

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030 https://indico.cern.ch/getFile.py/access?resId=0&materialId=0&confld=217656

The challenge to upgrade A LAS LHC experiments

Cagliari – 3 aprile 2013

Run 1 @ LHC Great results (A. Nisati)

low p_ double muon high p double muon

2011 Run, L = 1.1 fb⁻¹ CMS √s = 7 TeV

Outstanding performance

Problems overcome

Ready for upgrade

LHCb Integrated Luminosity in 2011 and 2012

The challenge already started in 2012

50 ns bunch crossing <PU> ~ 21 @ 2012

Design value: 25 pile-up events at luminosity 10³⁴cm⁻² s⁻¹ and 25 ns bunch spacing

Projected performance to LS3

Total $\mathcal{L}_{int}(pp)$ before LS3: $300 - 500 \text{ fb}^{-1}$ $\mathcal{L}_{max}(pp) \sim 2.5 \cdot 10^{34} \text{ Hz/cm}^2$

GOAL after LS3:

Total $\mathcal{L}_{int}(pp)$ 3000 fb⁻¹ $\mathcal{L}_{level}(pp) \sim 5 \cdot 10^{34} \text{ Hz/cm}^2$

Needed:

HIGH GRANULARITY DETECTORS with rad-hard components

Trigger crosssection=trigger rate/luminosity

Parameters used to design upgrade

LHC up to 2021		
		safer value
Peak Luminosity expected	2 * 10 ³⁴	3 * 10 ³⁴
Integrated Luminosity expected	300 fb ⁻¹	400 fb ⁻¹
μ = mean number of interactions per		
crossing (25nsec)	55 *	80 /
Safety factor to be used in the dose		
rate and integrated dose calculations	2?	2?>
HL-LHC after 2022		
		safer value
Peak Luminosity expected	5 * 10 ³⁴	7 * 10 ³⁴
Integrated Luminosity expected	2500 fb ⁻¹	3000 fb ⁻¹
Int. Luminosity per year expected	250 fb ⁻¹	300 fb ⁻¹
μ = mean number of interactions per		
crossing (25 nsec)	140 *	200
Safety factor to be used in the dose		
rate and integrated dose calculations	2?	2?

Plan integrated dose figures based on this µ values going with the peak luminosity (25ns beam crossing)

the radiation hardness of components which can be reliably tested for post-irradiation performance (eg ASICs, silicon sensors, diamond, ...) apply this safety factor to the dose calculations in setting the radiation survival specification

Multi-purpose, high resolution and hermetic detector

Magnets: Central Solenoid + 3 Toroids

Tracking: Silicon, Transition Radiation Tracker

Calorimeter: EM (LAr), Had Cal

25m

Muon: Trigger + Precision chambers

ATLAS

44m

Object Reconstruction

- leptons (e, μ, T)
- photons
- jets
- b-jets
- Etmiss

Nadia Pastrone INFN Torino

 $L_{inst} \simeq 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\mu \simeq 27.5)$ $\int L_{inst} \simeq 50 \text{ fb}^{-1}$

 $L_{inst} \simeq 2-3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} (\mu \simeq 55-81)$ $L_{\rm inst} \gtrsim 350 \text{ fb}^{-1}$

"Phase-II" upgrades: $L_{inst} \simeq 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \ (\mu \simeq 140) \text{ w. leveling}$ \simeq 6-7 x 10³⁴ cm⁻²s⁻¹ ($\mu \simeq$ 192) no level. $L_{inst} \simeq 3000 \text{ fb}^{-1}$

ATLAS has devised a 3 stage upgrade program to optimize the physics reach at each Phase

- New Insertable pixel b-layer (IBL)
- New Al beam pipe
- New pixel services
- New evaporative cooling plant
- Consolidation of detector elements (e.g. calorimeter power supplies)
- Add specific neutron shielding
- Finish installation of EE muon chambers staged in 2003
- Upgrade magnet cryogenics

- New Small Wheel (nSW) for the forward muon Spectrometer
- High Precision Calorimeter Trigger at Level-I
- Fast TracKing (FTK) for the Level-2 trigger
- Topological Level-1 trigger processors
- New forward diffractive physics detectors (AFP)

- All new Tracking Detector
- Calorimeter electronics upgrades
- Upgrade part of the muon system
- Possible Level-1 track trigger
- Possible changes to the forward calorimeters

ATLAS @ LS1

- Pixel extraction
- New Be beampine
- New Inner B Layer insertion (inner radius: 3.2 cm)

- new CO2 cooling plant
- new FE and BE electronics
- On each stave:
- 12 double-chip modules (planar pixel sensors)
- 8 single-chip modules (3D pixels)
- FE-I4 Pixel Chip (26880 channels) 19 x 20 mm2 130 nm
- CMOS process, based on an array of 80 by 336 pixels
- New services being installed to fix problems and
- improve R/O bandwidth
- New Diamond Beam Monitor (DBM) also to be installed

