

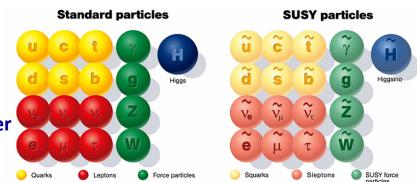
UNIVERSITÀ DEGLI STUDI DI MILANO

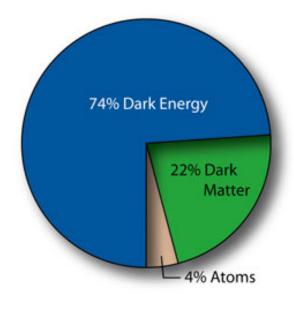
The quest for Natural SUSY ATLAS searches

IFAE 2013 - Cagliari, 3 Aprile 2013

Federico Meloni

Università degli Studi di Milano & INFN


Supersymmetry and MSSM

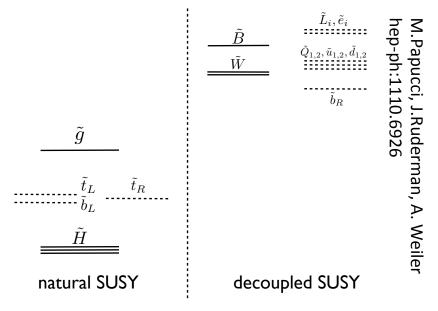

The Standard Model (SM) is a powerful and successful description of fundamental interactions, but:

- Has an high-level of fine-tuning (quadratically divergent corrections to the Higgs boson mass)
- Doesn't provide an explanation for the Dark Matter
- Doesn't provide an unification of QCD and EW coupling constants

Supersymmetry (SUSY) can extend the SM

- New physics at TeV scale
- SUSY relates each SM particle to another, known as superpartner, that differs by half unit of spin.
- SUSY is broken: sparticle masses are function of the breaking terms.
- **R-parity** $R = (-1)^{3B+L+2S}$ is a discrete multiplicative symmetry.
 - SUSY particles must be produced in pairs
 - The Lightest Supersymmetric Particle (LSP) is stable (dark matter candidate)

Natural SUSY

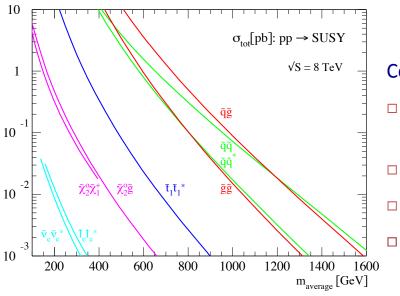

Naturalness provides a useful criterion to address the status of SUSY at the electroweak scale.

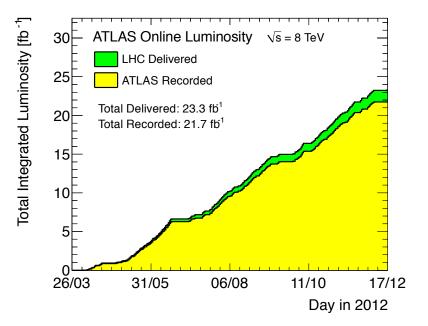
• The naturalness requirement is summarized by the following relation in the Minimal Supersymmetric Standard Model (MSSM)

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_H^2$$

If the superpartners are too heavy, contributions to the right-hand side must be tuned against each other to achieve electroweak symmetry breaking at the observed energy scale.

$$\delta m_H^2 \Big|_{stop} \approx -\frac{3y_t^2}{8\pi^2} \Big(m_{Q_3}^2 + m_{U_3}^2 + |A_t|^2 \Big) \ln\left(\frac{\Lambda}{TeV}\right)$$
$$\delta m_H^2 \Big|_{gluino} \approx -\frac{2y_t^2}{\pi^2} \Big(\frac{\alpha_s}{\pi}\Big) |M_3|^2 \ln^2\left(\frac{\Lambda}{TeV}\right)$$

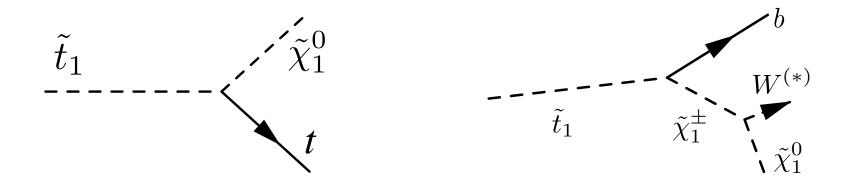

The following particles are required to be light:


- Two *higgsinos*, i.e. one chargino and two neutralinos below 350 GeV (µ≅m_z at tree level)
- stop and sbottoms up to 700 GeV (1-loop radiative corrections)
- Gluinos up to 1.5 TeV
 (2-loop radiative corrections)

Collected data and process sensitivity

The results shown in the following are based up to 21 fb⁻¹ of data, collected between March and December 2012.

