Searches for Long-Lived Particles with ATLAS at the LHC

Università della Calabria & INFN Cosenza

Summary

Particles with macroscopic decay lengths are predicted by a large class of BSM models (SUSY, Hidden Sectors, R-parity violating MSSM, SUGRA..)

- SUSY searches
 - Stable Massive Particles (R-Hadrons, Sleptons)
 - Neutralino decays
- EXOTICS searches
 - Hidden Particles
 - Lepton-jets

In this talk

- overview of the results with 2011 data
- current activities on full 2011+2012 statistics

SUSY searches

Stable Massive Particles

• Stable Massive Particles (SMPs)

predicted by many BSM scenarios, including several different SUSY models

• **sleptons** are massive, charged and metastable in GMSB

• **R-hadrons** are **colored** SMPs: bound states formed by **squarks and gluinos** hadronizing with a light SM quarks system, several **electric charges** (and the electric charge can change due to nuclear scattering in the detector)

• Long-lived for this search

	composition	notation
R-mesons	$R= ilde{g}qar{q}, (ilde{q}ar{q})$	R^+, R^-, R^0
R-baryons	$R = \tilde{g}qqq, (\tilde{q}qq)$	R^{++}, R^+, R^-, R^0
R-gluinoballs	$R = \tilde{g}g$	R^0

SMP	LSP	Scenario	Conditions arXiv:hep-ph/0611040		
$\tilde{\tau}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}},\mu,\tan\beta,$ and $A_\tau)$ close to $\tilde{\chi}^0_1$ mass.		
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.		
		\tilde{g} MSB	No detailed phenomenology studies, see [23].		
		SUGRA	Supergravity with a gravitino LSP, see [24].		
	$ ilde{ au}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan\beta$ and/or very large $A_{\tau}.$		
		AMSB	Small m_0 , large $\tan \beta$.		
		\tilde{g} MSB	Generic in minimal models.		
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small tan β and μ .		
	$ ilde{ au}_1$	ĝMSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.		
$\tilde{\chi}_1^+$	$ ilde{\chi}_1^0$	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Higgsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $. Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\text{GS}} = -3$.		
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.		
\tilde{g}	$ ilde{\chi}^0_1$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.		
	\tilde{G}	GMSB	SUSY GUT extensions [25-27].		
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2},$ O-II models near $\delta_{\rm GS} = -3.$		
		GMSB	SUSY GUT extensions [25-29].		
\tilde{t}_1	${ ilde \chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ and $M_3,$ small $\tan\beta,$ large $A_t.$		
\tilde{b}_1			Small $m_{\tilde{q}}^2$ and M_3 , large $\tan\beta$ and/or large $A_b\gg A_t.$		

Experimental techniques

Generic signature: slow (β<1 and highly ionizing) and high-p_T particles, μ-like:
 measurement done by different ATLAS sub-detectors

SMPs on 2011 Data (I)

http://arxiv.org/abs/1211.1597

- Mass measurement with the Pixel Detector
 - masses of slow charged particles measured using only ID information
 - dE/dx and p fitted to an empirical Bethe-Bloch function, to deduce mass
- \bullet β measurement with Calorimeters and MS
 - Tile and LAr Calorimeters: resolution ~2ns at 1 GeV \rightarrow able to distinguish between highly relativistic particles and slow LLPs
 - \bullet MS: β measurement mainly by monitored drift-tube chambers (for slow LLPs combined track re-fit including ID and MS)

- <u>sleptons</u>: muon trigger, high p_T , β consistent from different sub-detectors
- R-hadrons <u>full-detector and μ -agnostic</u>: MET trigger, high p, isolation from jets
- R-hadrons <u>ID-only</u>: MET trigger, MET offline, high p and pT, isolation from other tracks, veto for electrons, high ionization
- \bullet After selection, background is mainly due to high-p_T μ with mis-measured β
- Data-driven approach to build high-statistics random samples

SMPs on 2011 Data (II) http://arxiv.org/abs/1211.1597

• Systematics uncertainties from theoretical calculations, data-simulation discrepancies in signal efficiency, background estimation, luminosity

- No indication of signal above the expected background is observed
- Cross-section limits at 95% confidence level \rightarrow translating into limits on the R-hadron/slepton mass

m(GMSB τ̃)	> 300 - 268 GeV, 5 <tanβ<40< th=""></tanβ<40<>
<i>m</i> (directly produced sleptons)	> 278 GeV, 5 <tanβ<40< th=""></tanβ<40<>

Displaced vertices with tracks + muons

http://arxiv.org/abs/1210.7451

• If particle has lifetime O(few ns), it can decay inside the tracking detector, producing a vertex at a distance away from the primary vertex

- E.g. RPV SUSY with non-zero but small λ_{211}
 - Neutralino decays to muon plus jets
 - Muon is useful for triggering and background rejection
 - High track multiplicity helps vertex reconstruction
 - Dedicated vertex reconstruction

- Background is random combinations of tracks inside the beampipe and high mass tail of distribution of real vertices from hadronic interactions with gas molecules
- No events in the signal region are observed and limits are set on the production cross section for supersymmetric particles

Disappearing track

- If the lowest gauginos are approximately mass-degenerate (predicted, eg, by AMSB),
- $\tilde{\chi}_1^{\pm}$ has lifetime $\mathcal{O}(0.1 \text{ns})$ and decays to $\tilde{\chi}_1^0$ and a (~100 MeV) π^{\pm}
- Look for production processes:

$$pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + jet \quad pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^- + jet$$

- (jet from ISR, needed to trigger on event).