ATLAS TDAQ + new FTK

ATLAS Data

~ 500 Hz

Trigger Info

 Automatic balance of processing power, less connections to the ROS PCs

Simpler configuration

Caching of fragments already collected @L2
 Additional flexibility for HLT strategies

ATLAS @ LS3

Integrated radiation levels (up to $2-3\times10^{16}n_{eq}/cm^2$) plan to cope with $\mu\approx200$

Implications of this include:

- New Inner Detector (strips and pixels)
- TDAQ upgrade
- L1 Track Trigger
- New LAr front-end and back-end electronics
- Possible upgrades of HEC and FCal
- New Tiles front-end and back-end electronics
- Muon Barrel and Large Wheel trigger electronics
- Possible upgrades of TGCs in Inner Big Wheels
- Forward detector upgrades
- TAS and shielding upgrade
- Various infrastructure upgrades
- Common activities (installation, safety, ...)
- Software and Computing

Cold

New All-silicon Inner Tracker

Microstrip Stave Prototype

Forward pixel

Outer Pixel Stave Prototype

Baseline layout of the new ATLAS inner tracker for HL-LHC Aim to have at least 14 silicon hits everywhere (robust tracking)

ATLAS: Split TDAQ L1 Scheme

SUPERCONDUCTING COIL <

Total weight: 14000 t Overall diameter: 15.0 m Overall length: 28.7 m

Magnetic field: 3.8 T

Overall length: 21.6 m Magnetic field: 4 Tesla

TRACKERs

Plant Bernit
Plant Brotate
So Destate
So Des

Silicon Microstrips Pixels

IFAE - Cagliari 3 aprile 2013

CALORIMETERS ECAL Scintillating PhWO

ECAL Scintillating PbWO₄ HCAL Plastic scintillator brass

brass sandwich

IRON YOKE

MUON

ENDCAPS

strips

MUON BARREL

Drift Tube Chambers (**DT**)

Resistive Plate Chambers (RPC) Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC)

CMS upgrade plan

CMS upgrade

LS1 Projects: in production

- Completes muon coverage (ME4)
- Improve muon operation (ME1), DT electronics
- Replace HCAL photo-detectors in Forward (new PMTs) and Outer (HPD→SiPM)
- DAQ1 → DAQ2

LS1

LS2

Phase 1 Upgrades (TDRs)

- New Pixels, HCAL electronics and L1-Trigger
- GEM under cost review
- Preparatory work during LS1
 - New beam pipe
 - Install test slices
 - Pixel (cooling), HCAL, L1-trigger
 - Install ECAL optical splitters
 - L1-trigger upgrade, transition to operations

Phase 2: Now being defined

- Tracker Replacement, Track Trigger
- Forward: Calorimetry and Muons and tracking
- Further Trigger upgrade
- Further DAQ upgrade
- Shielding/beampipe for higher aperture

LS1

CMS Muon Upgrade

- No new detectors in the barrel
- DT barrel: replace electronics and a substantial migration of electronics to USC
- New CSC/RPC stations in YE-4/2
- CSC ME-1/1: replace electronics (including FE) to maintain trigger and avoid deadtime

LS2

- New system at 1.6< $|\eta|$ <2.1 to improve L1 and HLT muon momentum resolution to reduce trigger rate and ensure high trigger efficiency in high PU environment

GEM-based detector in stations 1

LS3

R&D on new super-high eta detectors:
 GEM/GRPC for stations further away →
 hooks to interconnect muons with inner tracking trigger

- **DT**: new minicrates

Trigger Upgrade: Plan

Upgrade the Calo, Muon and Global Triggers

- architecture highly configurable, based mainly on 3 boards (with large FPGA, high bandwidth optics, memory for LUTs)
- parallel commissioning of new trigger while operating present trigger
- goal to provide improvements for 2015, commission full functionality for 2016

use standard µTCA boards with large FPGAs for new algorithms

New Pixel: installation 2016

OLD

- Extra layer in barrel and end-cap
- Efficient seeding + robust tracking in increasing track density
- L4↑ reduce gap to TIB, L1↓ reduce impact of MS on dxy/dz resolution

Full Tracker and Pixel upgrade in LS3

Large project, vast R&D program covering all detector aspects Includes requirement of tracking in Level-1 trigger

Different Layouts and Technologies under consideration

- TK Layout decision around spring 2014
- CMS HL Upgrade Technical Proposal planned end of 2014
- Tracker Technical Design Reports in ~ 2016
- Phase 2 Tracker R&D and Track Trigger activities: Appendix CMS Upgrade TP for Phase I http://cds.cern.ch/record/1355706?ln=it
- Phase 2 Pixel R&D activities: Appendix in Pixel Upgrade TDR for Phase I http://cds.cern.ch/record/1355706?ln=it