Only events satisfying good data quality cuts (i.e. collisions with all detectors in satisfactory working conditions) are considered for the analysis


Considering the available integrated luminosity

- squarks and gluinos accessible well over the TeV scale with large branching fractions and efficiencies.
- □ direct *stop* up to 700 GeV
- charginos and neutralinos up to 400 GeV
 - sleptons up to 150 GeV

Common analysis strategies

The analyses presented in the following slides share a common approach:

- Define a *Signal Region* (SR) based on signal kinematic features
- Estimate the Standard Model processes in the SR:
 - Data-driven reducible backgrounds (QCD multijet backgrounds)
 - Semi data-driven major irreducible backgrounds
 - Define a control region (CR) for each of the backgrounds
 - Normalise MC yields to data $N(SR) = (N^{Data}(CR) N_{others}(CR))$
 - Apply transfer factor from CR to SR
 - Minor backgrounds are taken from MC simulation only
- Check background estimation against data in Validation Regions (VR)
- Look at the observed data in the SR

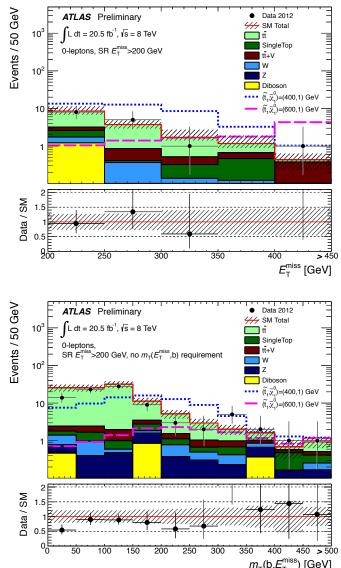
- Fully hadronic final state
- One lepton final state
- Two leptons final state

DIRECT SCALAR TOP SEARCHES

Scalar top: fully hadronic

This analysis looks for events where each of the stops decays into a top quark + $\tilde{\chi}_1^0$.

$$\tilde{t}\tilde{t} \rightarrow t\tilde{\chi}_1^0 t\tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0 bqq\,\tilde{\chi}_1^0 bqq$$


The final state for this search is therefore six or more jets and E_{T}^{miss} .

Six or more jets are required (plus lepton veto)

- **2** b-tags, $p_T^{jet1,2} > 80$ GeV, $p_T^{jet3+} > 35$ GeV
- \Box Δφ(E_T^{miss}, jet_{1,2,3}) > 0.2π
- $\Box \quad \Delta \varphi(E_T^{\text{miss}}, E_T^{\text{miss,track}}) < \pi/3 \ (E_T^{\text{miss,track}} > 30 \ \text{GeV})$
- Tau-jet veto

Final selection on

- m_T(E_T^{miss}, b-jet_{closest}) > 175 GeV
- $\Box = E_{T}^{miss} > 200, 300, 350 \text{ GeV}$

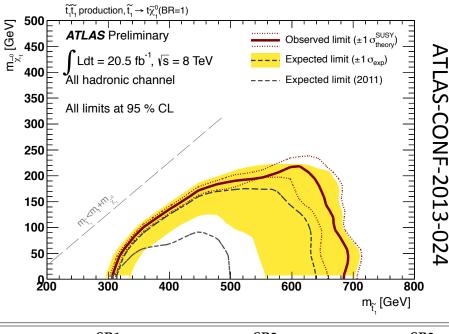
Scalar top: fully hadronic

This analysis looks for events where each of the stops decays into a top quark + $\tilde{\chi}_1^0$.

$$\tilde{t}\tilde{t} \rightarrow t \tilde{\chi}_1^0 t \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0 b q q \, \tilde{\chi}_1^0 b q q$$

The final state for this search is therefore six or more jets and E_T^{miss} .

Six or more jets are required (plus lepton veto)


- **2** b-tags, $p_T^{jet1,2} > 80 \text{ GeV}$, $p_T^{jet3+} > 35 \text{ GeV}$
- □ $\Delta \phi(E_T^{miss}, jet_{1,2,3}) > 0.2\pi$

$$\Box \quad \Delta \phi(\mathsf{E}_{\mathsf{T}}^{\text{miss}}, \mathsf{E}_{\mathsf{T}}^{\text{miss,track}}) < \pi/3$$

Tau-jet veto

Final selection on

- $\square m_{T}(E_{T}^{miss}, b-jet) > 175 \text{ GeV }_{T}^{H}$
- $\Box = E_{T}^{miss} > 200, 300, 350 \text{ GeV}$

