A parametrization for the elastic differential pp cross section at LHC

D.A. Fagundes*,†

* Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas
† INFN - Laboratori Nazionali di Frascati

INFN-LNF, January 22, 2013

† work in collaboration with Dr. G. Pancheri
Brief Introduction of the Campinas Group

Hadronic Physics Group (Grupo de Física Hadrônica - GFH)
- 5 Researchers and 10 students

Main members:

- A.C. Aguilar - Nonperturbative QCD and Dyson-Schwinger Equations

- C.D. Chinellato and J.A. Chinellato - Hadronic interactions at UHECR and model-building in MC codes (members of the Auger Collaboration)

- J. Takahashi - Nuclear physics at high-energies (member of the ALICE Collaboration)

- M.J. Menon - Phenomenology of elastic and diffractive scattering at high-energies (group leader)
Outline

- Recent LHC results on \(pp \) Elastic Scattering
- Open Problems and Guidelines
- Our Strategies
- The *Dynamical Gluon Mass* (DGM) Approach
- Parametrizing Elastic Scattering Data
- Summary and Outlook
Recent LHC results on pp Elastic Scattering

Total, elastic and inelastic cross sections at $\sqrt{s} = 7, 8$ TeV

First precise measurements at cosmic ray energies through different techniques
Recent LHC results on pp Elastic Scattering

First measurements of the Differential Elastic Cross section at $\sqrt{s} = 7$ TeV

Essential to unravel dynamical aspects of small and large $|t|$ phenomena at high energies
Recent LHC results on pp Elastic Scattering

...and preliminary results at $\sqrt{s} = 8$ TeV*

* from Jan Kašpar talk “Total, elastic and diffractive cross sections with TOTEM”, CERN, December 4th, 2012
Recent LHC results on \(pp \) Elastic Scattering

\textbf{Elastic \(pp/\bar{p}p \) scattering at ISR, SPS, TEVATRON and LHC}

\begin{itemize}
 \item presence of a ‘dip’ in \(pp \) channel and a ‘shoulder’ in \(\bar{p}p \) one
\end{itemize}
1. the energy dependence of $\sigma_{tot}(s) \leftrightarrow$ dynamics at large impact parameters \leftrightarrow probing confinement region

2. unified description of hadronic interactions \leftrightarrow ‘soft’ vs. ‘hard’ interactions \leftrightarrow link between Reggeon Field Theory (‘soft’ Pomeron dynamics/interactions) and QCD (partonic) approaches

3. global description of the differential elastic cross section \leftrightarrow interplay between small and large $|t|$ phenomena \leftrightarrow 2g exchange (simplest gluon ladder) vs. 3g exchange (point-like interaction)

4. understanding the ‘dip’ (in $d\sigma_{el}^{pp}/d|t|$) / ‘shoulder’ (in $d\sigma_{el}^{\bar{p}p}/d|t|$) region on a fundamental basis

5. interpreting diffractive excitation in partonic grounds \leftrightarrow relationship with the dynamics of elastic scattering

6. asymptotic behaviour of physical quantities: is the simple black disk limit attainable?
(i) s–channel unitarity (in b–space):
\[G_{\text{ine}}(s, b) = 2 \text{Re} \, \Gamma(s, b) - |\Gamma(s, b)|^2 \]

(ii) Optical Theorem:
\[\sigma_{\text{tot}}(s) = 4\pi \, \text{Im} \, F(s, t = 0) \]

(iii) analyticity and crossing symmetry \leftrightarrow dispersion relations (integral/derivative)

(iv) Froissart-Martin Bound:
\[\sigma_{\text{tot}} \leq \frac{1}{m^2} \ln^2 \left(\frac{s}{s_0} \right) \]

(v) Pumplim Bound:
\[\sigma_{\text{el}} + \sigma_{\text{diff}} \lesssim \sigma_{\text{tot}} / 2 \]
The ‘dip’/‘shoulder’ occur through cancellations in elastic amplitude due to t – channel processes:

$$A^{pp,pp}(s, t) = \frac{A^+(s, t) \pm A^-(s, t)}{2},$$

where $A^{\pm}(s, t)$ are even/odd amplitudes related to $C = \pm 1$ exchange in t – channel. In Regge Phenomenology, they are called “Pomeron” and “Odderon” terms, which can be translated into QCD (LO) language as $2g$-exchange1 and $3g$-exchange2. Eventually, the nonleading contribution of secondary Reggeons make their relative phase $\phi \neq \pi$.