LHCb Upgrade @ LS2

operated successfully at $\mathcal{L} = 4 \times 10^{32}$ cm² s⁻¹ 50 ns spacing and average multiplicity $\mu > 1.5$ Collected $\mathcal{L}_{int} = 3$ fb⁻¹ (2011+2012)

→ additional 5 fb⁻¹ expected by 2018

Upgrade:

- Measurements to validate CKM description at sub-10% level, aiming at a precision comparable to the theory
- Running at \mathcal{L} =1-2×10³³ cm² s⁻¹, with 25 ns spacing and μ = 4
- To collect \mathcal{L}_{int} = 50 100 fb⁻¹ in 10 years of data-taking
- Installation foreseen by LS2

LHCb trigger

Any increase in luminosity must be currently accompanied by an increase in the hadronic thresholds due to bandwidth HLT limit of 1 MHz

L0 selection based on E_T and p_T cuts: about 50% efficiency for hadronic channels

1 MHz

A technological

of construction

LHCb new 40 MHz readout

40 MHz readout implies:

- Replacement of the front-end electronics
- A new architecture for DAQ
- New Silicon detectors (VELO, IT and TT)
- RICH photon detector replacement and geometry optimization
- Tracking stations after magnet to be redesigned (occupancy rising up to 40%)
- M1 stations of the muon system, the preshower (PS) and scintillator pad detector (SPD) are crucial for the L0 trigger

Read-out the detector synchronously with the bunch-crossing Gradually replace the LLT hardware trigger by a fully software-based HLT trigger for high-flexibility and efficiency

ALICE upgrade startegy

- most physics signals are rare, but untriggerable
 - increase rate capabilities for minimum bias heavy-ion collision
 - upgrade of TPC and ITS, all readout electronics, etc.
 - target: inspection of 50 kHz of minimum bias Pb+Pb
 - factor 100 increase in statistics (for untriggered probes)
 - collect > 10 nb⁻¹ of integrated luminosity
 - upgrade in LS2, implies running few years after LS3
- ALICE is unique in low-p_T/low-mass measurements and particle identification
 - further enhance capabilities, in particular with upgraded ITS
 - closer to beam, less material, better resolution

Λ

ALICE ITS upgrade

factor 3 better secondary vertex resolution:

- inner layer as close as possible (R = 2.2 cm)
- less material budget
 - thin sensors
 - thinner beam pipe ($\Delta R = 800 \mu m$)

fast readout

- allow 50 kHz rate in Pb+Pb two technologies investigated
 - hybrid pixels
- monolithic active pixels
 to be used as all-pixel (7 layers)
 or pixel(3)+strip(4)
 - possibly new Si-strip sensors

Inner Barrel (IB): 3 layers pixels

Radial position (mm): 22,28,36

Length in z (mm): 270

Nr. of modules: 12, 16, 20

Nr. of chips/module: 9

Nr. of chips/layer: 108, 144, 180

Material thickness: ~ 0.3% X₀

Throughput: < 200 Mbit / sec•cm²

Outer Barrel (OB): 4 layers pixels

Radial position (mm): 200, 220, 410, 430

Length in z (mm): 843, 1475

Nr. of modules: 48, 52, 96, 102

Nr. of chips/module: 56, 56, 98, 98

Nr. of chips/layer: 2688, 2912, 9408, 9996

Material thickness: ~ 0.8% X₀

Throughput: < 6 Mbit / sec•cm²

ALICE online upgrade

IFAE - Cagliari 3 aprile 2013

EPN: Event-Building and Processing Nodes

Conclusions

- ✓ LHC and experiments' obtained excellent results from Run 1: the goal is to maintain or improve present performances
- ✓ LHC upgrade → Experiments' upgrades
- \checkmark New challenges on tracking, readout electronics, forward regions and mostly trigger to exploit higher energy and \pounds

For reference:	•
----------------	---

ALICE:

ATLAS:

CMS:

LHCb:

Back-up

A simple and elegant concept

Fast detectors: 25-50ns bunch crossing

High granularity: 20-40 overlapping complex events

High radiation resistance: >10 years of operation

 $\sigma(p_T)/p_T < 1\%$ @ 100GeV $\sigma(p_T)/p_T < 10\%$ @1 TeV

Particle Flow Reconstruction

Possible for redundancy, for the excellent granularity of Tracker and Electromagnetic Calorimeter and for the strong magnetic field

- Optimal combination of information from all subdetectors
- Returns a list of reconstructed "particles"
 - **➡** Electrons, Muons, Photons, Charged and Neutral Hadrons
- Used as building blocks for jets, taus, missing ET, lepton isolation
- Allows tagging of charged particles from pile-up: minimizes impact of PU on jet reconstruction, and lepton or photon isolation

LHCb Upgrade

Read-out the detector synchronously with the bunch-crossing

Gradually replace the LLT hardware trigger by a fully software-based HLT trigger for high-flexibility and efficiency

PCIe-IB-ETH-uniform cluster