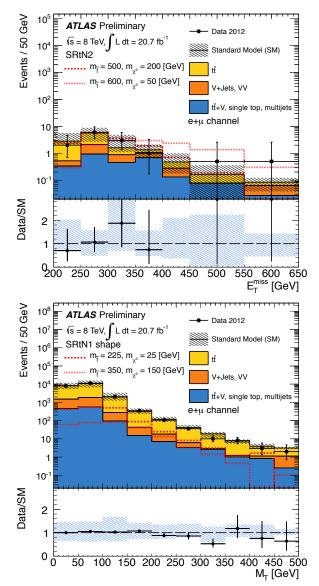
Number of events	SR1	SR2	SR3	
Observed	15	2	1	
Expected background	17.5 ± 3.2	4.7 ± 1.5	2.7 ± 1.2	
Expected <i>tī</i>	9.8 ± 2.6	1.9 ± 1.3	0.9 ± 0.7	
Expected $t\bar{t} + W/Z$	1.7 ± 1.0	0.7 ± 0.4	0.51 ± 0.30	
Expected Z+jets	2.1 ± 1.0	1.2 ± 0.5	0.8 ± 0.4	
Expected W+jets	1.2 ± 0.8	0.32 ± 0.29	$0.19\substack{+0.23\\-0.19}$	
Expected single-top	1.5 ± 0.9	0.5 ± 0.4	$0.3_{-0.3}^{+0.5}$	
Expected multijet	0.12 ± 0.12	0.01 ± 0.01	< 0.01	
Expected diboson	1.2 ± 1.2	< 0.22	< 0.22	
Fit input expectation <i>tī</i>	9.9	1.7	0.6	

9

Scalar top: 1 lepton

This analysis looks for events where each of the stops decays either into a bottom quark + $\tilde{\chi}_{1}^{\pm}$, or into a top quark + $\tilde{\chi}_{1}^{0}$.

$$\begin{split} &\widetilde{t}\widetilde{t} \to t \tilde{\chi}_1^0 t \tilde{\chi}_1^0 \to \tilde{\chi}_1^0 b l \nu \, \tilde{\chi}_1^0 b q q \\ &\widetilde{t}\widetilde{t} \to b \tilde{\chi}^{\pm} b \tilde{\chi}^{\mp} \to \tilde{\chi}_1^0 b l \nu \, \tilde{\chi}_1^0 b q q \end{split}$$


High E_{T}^{miss} for the signal because of $\tilde{\chi}_{1}^{0}$ in the final state.

Multiple signal regions (see backup):

 relying mostly on a harsh selection on E_T^{miss} and m_T

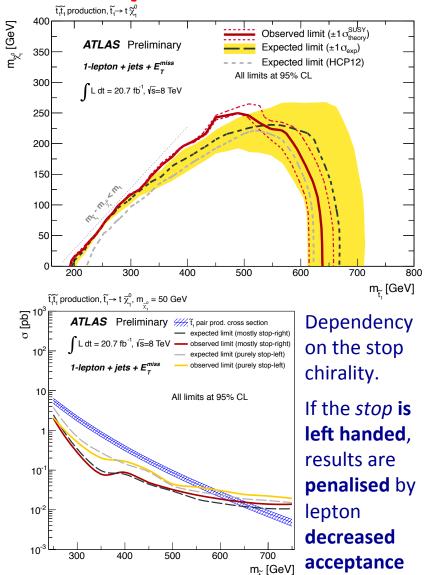
$$m_T = \sqrt{2p_T^{\ell} E_T^{miss} \left(1 - \cos \Delta \phi \left(E_T^{miss}, \ell\right)\right)}$$

- tag one b-jet, reconstruct one hadronic top mass
- 5 cut & count signal regions, 1 signal region with E_T^{miss} and m_T shape fit

Scalar top: 1 lepton

This analysis looks for events where each of the stops decays either into a bottom quark + $\tilde{\chi}_{1}^{\pm}$, or into a top quark + $\tilde{\chi}_{1}^{0}$.

$$\begin{split} &\widetilde{t}\widetilde{t} \to t \tilde{\chi}_1^0 t \tilde{\chi}_1^0 \to \tilde{\chi}_1^0 b l \nu \, \tilde{\chi}_1^0 b q q \\ &\widetilde{t}\widetilde{t} \to b \tilde{\chi}^{\pm} b \tilde{\chi}^{\mp} \to \tilde{\chi}_1^0 b l \nu \, \tilde{\chi}_1^0 b q q \end{split}$$


High E_{T}^{miss} for the signal because of $\tilde{\chi}_{1}^{0}$ in the final state.

Multiple signal regions (see backup):

 relying mostly on a harsh selection on E_T^{miss} and m_T

$$m_T = \sqrt{2p_T^{\ell} E_T^{miss} \left(1 - \cos \Delta \phi \left(E_T^{miss}, \ell\right)\right)}$$

- tag one b-jet, reconstruct one hadronic top mass
- □ 5 cut & count signal regions, 1 signal region with E_T^{miss} and m_T shape fit

ATLAS-CONF-2013-037

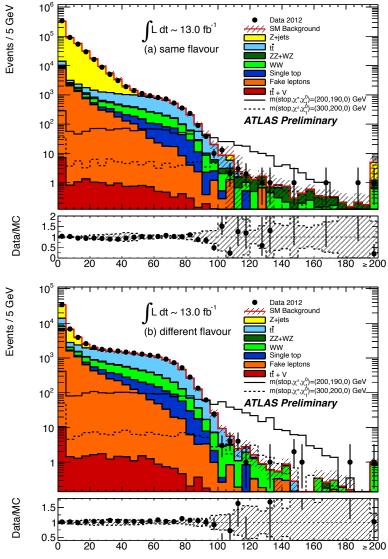
Scalar top: 2 leptons

This analysis looks for events where each of the **stops** decays **into a bottom quark +** $\tilde{\chi}_1^{\pm}$.

