The NESSiE concept for Sterile Neutrinos

The Sterile Neutrino Issue with SPS beam at CERN

Eduardo Medinaceli (INFN and Padova University) for the NESSiE collaboration

IFAE 2013 - April 5, 2013

Università degli Studi di Padova

Proposal SPSC-P347 (March 2012)

OUTLINE

- 1. Physics ground & different scenarios
- 2. SPSC-P347 proposal
- 3. Latest beam & new simulation
- 4. Spectrometers
- 5. Performances

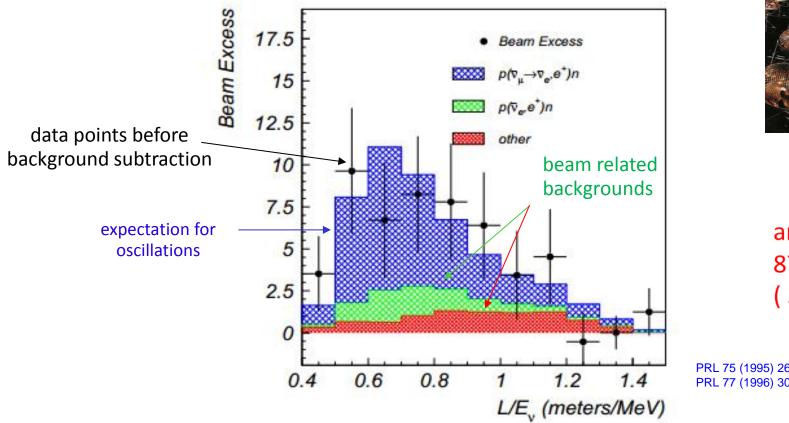
1

The 3v oscillation paradigm

- v-oscillations: the first physics BSM \rightarrow v are massive!
- decades of experiments \rightarrow mixing of 3 active v, PMNS unitary matrix

BUT

- Some observations are in tension with the 3v scheme, pointing to a new $\Delta m^2 \sim eV^2$ (predominantly from single detector experiments...)
- LEP Z invisible decay width $N_{active} = 3$ (with $m_v < M_Z / 2$), the extra state does not couple to Z/W
- The extraordinary consequence of a possible sterile neutrino discovery calls for a conclusive experimental search


Sterile neutrinos

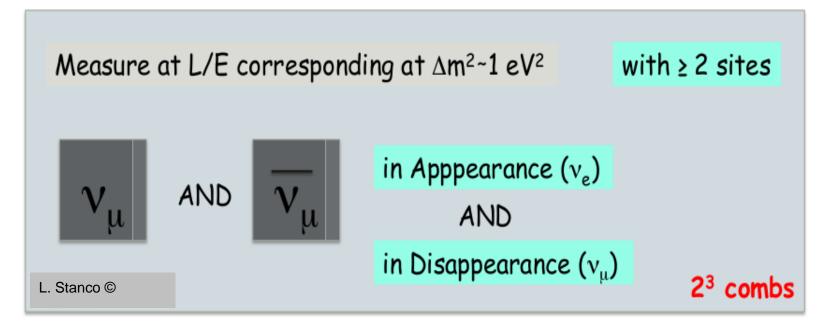
- Neutrino are special: the only neutral fermions in the SM
- SM extensions: SM singlet $L_{L}\phi$ can couple to a new BSM singlet chiral fermion field v_{R} (i.e. think to light *anti*- v_{R} which can oscillate with "active" v)
- Light anti- v_{R} are called sterile neutrinos
- Examples of light v_{R} : see-saw, SUSY, extra dim. (KK), mirror world.
- "Sterile" = no SM interactions
- But (v_e, v_μ, v_τ) can mix with sterile neutrinos (v_s)
- Two distinct classes of anomalies have been analyzed, namely:
 - \succ the apparent <u>disappearance signal</u> in the anti- v_e/v_e events detected from
 - (1) near-by nuclear reactors
 - (2) from MCi calibration sources in the Gallium experiments to detect solar v_e
 - > observation for <u>appearance signals</u> of anti- v_e from anti- v_{μ} from particle accelerators (LNSD/MiniBooNE) (but no v_e excess signal from $v_{\mu} \rightarrow v_e$)
- Observables:
- O Smoking Gun: Neutral Current Deficit (also disappearance of active neutrinos)
- O Counterchecked Smoking Gun: NC/CC ratios
- At least a fourth non-standard neutrino state can oscillate at small distances, Δm²_{new} ≈ 1 eV² (→ SHORT BASELINE projects)

E. Medinaceli- NESSiE

LSND: «evidence» of $anti v_{\mu} \rightarrow anti - v_e$

- L ~ 30m, 20 < E < 200 MeV
- source: $anti-v_{\mu}$ beam
- detection: $anti-v_e + p \rightarrow e^+ + n$ (2.2 MeV γ)

anti- ν_{e} excess: 87.9 ± 22.4 ± 6.0 (3.8 σ not very strong)


the experimental result so far has not been challenged experimentally

E. Medinaceli- NESSiE

PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007

Approach at the CERN SPS

A direct unambiguous measurement of an oscillatory pattern requires necessarily the (simultaneous) observation at several different distances: the only way to identify both Δm^2 and $sin^2 2\theta$

We need a Superior Class Experiment: 3 kton Fe + 1 kton LAr

- ICARUS imaging detector unambiguous identification of ALL channest w. a LAr-TPC
- **NESSIE** magnetic spectrometers to determinate μ charge and momentum

Search for "anomalies" from neutrino and anti-neutrino oscillations at $\Delta m^2 \approx 1 eV^2$ with muon spectrometers and large LAr–TPC imaging detectors.

Technical proposal.