2Donnachie and Landshoff, Z.Phys. C2 (1979) 55
Our ways to treat elastic pp scattering:

- The Dynamical Gluon Mass (DGM) approach3 \rightarrow minijet model (s–channel model) with gluon mass as infrared cutoff and low-x parton interactions ($Nucl. Phys. A 886 (2012) 48$)

- A parametrization of elastic pp scattering data from very small $|t|$ to past the dip4

3 in collaboration with Dr. E.G.S. Luna (UFRGS) and Dr. A.A. Natale (UFABC)

4 work in progress in collaboration with Dr. Giulia Pancheri
DGM Approach

Low-x parton interaction drive the growth of total cross section, essentially $gg \rightarrow gg$

$$\sigma_{gg} = C_{gg} \int_{M^2/s}^{1} d\tau F_{gg}(\tau) \hat{\sigma}_{gg}(\hat{s})$$

$$F_{gg}(\tau) = g(x) \otimes g(x) = \int_{\tau}^{1} \frac{dx}{x} g(x) g(\frac{\tau}{x})$$

- $\hat{s} = \tau s$ partonic squared c.m. energy
- $\hat{\sigma}$ - parton-parton cross section
- $g(x, Q^2) \sim x^{-J}$ - low-x gluon distribution function
- M^2 = mass scale separating pQCD e npQCD sectors

Gluon mass as natural cutoff for infrared region

\[M^2 \rightarrow 4m^2, \]

with a frozen coupling constant

\[\bar{\alpha}_s(\hat{s}) = \frac{4\pi}{\beta_0 \ln \left[(\hat{s} + 4M^2_g(\hat{s}))/\Lambda^2 \right]}, \]

and dynamical gluon mass generation from solutions of Dyson-Schwinger Equations (DSE) for the gluon propagator\(^6\)

\[M^2_g(\hat{s}) = m^2 \left[\frac{\ln \left(\frac{\hat{s} + \rho m^2_g}{\Lambda^2} \right)}{\ln \left(\frac{\rho m^2_g}{\Lambda^2} \right)} \right]^{-(1+\gamma_1)} \]

...in another scenario

\[M_g^2(\hat{s}) = \frac{m_g^4}{m_g^2 + \hat{s}} \left[\ln \left(\frac{\hat{s} + \rho m_g^2}{\Lambda^2} \right) \right] \left(\frac{\rho m_g^2}{\Lambda^2} \right)^{(1 - \gamma_2)} \]

we use Cornwall’s solution (\(\rho = 4 \) e \(\gamma_1 = 1/11 \))
Three level amplitudes and cross sections \((gg)\)

\[
\frac{d\hat{\sigma}^{DGM}}{d\hat{t}}(\hat{s}, \hat{t}) = \frac{9\pi \bar{\alpha}_s^2}{2\hat{s}} \left\{ 3 - \frac{\hat{s}[4M_g^2(\hat{s}) - \hat{s} - \hat{t}]}{[\hat{t} - M_g^2(\hat{s})]^2} - \frac{\hat{s}\hat{t}}{[3M_g^2(\hat{s}) - \hat{s} - \hat{t}]^2} \right\}
\]

obtained with massive propagators. And its pQCD partner:

\[
\frac{d\hat{\sigma}^{pQCD}}{d\hat{t}}(\hat{s}, \hat{t}) = \frac{9\pi \alpha_s^2}{2\hat{s}} \left\{ 3 + \frac{\hat{s}[\hat{s} + \hat{t}]}{\hat{t}^2} - \frac{\hat{s}\hat{t}}{[\hat{s} + \hat{t}]^2} + \frac{\hat{t}[\hat{s} + \hat{t}]}{\hat{s}^2} \right\}
\]
DGM Approach

