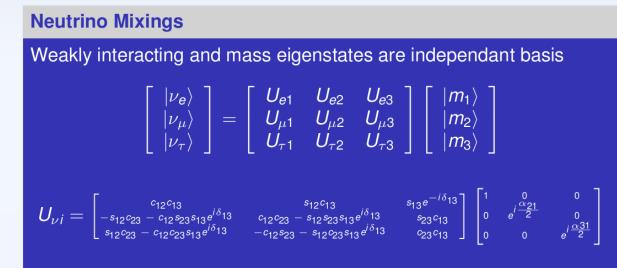
 $m_{\beta\beta} = (0.24-0.58) \text{ eV}$ (best fit 0.44 eV) / $0.32\pm0.03 \text{ eV}$

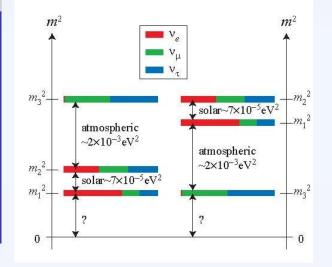

Note: statistical significance depends on background model!

detector	total mass	active mass	⁷⁶ Ge isotopic	$T_{1/2}^{2\nu}$
	(g)	(g)	abundance $(\%)$	(10^{21} yr)
ANG2	2833	$2468 \pm 121 \pm 89$	86.6 ± 2.5	$1.99_{-0.15}^{+0.14}$
ANG3	2391	$2070 {\pm} 118 {\pm} 77$	88.3 ± 2.6	$1.69^{+0.15}_{-0.14}$
ANG4	2372	$2136{\pm}116{\pm}79$	86.3 ± 1.3	$1.94^{+0.14}_{-0.15}$
ANG5	2746	$2281{\pm}109{\pm}82$	$85.6 {\pm} 1.3$	$1.79^{+0.12}_{-0.14}$
RG1	2110	$1908 \pm 109 \pm 72$	85.5 ± 2.0	$1.94^{+0.18}_{-0.14}$
RG2	2166	$1800{\pm}99{\pm}65$	85.5 ± 2.0	$1.93_{-0.16}^{+0.16}$

 $\chi^2/\nu = 3.02/5$

KamLAND-Zen and EXO-200

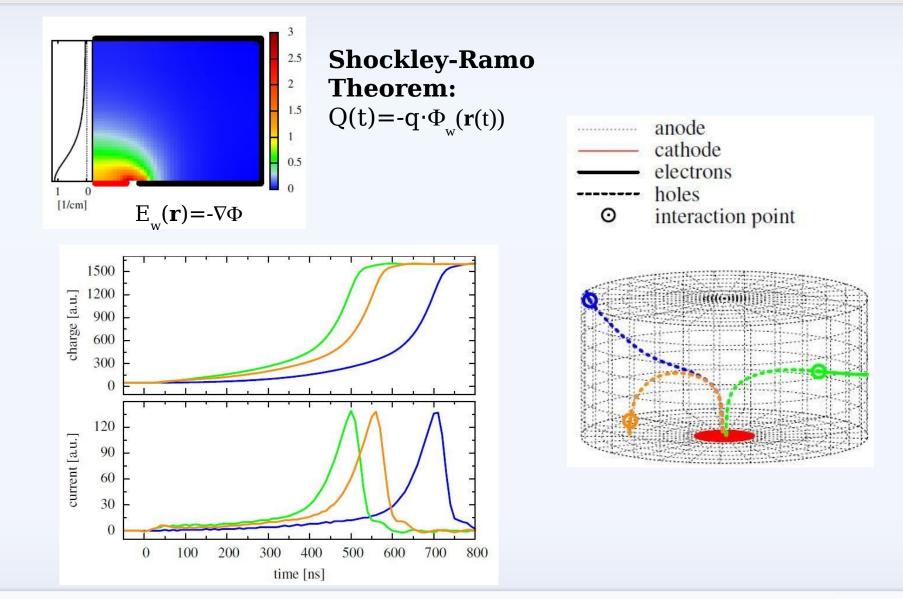

From arXiv:1211.3863v1 [hep-ex] (2012):



"Combined result for ¹³⁶Xe refutes the 0νββ detection claim in ⁷⁶Ge at > 97.5%"

Comparison depends on matrix calculations \rightarrow GERDA will check claim independently from calculations

Neutrino properties

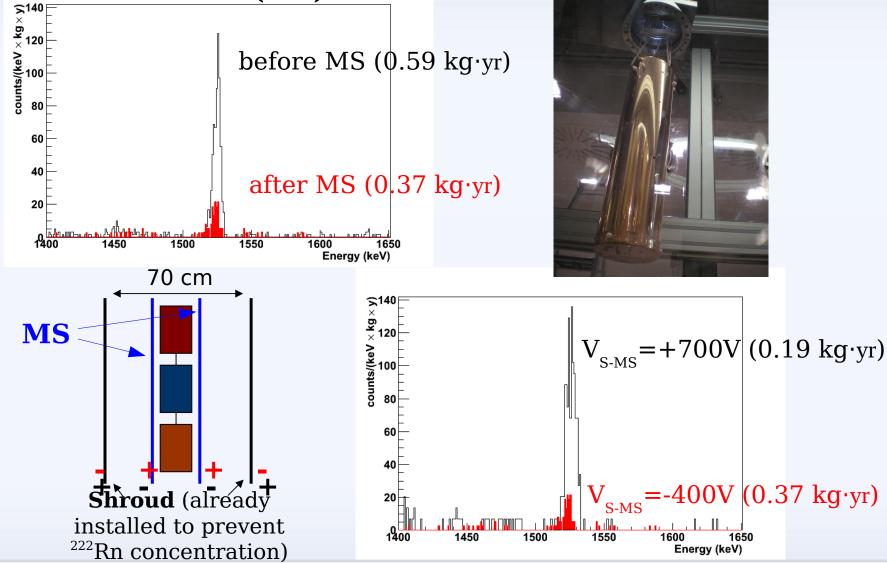

What we know:

•
$$m_2^2 - m_1^2 = \Delta m_{sun}^2$$

• $m_2^2 - m_1^2 = \Delta m_{atm}^2$
• $\theta_{12} = \theta_{sun}$
• $\theta_{23} = \theta_{atm}$
• θ_{13}

What we do not know:

- Absolute mass scale
- Mass hierarchy
- Phases (δ_{13} , α_{21} , α_{31})
- Nature of the neutrino mass (Dirac or Majorana)


Phase II detectors

²¹ February 2013

Background from Argon