(CERN-SPSC-2012-010 and SPSC-P-347)

ICARUS Collaboration

M. Antonello¹, D. Bagliani², B. Baibussinov⁵, H. Bilokon⁶, F. Boffelli⁸, M. Bonesini⁹, E. Calligarich⁸, N. Canci¹, S. Centro^{4,5}, A. Cesana¹⁰, K. Cieslik¹¹, D. B. Cline¹², A. G. Cocco¹⁴, D. Dequal^{4,5}, A. Dermenev¹⁶, R. Dolfini^{7,8}, M. De Gerone^{2,3}, S. Dussoni^{2,3}, C. Farnese⁴, A. Fava⁵, A. Ferrari¹⁷, G. Fiorillo^{13,14}, G. T. Garvey¹⁸, F. Gatti^{2,3}, D. Gibin^{4,5}, S. Gninenko¹⁶, F. Guber¹⁶, A. Guglielmi⁵, M. Haranczyk¹¹, J. Holeczek¹⁹, A. Ivashkin¹⁶, M. Kirsanov¹⁶, J. Kisiel¹⁹, I. Kochanek¹⁹, A. Kurepin¹⁶, J. Łagoda²⁰, G. Lucchini⁹, W. C. Louis¹⁸, S. Mania¹⁹, G. Mannocchi⁶, S. Marchini⁵, V. Matveev¹⁶, A. Menegolli^{7,8}, G. Meng⁵, G. B. Mills¹⁸, C. Montanari⁸, M. Nicoletto⁵, S. Otwinowski¹², T. J. Palczewski²⁰, G. Passardi¹⁷, F. Perfetto^{13,14}, P. Picchi⁶, F. Pietropaolo⁵, P. Pioński²¹, A. Rappoldi⁸, G. L. Raselli⁸, M. Rossella⁸, C. Rubbia^{1,17,a}, P. Sala¹⁰, A. Scaramelli¹⁰, E. Segreto¹, D. Stefan¹, J. Stepaniak²⁰, R. Sulej²⁰, O. Suvorova¹⁶, M. Terrani¹⁰, D. Tlisov¹⁶, R. G. Van de Water¹⁸, G. Trinchero⁶, M. Turcato⁵, F. Varanini⁴, S. Ventura⁵, C. Vignoli¹, H. G. Wang¹², X. Yang¹², A. Zani⁸, K. Zaremba²¹

(a) Contact Person

NESSiE Collaboration

M. Benettoni⁵, P. Bernardini^{26,27}, A. Bertolin⁵, C. Bozza³¹, R. Brugnera^{4,5}, A. Cecchetti⁶, S. Cecchini²⁵, G. Collazuol^{5,6}, P. Creti²⁷, F. Dal Corso⁵, I. De Mitri^{26,27}, G. De Robertis²³, M. De Serio²³, L. Degli Esposti²⁵, D. Di Ferdinando²⁵, U. Dore^{29,30}, S. Dusini⁵, P. Fabbricatore³, C. Fanin⁵, R. A. Fini²³, G. Fiore²⁷, A. Garfagnini^{4,5}, G. Giacomelli^{24,25}, R. Giacomelli²⁵, G. Grella³¹, C. Guandalini²⁵, M. Guerzoni²⁵, U. Kose⁵, G. Laurenti²⁵, M. Laveder^{4,5}, I. Lippi⁵, F. Loddo²³, A. Longhin⁶, P. Loverre^{29,30}, G. Mancarella^{26,27}, G. Mandrioli²⁵, A. Margiotta^{24,25}, G. Marsella^{27,28}, N. Mauri⁶, E. Medinaceli^{4,5}, A. Mengucci⁶, M. Mezzetto⁵, R. Michinelli²⁵, M. T. Muciaccia^{22,23}, D. Orecchini⁶, A. Paoloni⁶, A. Pastore^{22,23}, L. Patrizii²⁵, M. Pozzato^{24,25}, R. Rescigno³¹, G. Rosa²⁹, S. Simone^{22,23}, M. Sioli^{24,25}, G. Sirri²⁵, M. Spurio^{24,25}, L. Stanco^{5,b}, S. Stellacci³¹, A. Surdo²⁷, M. Tenti^{24,25}, V. Togo²⁵, M. Ventura⁶ and M. Zago⁵.

(b) Contact Person

collaborations

institutions

2

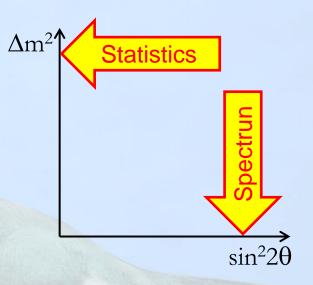
30

~ 140 people

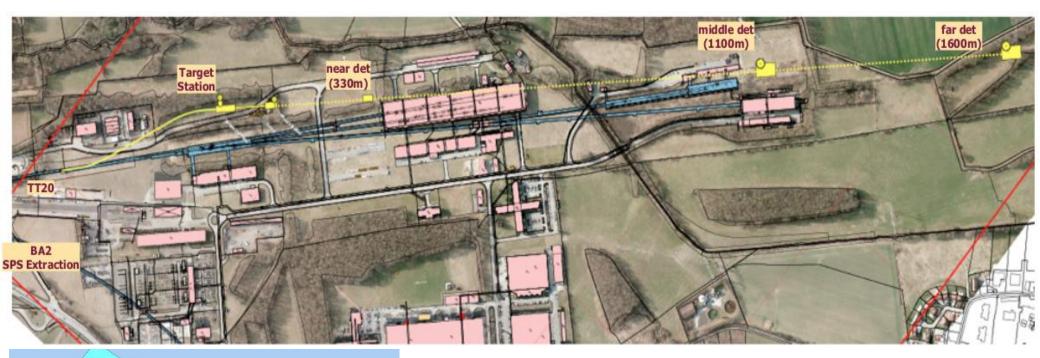
E. Medinaceli- NESSiE

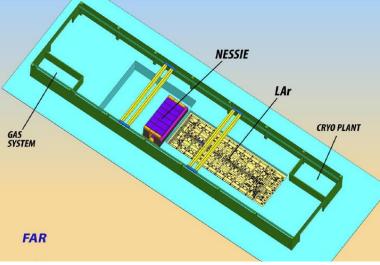
The ICARUS-NESSiE P-347 proposal at the CERN-SPS