$$\tilde{t}\tilde{t} \rightarrow b\tilde{\chi}^{\pm}b\tilde{\chi}^{\mp} \rightarrow \tilde{\chi}_{1}^{0}bl\nu\,\tilde{\chi}_{1}^{0}bl\nu$$

Use of the m_{τ_2} variable to discriminate the signal from the background

$$m_{T2}\left(\vec{p}_{T}^{1}, \vec{p}_{T}^{1}, \vec{p}_{T}\right) = \min_{\vec{q}_{T}^{1} + \vec{q}_{T}^{2} = \vec{p}_{T}} \left\{ \max\left[m_{T}^{2}\left(p_{T}^{1}, \vec{q}_{T}^{1}\right), m_{T}^{2}\left(p_{T}^{2}, \vec{q}_{T}^{2}\right)\right] \right\}$$


Exactly two **opposite sign** high- p_T leptons (e or μ , veto a third)

Two channels:Different Flavour DF (eµ)Same Flavour SF (ee , µµ)

- $\Box \quad \Delta \varphi(E_{T}^{miss}, closest jet) > 1.0$
- $\Box \quad \Delta \phi_{\rm b} \ ({\rm E_T}^{\rm miss}, \ p_{\rm b}^{\rm ll}) < 1.5$
- M_{T2} > 90, 100, 110 GeV

SF candidates only

□ Veto 71 GeV < m_{\parallel} < 111 GeV

m_{T2} [GeV]

11

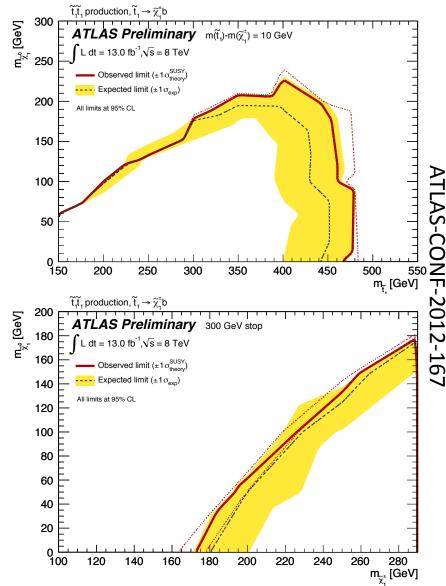
Scalar top: 2 leptons

This analysis looks for events where each of the **stops** decays **into a bottom quark +** $\tilde{\chi}_1^{\pm}$.

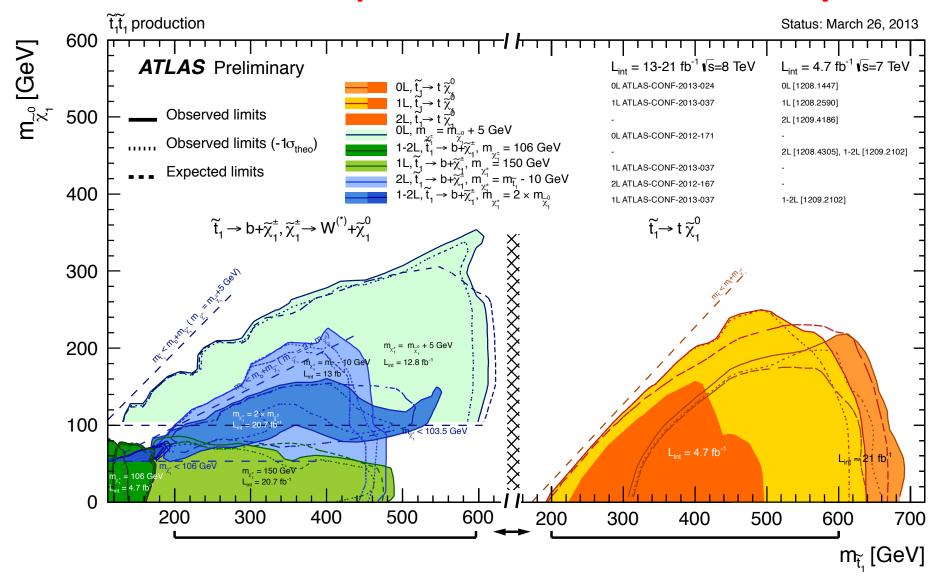
$$\tilde{t}\tilde{t} \rightarrow b\tilde{\chi}^{\pm}b\tilde{\chi}^{\mp} \rightarrow \tilde{\chi}_{1}^{0}bl\nu\,\tilde{\chi}_{1}^{0}bl\nu$$

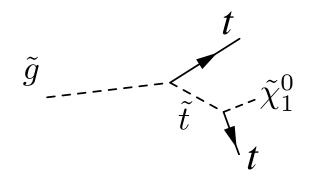
Use of the m_{τ_2} variable to discriminate the signal from the background