Main BG:

- High p_⊤ charged hadrons interacting in the TRT (80%)
- Low p_T tracks performing large bremsstrahlung

Current activity

- Update of the analysis on the 8 TeV data expected soon
- Interesting planned improvements:

I. possibility for **R-hadrons** to **decay** or to interact with the detector material and to **change charge** (charged \rightarrow neutral within a certain lifetime O(ns) only detected by ID; neutral \rightarrow charged no track in the ID but detected by MS)

- for the current analysis, only a simplified study of variation in efficiency with R-hadron lifetime \rightarrow perform the new analysis as lifetime dependent (particularly sensible for ID-only approach)
- 2. investigating **different triggers**, both for muons and for R-hadrons

EXOTICS searches

Hidden Sector models (I)

- Hidden Sector weakly coupled to SM
 - Hidden sectors and SM communicate through heavy mediator particles (Higgs, Z', loop of SUSY particles)

• (Some) motivations:

- (g_s-2)_µ anomaly: comparing theory to experiment there is a 3.2σ discrepancy → anomaly can be explained including corrections from an hidden photon
- Cosmic ray excess: PAMELA and FERMI show an excess of positron flux (not anti-proton) → if DM annihilates to a hidden sector it would produce only leptons

Hidden Sector models (II)

- Exotics Higgs decay modes
 - Higgs sensitive to New Physics
 - still room for deviation from SM
 - important to continue exotics searches because additional resonances can arise (search for all masses!) as well as rare Higgs decays which may deviate from those predicted by the SM

It is important to probe such new ideas

- Heavy particles (e.g. Higgs boson) decays to particles of the hidden sector that can decay back in the standard sector via:
 - hadronic jets
 - collimated jets of leptons: lepton-jets
 - hidden particles can be long-lived and neutral (LLNP) \rightarrow displaced decays
- Displaced decays
 - dedicated triggers (paper draft almost ready to be submitted to EPJ C)
 - dedicated vertex reconstruction in Muon System (ATL-PERF-2013-01 to be submitted to EPJ C)

LLNP decaying to displaced heavy fermion pairs

Phys.Rev.Lett. 108 (2012) 251801

- Search in 1.94 fb⁻¹ of 2011 data for pairs of backto-back neutral particles decaying in the muon system (2 vertices in MS, isolation in calorimeter and ID)
- Signature of $h \rightarrow \pi_v \pi_v$ where π_v is a long-lived pseudoscalar from Hidden Sector decaying to heavy fermion pair (mainly b-bbar)
- 95% CL limits as a function of the proper decay length of the π_v assuming 100% BR of $h \rightarrow \pi_v \pi_v$

Current activity: 2011+2012 full dataset

- Extend previous analysis to the entire collected statistics
- Search for displaced vertices in Inner Tracker
- Search for two π_v 's decaying both in the Hadronic Calorimeter (well advanced)

Displaced muon-jet search with 1.94 fb⁻¹ of 2011 data (I)

(Phys. Lett. B 721 (2013) 32)

- Signature: two isolated pairs of 'standalone' muons (reconstructed only in the Muon System and no match with Inner Detector tracks)
- High p_T and large boost of the $\gamma_d \rightarrow$ small opening angle between muons in the pair ($\Delta R < 0.1$)
- Small muon pT (peak @ 7GeV)

- simple topology: H \rightarrow 2 f_{d2}, f_{d2} \rightarrow LSP + γ_d
- Dark photon (γ_d) lifetime chosen to get enough decays in each detector region → derive exclusion limit as a function of proper lifetime

Displaced muon-jet search with 1.94 fb⁻¹ of 2011 data (II)

(Phys. Lett. B 721 (2013) 32)

- No events found in data after cut flow
- Limits at 95% CL as a function of the proper decay length of the γ_d