SPSC-P-347 (arXiv:1203.3432)


- L /E oscillation path lengths to ensure appropriate matching to the Δm² window for the expected anomalies
- NEAR and FAR sites
- "Imaging" LAr-TPC detector capable of identifying unambiguously <u>all</u> reaction channels
- Magnetic spectrometers to determine muon charge and momentum
- Interchangeable *v* and *anti-v* beams
- High rates due to detector large masses, in order to record relevant effects at the percent level (>10⁶ v_{μ} , ~ 10⁴ v_e)
- Both initial v_e and v_{μ} components cleanly identified.

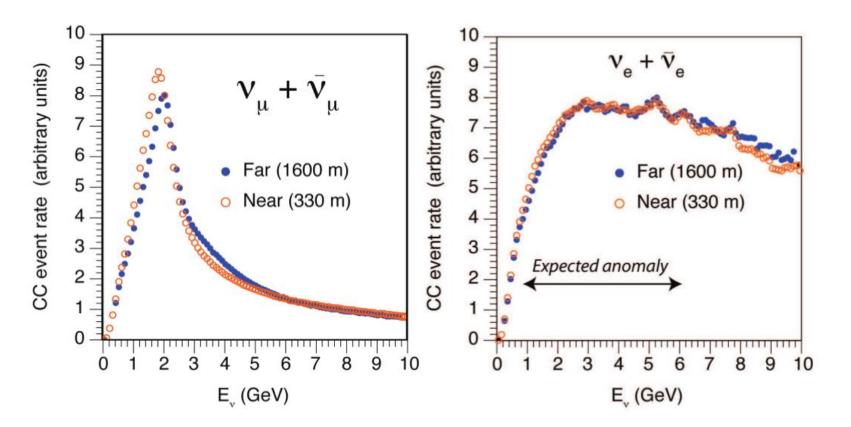
Scientific Approval (CERNS' SPSC) middle of January 2013!!!


NESSIE (Neutrino Experiment with Spectrometers in Europe) charge and momentum measurements in the CC neutrino interactions


Fundamental because:

- Increase the Δm^2 range (low P \rightarrow low Δm^2)
- Measure precisely v_{μ} dissapearance in a wide energy range
- Large statistics \rightarrow low $sin^2 2\theta$
- Separate v_{μ} from anti- v_{μ}
- Measure the ϕ_{ν} the near detector, to keep systematics as low as possible
- Normalize NC/CC

Preliminary SBL layout at the CERN's North Area



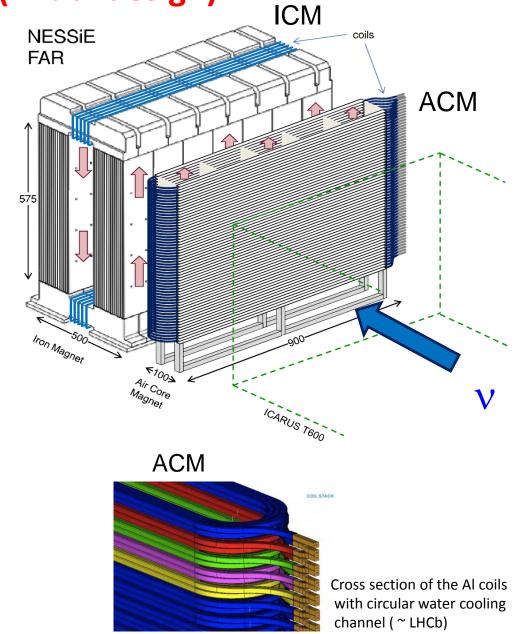
- Near site L = 300m
- Far site L = 1600m
- SPS p beam: 100 GeV \rightarrow 2 GeV ν beam
- Luminosity: 4.5 · 10¹⁹ pot/year (CNGS)
- Interactions/spill = 5 / 0.65 at near / far

IFAE 2013

Latest beam studies at SPS

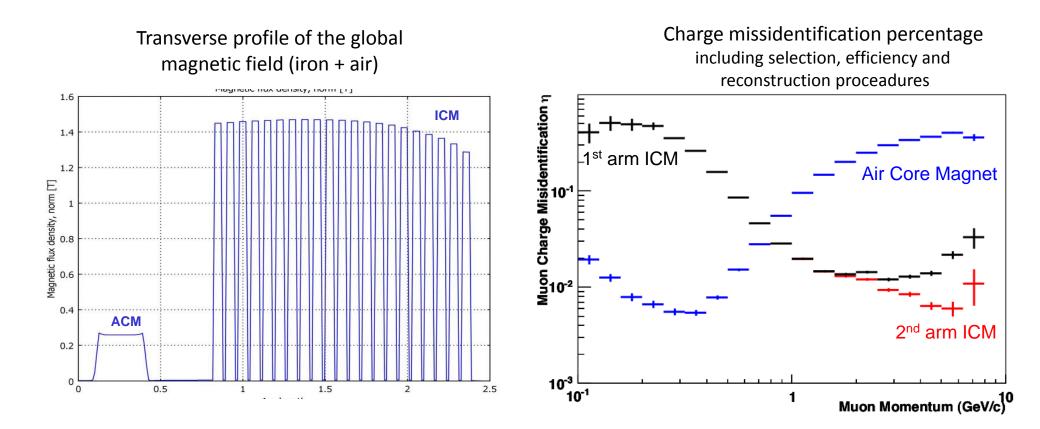
Un-oscillated v_e fluxes are ~ identical \rightarrow N/F deviations = oscillations The oscillated signals are clustered below 6 GeV of visible energy