At high-energies ($\hat{s} \gg \Lambda_{QCD}^2$)

$$M_g^2 \rightarrow 0 \text{ (massless vector boson)}$$

$$\bar{\alpha}_s \rightarrow \alpha_s \text{ (LO coupling constant)}$$

$$\Downarrow$$

$$\frac{d\hat{\sigma}^{DGM}}{d\hat{t}}(\hat{s}, \hat{t}) \rightarrow \frac{d\hat{\sigma}^{pQCD}}{d\hat{t}}(\hat{s}, \hat{t})$$

pQCD result recovered
Integrated gg cross section:

$$\hat{\sigma}_{gg}(\hat{s}) = \left(\frac{3\pi \bar{\alpha}_s^2}{\hat{s}}\right) \left\{ \frac{12\hat{s}^4 - 55M_g^2\hat{s}^3 + 12M_g^4\hat{s}^2 + 66M_g^6\hat{s} - 8M_g^8}{4M_g^2\hat{s}\left[\hat{s} - M_g^2\right]^2} \right\} - \left[3 \ln \left(\frac{\hat{s} - 3M_g^2}{M_g^2}\right)\right]$$

Implemented in our eikonalized (unitarized) approach
Eikonal model for pp e $\bar{p}p$ scattering:

$$A^{pp,\bar{p}p}(s, t) = i \int b db J_0(qb) [1 - e^{i\chi_h(s,b) \pm i\chi_s(s,b)}]$$

$\chi_{h/s}$ stand for ‘semi-hard’ and ‘soft’ contributions (even and odd under crossing symmetry)

$$\chi_h(s, b) = \chi_{qq}(s, b) + \chi_{qg}(s, b) + \chi_{gg}(s, b)$$

$$\chi_h(s, b) = i[\sigma_{qq}(s) W(b; \mu_{qq}) + \sigma_{qg}(s) W(b; \mu_{qg}) + \sigma_{gg}(s) W(b; \mu_{gg})]$$

$$\chi_s(s, b) = kC_o \frac{m_g}{\sqrt{s}} e^{i\pi/4} W(b; \mu^-)$$

Main ingredients

- $\chi_h(s, b) \sim \sigma_{gg}(s) W(b; \mu_{gg})$ - contribution from low-x cloud of size $r_{gg} \sim \mu_{gg}^{-1}$
- $\chi_s(s, b)$ - low energy splitting between pp e $\bar{p}p$ channels
DGM Approach

Influence of low-\(x\) partons

From PDFs - e.g. MRSTW7

Phenomenological gluon distribution function

\[xg(x) = N_g (1 - x)^5 x^{-\epsilon}, \]

where \(\epsilon \) stand for the ‘soft’ Pomeron intercept. Asymptotically,

\[\lim_{s \to \infty} \int_{4m_g^2/s}^{1} d\tau \ F_{gg}(\tau) \ \hat{\sigma}_{gg}(\hat{s}) \sim \left(\frac{s}{4m_g^2} \right)^{\epsilon} \ln \left(\frac{s}{4m_g^2} \right). \]

\(\epsilon \) and \(m_g \) affect extrapolations to high-energies
Our best fit - $\epsilon = 0.080$ (standard ‘bare’ Pomeron) - σ_{tot} and ρ

Uncertainty band for variations of the cutoff m_g!
Our best fit - $\epsilon = 0.080$ (standard ‘bare’ Pomeron) - $d\sigma_{el}/d|t|$ $\bar{p}p$

at 546 GeV and $1.80 + 1.96$ TeV
DGM Approach

Our best fit - \(\epsilon = 0.080 \) (standard ‘bare’ Pomeron)- \(d\sigma_{el}/d|t| \) at 7.0 TeV and 14 TeV

Description of LHC7 data up to \(|t| \simeq 0.2 \text{ GeV}^2 \leftrightarrow\) DGM accounts for 2g-exchange...
DGM Approach

...but misses the ‘dip’ structure and large $|t|$ region, as well as other representative approaches

How can one treat consistently global features of $d\sigma_{el}/d|t|$?
Before building/modifying models, we try a descriptive approach using the simplest parametrization for the elastic amplitude 8:

$$A(s, t) = i\left[\sqrt{A(s)} e^{-B(s)|t|/2} + \sqrt{C(s)} e^{i\phi(s)} e^{-D(s)|t|/2}\right]$$

Our new fit LHC7 data do not reproduce all $|t|$ range...