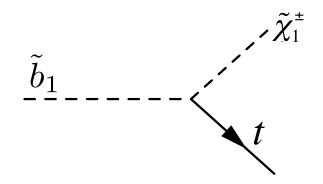
$$m_{T2}\left(\vec{p}_{T}^{1}, \vec{p}_{T}^{1}, \vec{p}_{T}\right) = \min_{\vec{q}_{T}^{1} + \vec{q}_{T}^{2} = \vec{p}_{T}} \left\{ \max\left[m_{T}^{2}\left(p_{T}^{1}, \vec{q}_{T}^{1}\right), m_{T}^{2}\left(p_{T}^{2}, \vec{q}_{T}^{2}\right)\right] \right\}$$


Exactly two **opposite sign** high- p_T leptons (e or μ , veto a third)

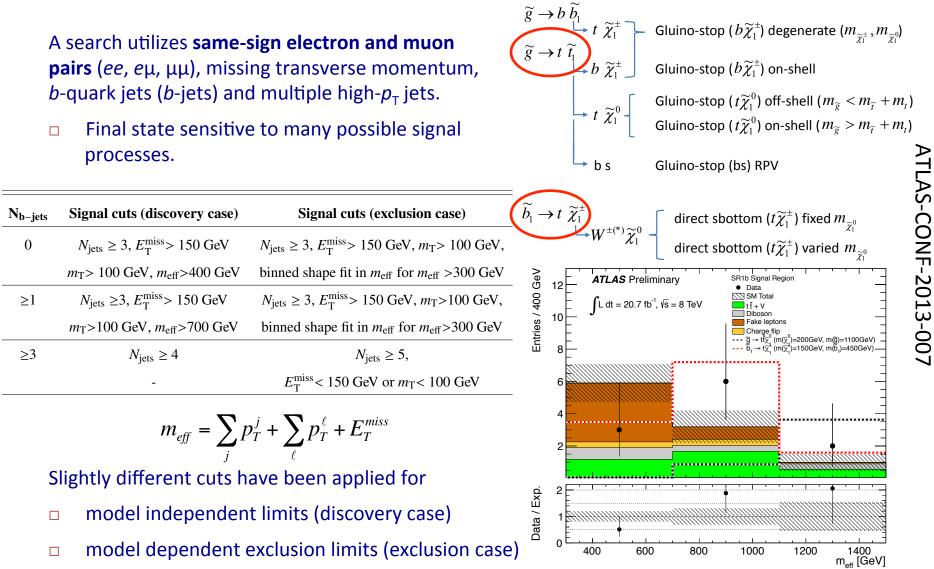
Two channels: **Different Flavour** *DF* (eµ) **Same Flavour** *SF* (ee , μμ)

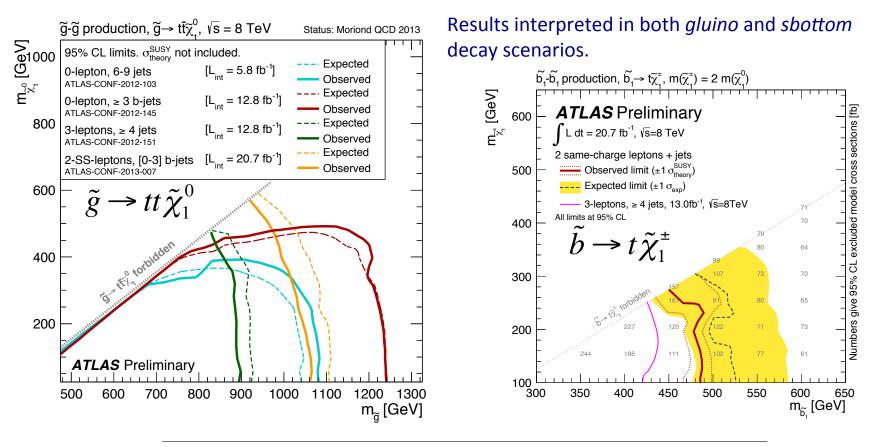

- $\Box \quad \Delta \varphi(E_T^{miss}, \text{ closest jet}) > 1.0$
- $\Box \qquad \Delta \varphi_{\rm b} \ ({\sf E}_{\rm T}^{\rm miss}, \ {\sf p}_{\rm b}^{\rm ll}) < 1.5$
- M_{T2} > 90, 100, 110 GeV


SF candidates only


• Veto 71 GeV < m_{\parallel} < 111 GeV

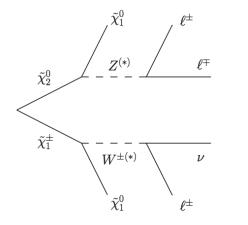
N^E Direct Stop searches summary

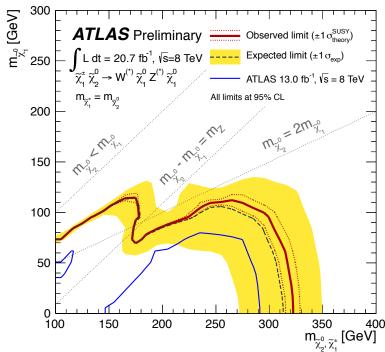



- 2 Same Sign leptons
- 3 leptons

OTHER NATURAL SUSY SEARCHES

2 SS leptons search




2 SS leptons search

Signal regions	$\langle\epsilon\sigma angle_{ m obs}^{ m 95}$ [fb]	S ⁹⁵ _{obs}	S ⁹⁵ _{exp}
SR0b	0.33	6.7	$7.9^{+2.6}_{-2.0}$
SR1b	0.53	11.0	$6.8^{+2.6}_{-1.5}$
SR3b	0.34	7.0	$5.9^{+2.4}_{-1.3}$