Scenario <u>defined</u> for DATA Taking: 2 years of *anti-v* followed by 1 year *v*


NESSiE (initial design)

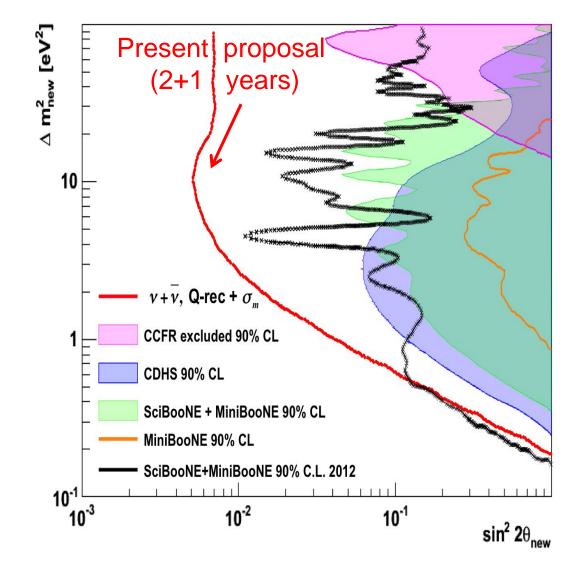
IRON CORE MAGNETS

- Two Iron spectrometers (ICM), FAR 1500 t (LAr 476 t) + NEAR 800 t (LAr 119 t), instrumented with:
- 1800 + 700 m² of RPC
- «sandwich style» assembly to be made in situ, one piece per time
- 20 000 + 12 000 digital channels


AIR CORE MAGNETS

- Two Air Core Magnets (ACM) pre-assembled and installed in one shot
- B = 0.17 T
- Precision Trackers preassembled and installed in one shot

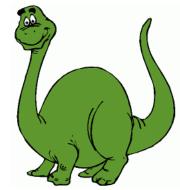
NESSiE performances


Complementary of NESSiE spectrometers in the low (<1 GeV) and high energies domanis

Sensitivity to ν_{μ} disappearance

NESSiE can disentangle v_{μ} anti- v_{μ} (interplay of diff. oscillation scenarios)

90% C.L. sensitivity for 2 years $anti-v_{\mu}$ + 1 year v_{μ} Exclusion limits: CCFR, CDHS, SciBooNE + MiniBooNE


Conclusions

Possibility of exciting discoveries of BSM Physics with vast consequences or a complete clarification of present anomalies.

Favorable time scale thanks to the use of existing/running detectors (or reasonable extensions).

Opportunity for a revival of neutrino activity in Europe. Possible synergies with the other 3ν and R&D programs.

Large room and availability for contributions in NESSiE

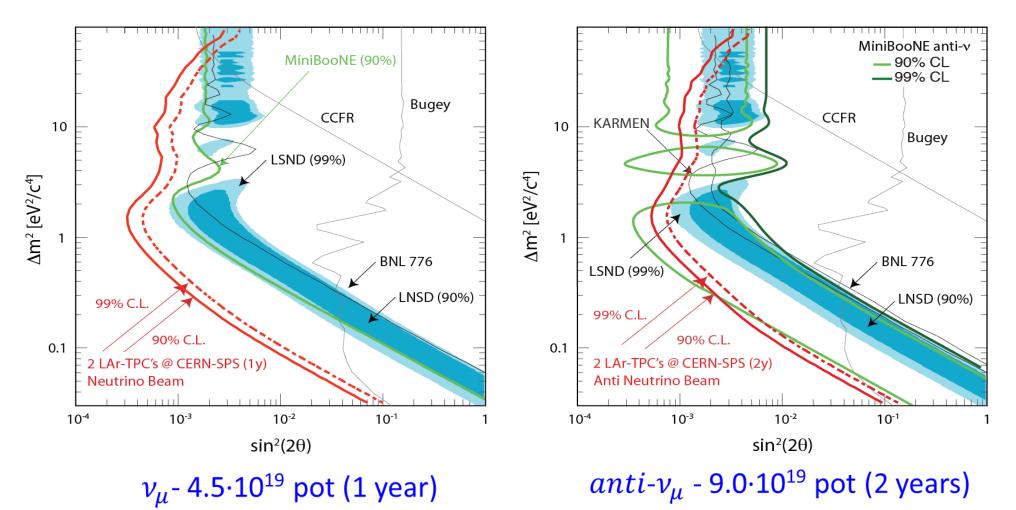
E. Medinaceli- NESSiE

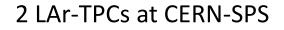
Backup slides

Status of approval and further

- Group established by CERN in order to realize SPS based new shortbaseline v beam in the North Area (project leader M. Nessi)
- Scientific Approval (SPSC) middle of January 2013
- Feasibility document submitted to CERN Directorate on February 7th 2013
- Research Board evaluation on March 4th 2013
- SPC