cut	cosmic-rays	multi-jet	total background	$m_H = 100 \text{ GeV}$	$m_H = 140 \text{ GeV}$	DATA
$N_{\rm MJ} = 2$	3.0 ± 2.1	N/A	N/A	$135 \pm 11^{+29}_{-21}$	$90\pm9^{+17}_{-13}$	871
$E_{\rm T}^{\rm isol} \le 5 { m GeV}$	3.0 ± 2.1	N/A	N/A	$132 \pm 11^{+28}_{-21}$	$88 \pm 9^{+17}_{-13}$	219
$ \Delta(\phi) >2$	3.0 ± 2.1	$153 \pm 18 \pm 9$	$154.5 \pm 18.1 \pm 9$	$123 \pm 11^{+26}_{-19}$	$81\pm9^{+15}_{-12}$	104
$Q_{MJ} = 0$	1.5 ± 1.5	57 ±15±22	58.5 ± 15.5 ± 22	$121 \pm 11^{+26}_{-19}$	$79\pm8^{+15}_{-12}$	80
$ d_0^{\mu} , z_0^{\mu} $	$0^{+1.64}_{-0}$	111±39±63	111±39±63	$105 \pm 10^{+22}_{-16}$	$66\pm8^{+12}_{-10}$	70
$\Sigma p_{\rm T}^{\rm ID} < 3 { m GeV}$	$0^{+1.64}_{-0}$	$0.06 \pm 0.02^{+0.66}_{-0.06}$	$0.06^{+1.64+0.66}_{-0.02-0.06}$	$75\pm9^{+16}_{-12}$	$48 \pm 7^{+9}_{-7}$	0

Current activity: 2011+2012 full dataset

- Investigate more complex decay modes

 → higher particle multiplicity in the final state and final states with electrons, muons and pions
- Extend search to be as more model independent as possible → constrain many theoretical models

LJ I LJ 2	electrons	muons	electrons +muons	light hadrons	leptons +light hadrons
electrons					
muons		only 2 µ + 2 µ in 2011			
electrons +muons					
light hadrons					
leptons +light hadrons					

= work in progress

Conclusions

- Several SUSY and Exotics Models predict interesting signatures with long-lived particles
- Searches for LLP are really challenging \rightarrow need a full understanding of the detectors and "non-standard" analysis techniques
- So far, there is no evidence of new physics
- Most of the analysis are being updated and improved with full statistics: we still have 20 fb⁻¹ 2012 data to look at
- Expect updates soon!

Spares

The ATLAS detector

- Inner Detector (ID) tracking: semiconductors (pixel and SCT) and transition radiation tracker (TRT)
- Sampling-based calorimetry: lead+liquid argon for EM energy (ECAL), steel+scintillator for Hadronic energy (HCAL), copper/tungsten+liquid argon in the forward calorimeter (FCAL)
- 2 T magnetic field by a solenoid just enclosing the ID
- One barrel and 2 end-cap toroids in the air-core muon spectrometer provide fields to bend muon tracks in η
- ~99% of channels working in 2011

Detector component	Required resolution	n coverage		TGC End Cap Muon	98,4%
Detector component	inequirea resonation	il coverage		RPC Barrel Muon	97,0%
		Measurement	Trigger	CSC Muon	98,59
	1 0.0501 - 101	125		MDT Muon	99,8
Tracking	$\sigma_{p_T}/p_T = 0.05\% \ p_T \oplus 1\%$	± 2.5		LVL1 Muon TGC Trigger	100,09
EM colorimotry	$\sigma_{\rm T}/E = 10\% / \sqrt{E} \oplus 0.7\%$	12.2	⊥2.5	LVL1 Muon RPC Trigger	99,59
ENTCAIOITTEUY	$O_E/L = 10\%/\sqrt{L} \oplus 0.1\%$	± 3.2	± 2.3	LVL1 Calo Trigger	99,99
Hadronic calorimetry (jets)				Forward Lar	99,89
finationic entormieury (jeus)				Had End-Cap Lar	99,69
barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E \oplus 3\%}$	± 3.2	± 3.2	Tile Calo	97,9%
C	$= 10007 / \sqrt{E} = 1007$	21 1 1 1 1 1 0	2.1	Lar EM Calo	99,59
forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$ 3.1 < \eta < 4.9$	$ 3.1 < \eta < 4.9$	TRT	97,5%
Muon spectrometer	$\sigma_{r_{-}}/p_{T}=10\%$ at $p_{T}=1$ TeV	+2.7	+2.4	SCT	99,19
much special meter	$o_{pT}/pT = 10\%$ at $pT = 110\%$	1 2.7		Pixel	96,9%

PERFORMANCE (E, pT in GeV)

LJ 2011+2012 data analysis

- Search for lepton jets containing electrons, muons and pions
- Use dedicated triggers for displaced decays
 - 3mu6_MSonly: selects decays to muons
 - 2muI0_MSonly_gI0_loose: selects decays to muons and electrons
 - calorimeter ratio trigger: selects decays to electrons/pions in the HAD calo
- Lepton-jet definition
 - ≥ 2 clustered μ 's, isolation in calorimeter and ID
 - $\geq 2\mu$ + EM cluster (photon-like), isolation in ID
 - $\geq 2\mu$ + jet with log(E_{HAD}/E_{EM})>I, narrow energy deposition, isolation in ID
 - a jet with $log(E_{HAD}/E_{EM}) > I$, narrow energy deposition, isolation in ID
 - an EM cluster (photon-like), isolation in ID
- Lepton-jet gun developed in collaboration with the prompt lepton-jet group
 - validated and available in release
 - help in defining analysis strategies and in making less model-dependent searches