^{NEN} Direct gaugino search: 3 leptons

Direct electroweak production of gauginos gives rise to **multi-lepton final states**:

- Very low SM background expected
- Decays through sleptons (BR to leptons 100%) or WZ-like (challenging) decays assumed

	Z depleted				Z enriche	ed
Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
m _{SFOS} [GeV]	<60	60-81.2	<81.2 or >101.2	81.2-101.2	81.2–101.2	81.2–101.2
$E_{\rm T}^{\rm miss}$ [GeV]	>50	>75	>75	75-120	75-120	>120
$m_{\rm T}$ [GeV]	-	_	>110	<110	>110	>110
$p_{\rm T} 3^{\rm rd} \ell [{\rm GeV}]$	>10	>10	>30	>10	>10	>10
SR veto	SRnoZc	SRnoZc	-	-	_	-
Target	Low mass splitting	No sleptor Off-shell 2		WZ-like	No slepton On-shell Z	No slepton bulk

Results interpretation (simplified models) assumes wino-like $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{\pm}$ and a bino-like $\tilde{\chi}_{1}^{0}$

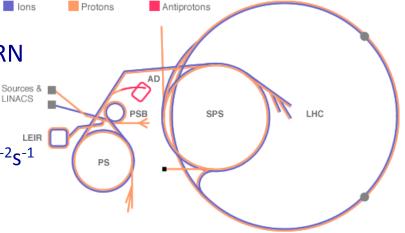
 $\square \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ are assumed to be mass-degenerate

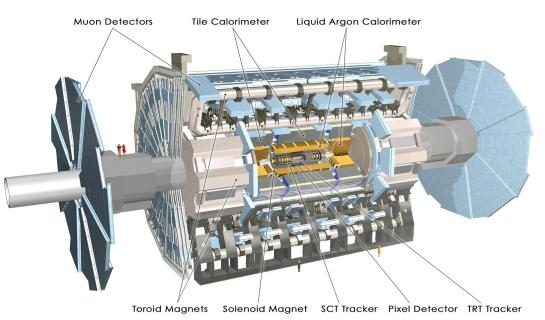
Conclusions and Outlook

The analysis of the 2012 data of ATLAS has yielded lots of results:

- 95% CL exclusion limits are set within various phenomenological assumptions
- the parameter space given by the naturalness argument is being filled up

Even if the results have been found consistent with Standard Model expectations, the search continues: in particular for implementations of supersymmetry leading to more subtle signals at LHC


- The third generation of scalar quarks is crucial for naturalness and an high priority in ongoing searches.
- More to come with 8 TeV data: expect new results soon!


THANKS FOR YOUR ATTENTION!

LHC and ATLAS

LHC is a proton-proton collider situated at CERN

- Collisions at vs = 7 TeV (2010-2011)
- Collisions at vs = 8 TeV (2012)
- High instantaneous luminosities $L = 6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- More than 21 fb⁻¹ of data delivered before LS1

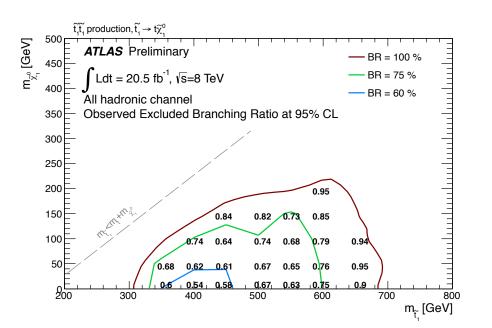
ATLAS is a multi-purpose detector composed by:

- An inner tracking system (silicon + gaseous)
- Two sampling calorimeter systems (Electromagnetic and Hadronic)
- □ An *in-air* muon spectrometer 20

Common background estimation strategies

The analyses presented here share some common techniques to estimate the backgrounds:

- QCD multijet backgrounds (data-driven)
 - Hadronic searches: Estimated smearing a sample of jets from a control
 - region (CR) with a function taken from a simulated dijet sample
 - Leptonic searches: Fake rate measured in a CR with relaxed lepton identification criteria and used to estimate the rate in the signal region (SR)
- Major backgrounds (semi data-driven)
 - Define a control region for each of the backgrounds kinematically close to signal region
 - Normalise MC yields to data $N(SR) = (N^{Data}(CR) N_{others}(CR))$
 - Apply transfer factor from CR to SR subtracting other backgrounds in the region
- Minor backgrounds are taken from MC simulation only