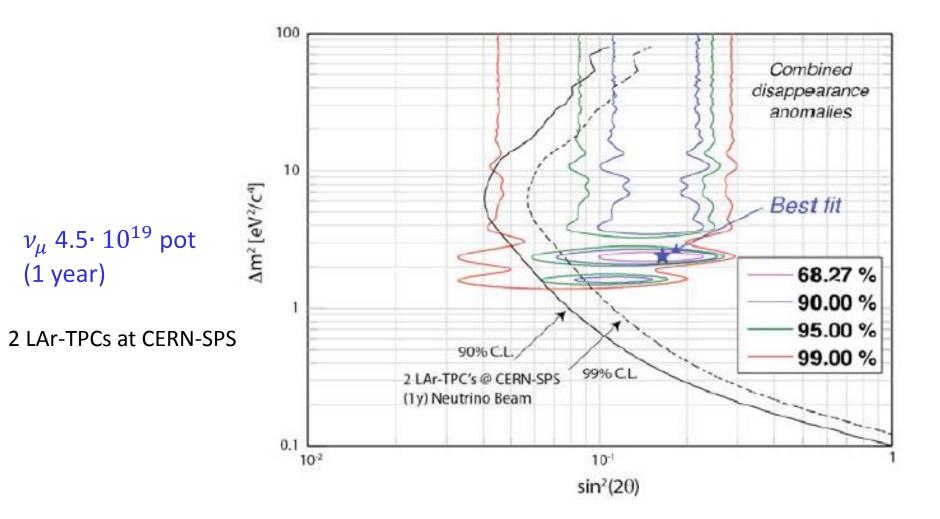
CERN


• CERN Council


INFN: Currently Major contributor to the experiments (not beam)

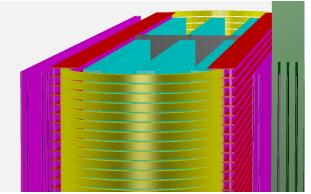
- Scientific approval
- Under evaluation by the Technical Scientific Committee (CTS) as for costs, manpower
- In-Kind contribution of Opera Spectrometers

E. Medinaceli IFAE 2013


v_e / anti- v_e appearance sensibility

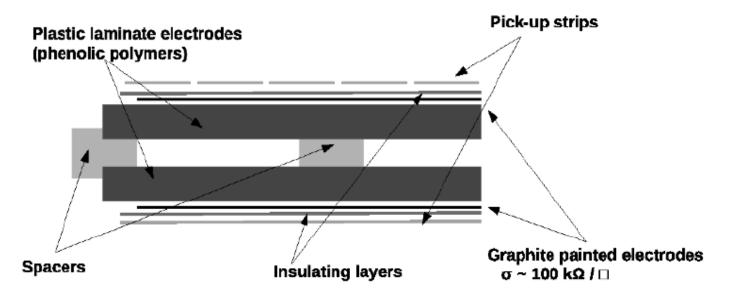
LSND allowed region is fully explored in both cases

v_e disappearance

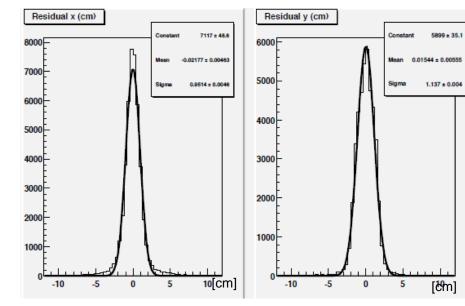

The reactor/Gallium anomalies can be fully addressed

Possible Instrumentation, ACM

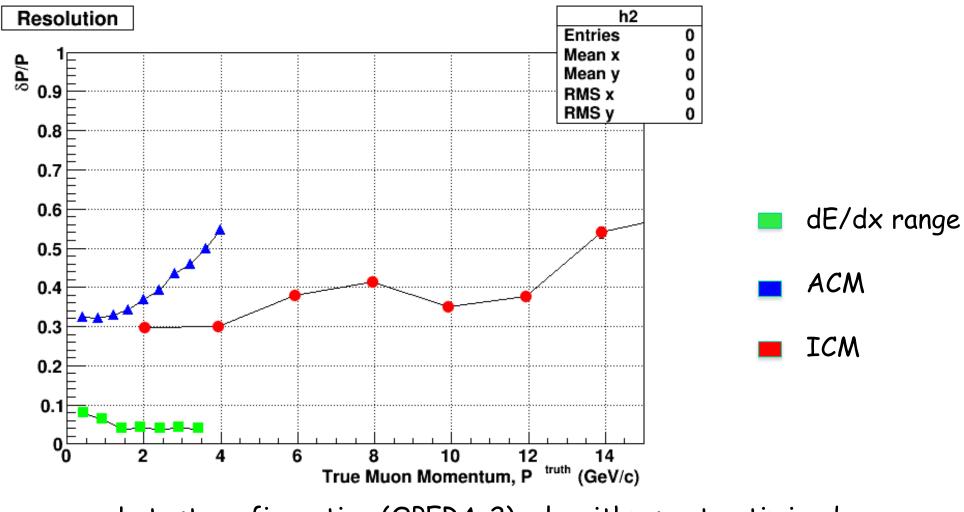
Precision Trackers


- to be placed inside the Air Core Magnet
- several open options for detector technology. Under study: triangular scintillator bars with SiPM analog R/O, drift tubes, TPC, wire chambers, analog RPC ...
- room for new ideas and collaborators