...though is quite good through the ‘dip’ and at large $|t|$

![Graph showing elastic scattering data](image)

$|t|_{\text{min}} = 0.377 \text{ GeV}^2$

$\chi^2/\text{DOF} = 106/73 = 1.4$

$\sigma_{\text{tot}} = 63.2 \text{ mb}$

$\sigma_{\text{el}}^{2} = 204.6 \text{ mbGeV}$

but still we miss the optical point \rightarrow need to modify BP amplitude at small $|t|$ region
Our first attempt - introduction of a square root threshold\(^9\) at small \(|t|\) (normalized):

\[
A(s, t) = i[\sqrt{A(s)}e^{-B(s)|t|/2}e^{-\gamma(s)(\sqrt{4m^2 + |t|} - 2m)} + \sqrt{C(s)}e^{i\phi(s)}e^{-D(s)|t|/2}]
\]

Provide a good fits to LHC7 and ISR53 (typical):

\[
\begin{align*}
A &= 565.3 \pm 2.0 \text{ mbGeV}^2 \\
B &= 13.69 \pm 0.16 \text{ GeV}^2 \\
C &= 0.969 \pm 0.036 \text{ mbGeV}^2 \\
D &= 4.425 \pm 0.033 \text{ GeV}^2 \\
\gamma &= 2.005 \pm 0.060 \text{ GeV}^{-1} \\
\phi &= 2.7030 \pm 0.0068 \text{ rad}
\end{align*}
\]

\(\chi^2/\text{DOF} = 502/155 = 3.2\)

\(\chi^2/\text{DOF} = 1490/313 = 4.8\)

\(^9\) motivated by the \textit{two - pion loop} insertion in the Pomeron trajectory. See e.g. the recent review by Fiore et al. \textit{Int.J.Mod.Phys.} A24 (2009) 2551
However, the new term do not behave as expected, with $\gamma(s) \sim \ln s$...

...instead it ‘swings’ with increasing c.m. energy → interpretation fails
Our second attempt - correcting with the EM proton's form factor (joining very small \(|t|\) region)

\[
A(s, t) = i \left[\sqrt{A(s)} e^{-B(s)|t|/2} \frac{1}{\left(1 + \frac{|t|}{0.71 \text{ GeV}^2}\right)^2} + \sqrt{C(s)} e^{i\phi(s)} e^{-D(s)|t|/2} \right]
\]

Suitable for LHC7, but not for ISR energies...
Parametrizing Elastic Scattering Data

Next attempt - proton’s form factor with a free parameter

$$A(s, t) = i \left[\sqrt{A(s)} e^{-B(s) |t|/2} \left(1 + \frac{|t|}{t_0}\right)^2 + \sqrt{C(s)} e^{i\phi(s)} e^{-D(s) |t|/2} \right]$$

Suitable for LHC7 and ISR energies...

...our best results so far, but still lacks clear physical interpretation
As far as we understand this model:

- amplitudes $\sqrt{A(s)}$ and $\sqrt{C(s)} \rightarrow$ may correspond to $C = +1$, leading 2g-exchange and $C = -1$, non-leading 3g-exchange

- relative phase $\phi \neq \pi \rightarrow$ possibly arise from non-leading Reggeon exchange cancellations

- exponentials $e^{B(s)t}$ and $e^{D(s)t} \rightarrow$ may be attributed to overall ressumation of soft gluons emitted from many multiple process, with $B(s) \neq D(s)$, depending on the underlying dynamics

- proton’s FF with free parameter \rightarrow would indicate an average matter distribution denser than the charge one

But again, we still need to understand clearly all of that!
Summary and Outlook

What have we learned with this exercise?

1. the BP parametrization is able to reproduce essential features of LHC7 data and all ISR data sets

2. but it has to be modified to accommodate small $|t|$ phenomena

3. in simple terms, elastic scattering can be described with two exponentials and a relative phase

4. goodness of fit at LHC7 shows that it might be premature to claim a power-law behaviour $\sim |t|^{-8}$ (corresponding to a $3g$-exchange) for the present large $|t|$ data

5. the ‘old’ idea of implementing the proton’s form factor at the elastic amplitude remains efficient at present energies

6. however, the introduction of FFs and threshold singularities in the BP amplitude still lack clear physical understanding
Summary and Outlook

Perspectives for the near future

1. conclude our analyses of elastic scattering data with BP amplitude
 - understanding the role of FFs and threshold singularities
 - extracting the energy dependence of fit parameters
 - making predictions for LHC8 and LHC14

2. move to QCD-based models and study the implementation of these ideas; e.g. the *DGM approach* and the *Soft Gluon Ressumation Model* (by G. Pancheri and collaborators)
Acknowledgements

Research sponsored by

Hosted by

Thank you!!!