 $N^{MC}(S)$

Scalar top: fully hadronic

Model independent result interpretation

Signal region	$\langle \varepsilon \sigma \rangle_{ m obs}^{95}[m fb]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$
SR1	0.49	10.0	$10.6^{+5.5}_{-1.7}$
SR2	0.17	3.6	$5.3^{+3.2}_{-1.7}$
SR3	0.19	3.9	$4.5\substack{+1.9 \\ -0.7}$

Limit dependence on BR to selected final state (top + neutralino 1), assuming that the competing decay modes are outside the sensitivity of the analysis

Scalar top: 1 lepton

2؛ [GeV] مير سرح	$\begin{array}{c} \widetilde{t_{i_{1}}} \text{ production, } \widetilde{t_{i}} \rightarrow b + \widetilde{\chi_{i}}^{*}, \widetilde{\chi_{i}} \rightarrow W^{(')} + \widetilde{\chi_{i}}^{0}, m_{\underline{\chi_{i}}} = 150 \text{ GeV} \\ 0 & & & \\ - & \text{ Dbserved limit ($±10 dimony) } \\ - & \text{ ATLAS Preliminary } \end{array}$								
_ ۲ ۲ ۲	1-lepton + jets + E ^{miss} Expected limit (LCP12)	Requirement	SRtN1_shape	SRtN2	SRtN3	SRbC1	SRbC2	SRbC3	
	All limits at 95% CL _ ∫L dt = 20.7 fb ⁻¹ , (§=8 TeV	$\Delta \varphi(\text{jet}_1, \vec{p}_T^{\text{miss}}) >$	0.8	-	0.8	0.8	0.8	0.8	
15	50	$\Delta \varphi(\text{jet}_2, \vec{p}_T^{\text{miss}}) >$	0.8	0.8	0.8	0.8	0.8	0.8	
		$E_{\rm T}^{\rm miss}$ [GeV] >	100 ^(*)	200	275	150	160	160	
10		$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	5	13	11	7	8	8	
		$m_{\rm T} [{\rm GeV}] >$	60 ^(*)	140	200	120	120	120	AT
Ę		m _{eff} [GeV] >	-	-	-	-	550	700	-SVT.
		am_{T2} [GeV] >	-	170	175	-	175	200	
	200 250 300 350 400 450 500 550 60 m _t [GeV]	$m_{T2}^{\tau} [\text{GeV}] >$	-	-	80	-	-	-	6
		m_{jjj}	Yes	Yes	Yes	-	-	-	ONF-20
⊆ ²⁶	$\widetilde{t}_{1}^{*}\widetilde{t}_{1} \text{ production, } \widetilde{t}_{1} \rightarrow b + \widetilde{\chi}_{1}^{*}, \widetilde{\chi}_{1}^{*} \rightarrow W^{(^{*})} + \widetilde{\chi}_{1}^{o}, m_{\widetilde{\chi}_{1}^{*}} = 2 \times m_{\widetilde{\chi}_{1}^{o}}$	$N^{\rm iso-trk} = 0$	-	-	-	Yes	Yes	Yes	-'
26 24 س ^{کر} [GeV]	$ = - ATLAS Preliminary = - Expected limit (±1\sigma_{theory}^{SUSY})$	Number of <i>b</i> -jets \geq	1	1	1	1	2	2	01
ຊັ [×] 22		$p_{\rm T}$ (leading <i>b</i> -jet) [GeV] >	25	25	25	25	100	120	13-
20	$\int_{10}^{10} L dt = 20.7 \text{fb}^{-1}, \sqrt{s} = 8 \text{TeV} $ All limits at 95% CL	$p_{\rm T}$ (second <i>b</i> -jet) [GeV] >	-	-	-	-	50	90	037
18 16	E S B	□ <i>Table</i> : signa	al region de	finition					7
12		• •	ottom + cha ion with fixe	-	•				
e		•	t: bottom + pretation in	-					

scenario

 $m_{\widetilde{t}}$ [GeV]

Scalar top: 2 leptons

Cut & count results + model independent result interpretation

Process	S R90	S R100	SR110
$t\bar{t}$ events	134 ± 24	21 ± 9	3.8 ± 1.8
(MC prediction)	(131 ± 30)	(21 ± 9)	(3.7 ± 2.1)
WW events	51 ± 11	23 ± 7	15 ± 5
(MC prediction)	(42 ± 5)	(19 ± 4)	(12 ± 3)
WZ - ZZ events	8.4 ± 1.9	6.3 ± 1.8	4.7 ± 1.4
(MC prediction)	(13 ± 4)	(10 ± 4)	(7 ± 3)
Z+jets	8 ± 6	7 ± 5	4 ± 6
$t\bar{t}V$ events	1.5 ± 0.3	0.9 ± 0.2	0.6 ± 0.2
Wt events	11 ± 5	1.8 ± 1.9	1.4 ± 0.8
Events with fake leptons	9.6 ± 2.8	3.7 ± 1.4	1.4 ± 0.8
Total bkg events	224 ± 31	64 ± 13	31 ± 8
(MC prediction)	(215 ± 34)	(62 ± 13)	(30 ± 8)
Signal, m($\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0$) = (200,190,1) GeV	594 ± 92	405 ± 64	252 ± 41
Signal, $m(\tilde{t}_1, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = (300, 200, 1) \text{ GeV}$	52 ± 17	35 ± 14	24 ± 11
Observed events	178	44	22
95% CL limit on σ_{vis}^{obs} [fb] 95% CL limit on σ_{vis}^{exp} [fb]	3.29	1.39	1.18
95% CL limit on $\sigma_{\rm vis}^{\rm exp}$ [fb]	5.39	2.39	1.58