Average muon momentum at vertex ~ 4 GeV

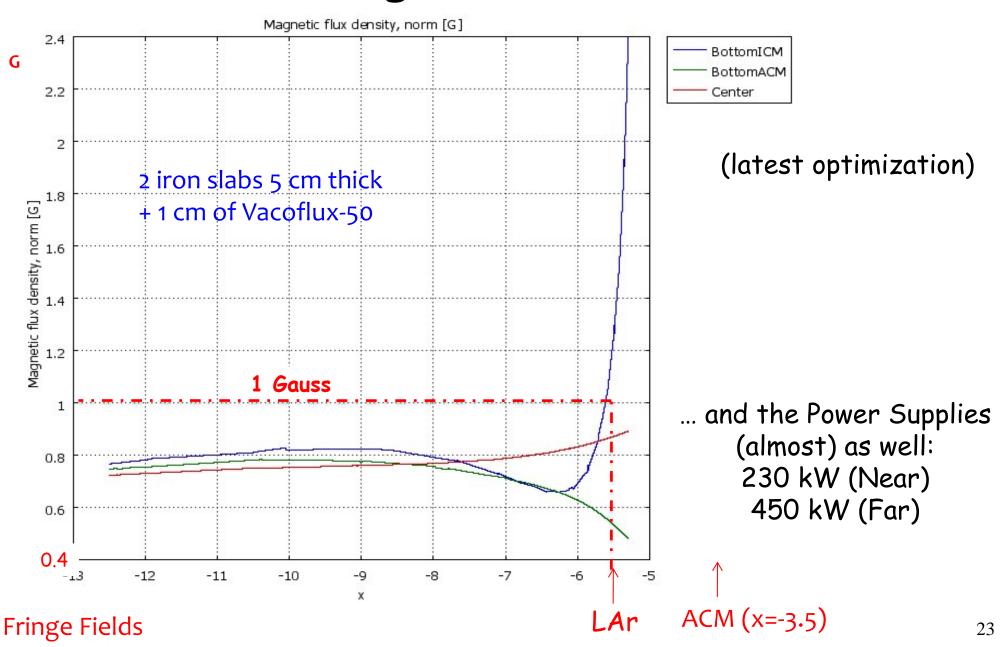

e.g. 3 drift tube layers inside (example), RPCs outside @ spectrometer entrance

Resistive Plate Chambers RPC, ICM



Fe magnets: operation V = 5.8 kV (I < 100 nA/m²) resolution position ~ 1 cm, time ~ ns gas mixture Ar / $C_2H_2F_4$ / I- C_4H_{10} / SF₆ digital read-out NEAR: exposed surface ~ 20 m² 240 internal chambers 40 layers (2 columns x 3 rows) FAR: exposed surface ~ 50 m² 600 internal chambers 40 layers (3 columns x 5 rows)

RPC resolution (digital read-out)



Momentum measurement at 4% with dE/dx up to 3.5 GeV At 30% with Prec.Tracker above 3 GeV At 30% with ACM below 1.5 GeV

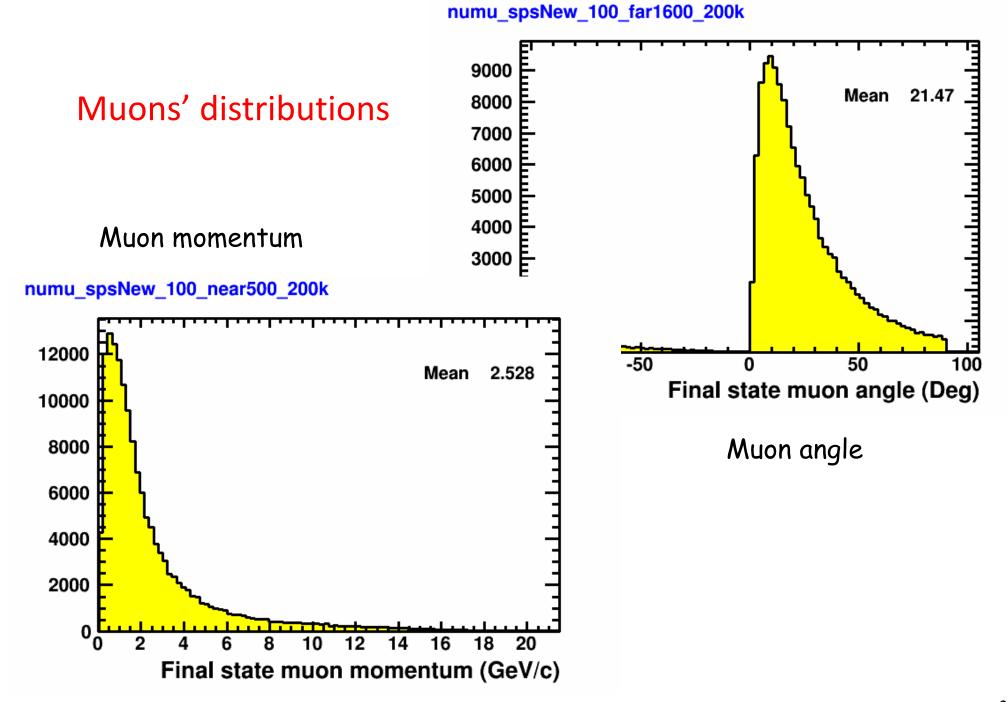
Latest configuration (OPERA-2), algorithms not optimized ...

... and the fringe field is under control

e.g. Expected events in 1 year of running (ν_{μ})

To reconstruct:5.3 M muons in LAr (Near), 0.67 M muons in Lar (Far)pos. foc.5.2 M muons in Nessie (Near), 0.42 M in Nessie (Far)(with factor 2 in overhead of triggers, positive focussing)

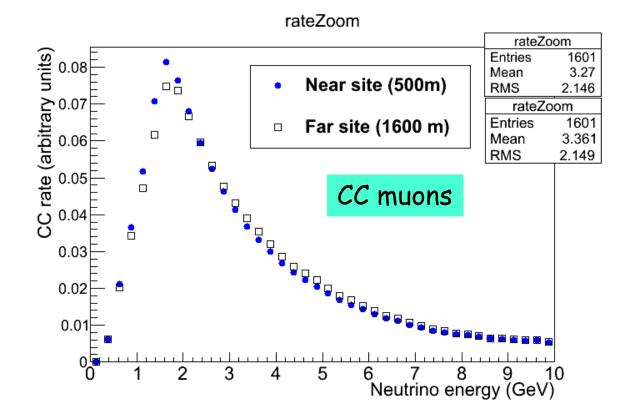
		NEAR (anti-v)	NEAR(v)	FAR(anti-v)	FAR(v)			
	v_e + anti- v_e (LAr)	35 K	54 K	4.2 K	6.4 K			
	$ u_{\mu}$ + anti- $ u_{\mu}$ (LAr)	2000 K	5250 K	270 K	670 K			
	Appear. test point	590	1900	360	910			
	"NESSiE" = fiducial volume of 241 t (N) and 661 t (F)							
	$ u_{\mu}$ (LAr+NESSiE)	230 K	1200 K	21 K	110 K			
	$ u_{\mu}$ (NESSiE)	1150 K	3600 K	94 K	280 K			
	anti- ν_{μ} (Lar+NESSiE)	370 K	56 K	33 K	6.9 K			
	anti- ν_{μ} (NESSiE)	1100 K	300 K	89 K	22 K			
	Disappear. test point	1800	4700	1700	5000			