Scalar top: 2 leptons

Systematic uncertainties breakdown

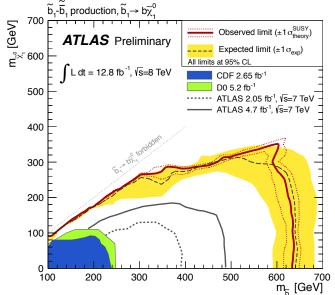
	S R90	SR100	<i>SR</i> 110
JES	2%	3%	3%
JER	4%	1%	9%
cluster energy scale	2%	2%	8%
cluster energy resolution	0%	0%	9%
pileup	7%	6%	1%
diboson generator	2%	9%	15%
top generator	8%	5%	3%
top ISRFSR	4%	3%	1%
top parton shower	3%	11%	4%
MC stat	3%	8%	13%
$t\bar{t}$ normalization	3%	1%	1%
WW normalization	4%	6%	8%
WZ/ZZ normalization	1%	2%	3%
Fake-lepton uncertainties	1%	1%	1%
Total uncertainty	14%	20%	28%

2 SS leptons

Cut & count results. p_0 denotes the *p*-value of the observed events for the background only hypothesis.

A) Discovery case	SR0b	SR1b	SR3b
Observed events	5	8	4
Expected background events	7.5 ± 3.3	3.7 ± 1.6	3.1 ± 1.6
Expected $t\bar{t} + V$ events	0.5 ± 0.4	2.2 ± 1.0	1.7 ± 0.8
Expected diboson events	3.4 ± 1.0	0.7 ± 0.4	0.1 ± 0.1
Expected fake lepton events	3.4 ± 3.1	$0.3^{+1.1}_{-0.3}$	$0.9^{+1.4}_{-0.9}$
Expected charge mis-measurement events	0.1 ± 0.1	0.5 ± 0.2	0.4 ± 0.1
<i>p</i> 0	0.50	0.11	0.36
B) Exclusion case	SR0b	SR1b	SR3b
Observed events	5	11	1
Expected background events	7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3
Expected $t\bar{t} + V$ events	0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4
Expected diboson events	3.4 ± 1.1	1.4 ± 0.7	< 0.1
Expected fake lepton events	3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1
Expected charge mis-measurement events	0.2 ± 0.1	0.8 ± 0.3	0.1 ± 0.1
$\overline{p_0}$	0.5	0.39	0.5

Direct sbottom search: 2 b-jets


$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 200 GeV	> 150 GeV > 250 GeV		
Leading jet $p_{\rm T}(j_1)$	$>$ 130 GeV, $ \eta $ < 2.8	$>$ 60 GeV, $ \eta $ < 2.8	$>$ 130 GeV, $ \eta <$ 2.8	$>$ 150 GeV, $ \eta <$ 2.8	ΡŢ
Second jet $p_{\mathrm{T}}(j_2)$	$>$ 50 GeV, $ \eta $ < 2.8	$>$ 60 GeV, $ \eta $ < 2.8	$> 30 \text{ GeV}, < 110 \text{ GeV}, \eta < 2.8$		
Third jet $p_{\rm T}(j_3)$	veto event if $p_{\rm T}(j_3) >$	veto event if $p_{\rm T}(j_3) > 50$ GeV, $ \eta < 2.8$ > 30 GeV, $ \eta < 2.8$			AS-C
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, j_{1})$	-		> 2.5		0 N
jet <i>b</i> -tagging ($ \eta < 2.5$)	j_1 and j_2 ta	agged	j_1 anti-tagged,	j_2 and j_3 tagged	IF-2
$\Delta \phi_{\min}(n)$	> 0.4 (<i>n</i> =	= 2)	> 0.4	(n = 3)	0
$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{m}_{\mathrm{eff}}(j_1, j_2, j_3)$	> 0.25				12-1
m _{CT}	> 150, 200, 250, 300 GeV > 100 GeV -		-	165	
$H_{\mathrm{T},x}$	-	< 50 GeV, x = 2	< 50 GeV, $x = 3$		

Direct sbottom production has been probed in events with 2 final state b-tagged jets.

■ Many signal regions have been defined to improve sensitivity on the $\tilde{b} - \tilde{\chi}_1^0$ plane depending on the mass difference $\Delta m = m_{\tilde{b}} - m_{\tilde{\chi}_1^0}$

$$H_{T,x} = \sum_{all \ jets} p_T^{jet} - \sum_{leading \ x \ jets} p_T^{jet}$$

Two SRs exploiting ISR recoil

27