NOTE: v "contamination" in anti-v negative polarity beam

produced

detected

> Values for Δm^2 (sterile model) around 2 eV² are reported as example


E. Medinaceli IFAE 2013

Latest Beam Studies at SPS

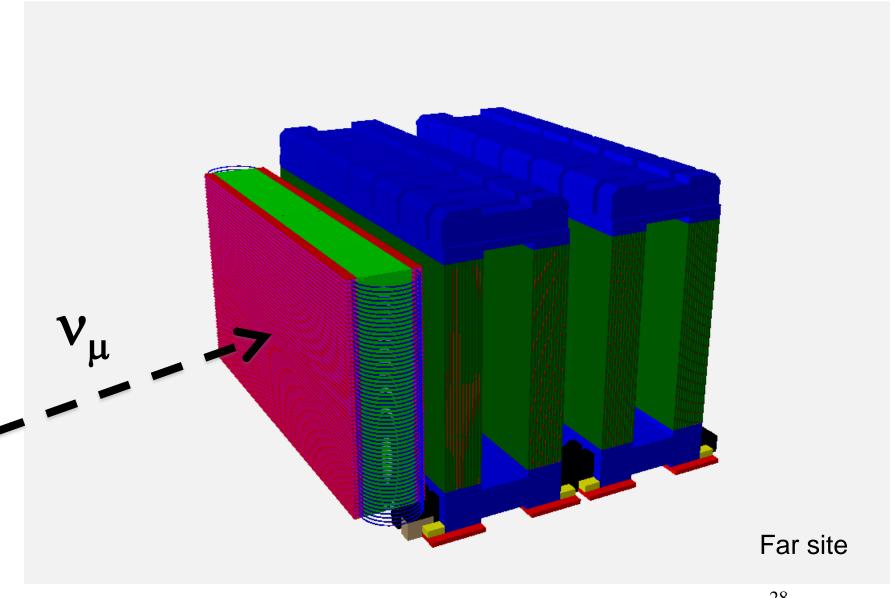
100 GeV proton, Fast Extraction (10.5 μs), Luminosity as at CNGS

On-axis configuration Event rates 4.5 10¹⁹ pot (≈1 year)

Unoscillated v_e fluxes are ~ identical \rightarrow N/F deviations = oscillations The oscillated signals are clustered below 6 GeV of visible energy Scenario <u>defined</u> for DATA Taking: 2 years of anti-v followed by 1 year v

Opera re-use

- 2 Spectrometers "available", with Detectors and Servicing
- Possibility to full re-use for Far and Near ICM
- Need two new sets of Yokes (Top & Bottom)


new Electronics for RPC Mechanical Tools PT detectors

- Scintillators
- Other: ACMs

T0 availability for dismantling and transportation at CERN: Autumn 2014

OPERA discussion: possible start dismantling July-December 2014

Arrangement with OPERA Spectrs.

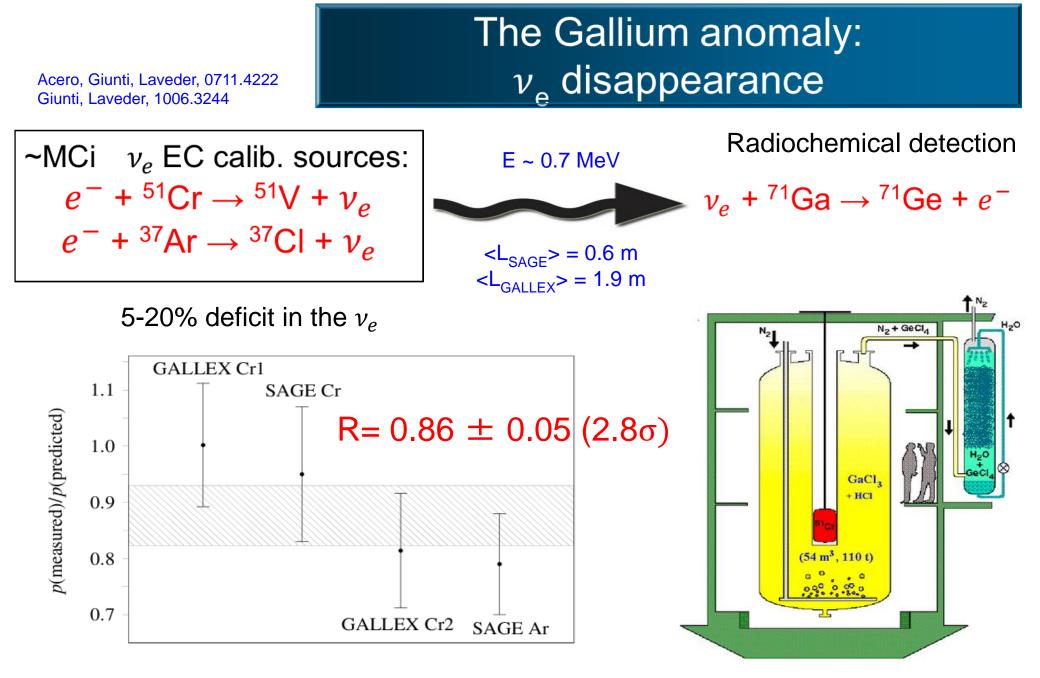
CERN Schedule

Overall Planning Proposal (nord area)

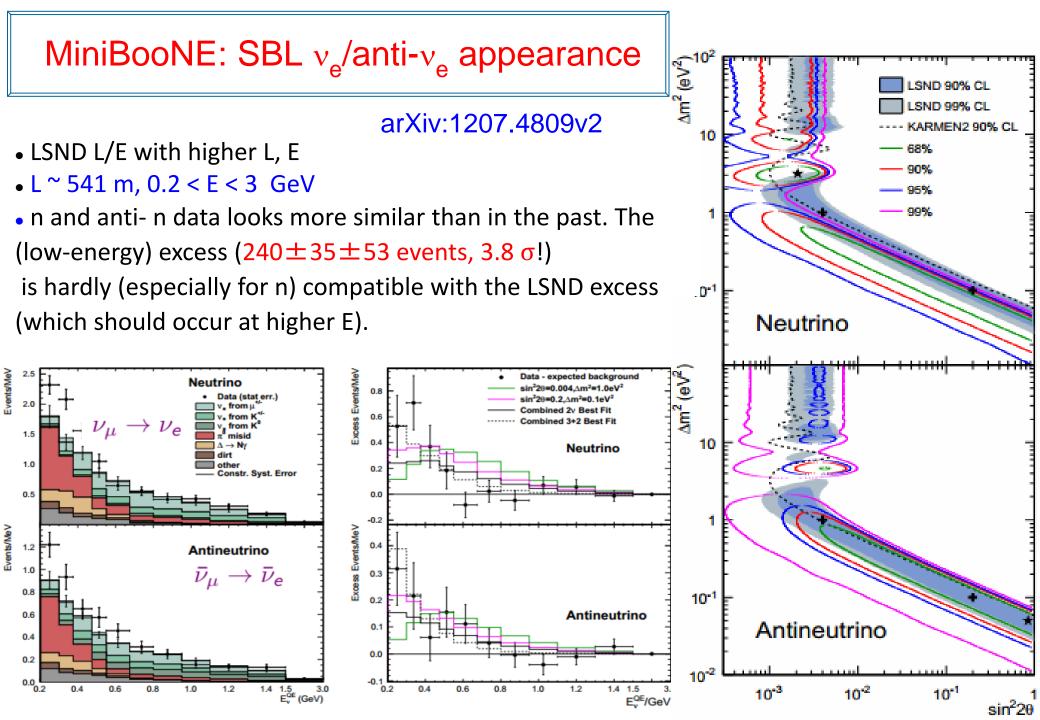
activity/year	2013	2014		2	016	2017	2018
Far Detector	civil engineering + Infrastructure		Detec installa calibra	tion +	Comminssi	physics	
Near Detector	civil eng. Infrastru		ectors inst + calibrat		ninssioning	. •	
Primary beam line	civ permits	il engine compon prepara	ents		ng with	data taking	
Target/Dump facility	civ permits	il engine compon prepara	ents	A	beam		ling
	Î Apr	Oc Apr	ct Sej) J	un		

Nessie Schedule

2013:	ACM prototype construction, iron SM, ACM, HPT and ancillaries design
2013 - end:	start tenders process
2014 - early:	issue tenders for production/modification (copper. yokes, slabs, rpc, strips, tools/frames)
2014:	parts and tools production/modification
2014 – end:	first deliveries at Cern (copper coils, yokes, slabs, strips, tools/frames, RPC)
2015 - early:	start assembly
2016 - mid: 2016 – fall:	finish assembly commissioning and start of data taking

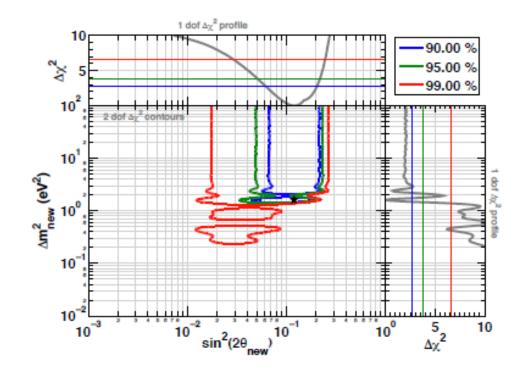

MONEY estimation

Iron magnets: in-kind value 5940 K€ (from OPERA)
Cost for transportation to CERN and refurbishing: 3000 K€
In-kind value of Precision Tracker: 1900 K€
possible refurbishing: 700 K€
In-kind value of Scintillators: 1900 K€
possible refurbishing: 300 K€
Cost ACM: 700 (Near) + 1800 (Far)


TOTAL: 3+1+1+2 = 7 M€

might be staged at 2nd phase (after LS2)

Spare slides

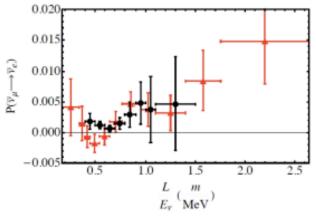

SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

Galium and Reactors anomalies

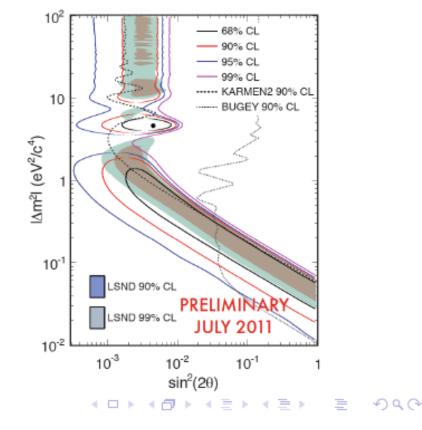
- ~6% deficit in the $\bar{\nu}_e$ reactor rates, given the recent and carefully recomputed fluxes (3.0 σ)
- 5-20% deficit in the ν_e rates from intense calibration source in Gallium experiments (2.7 σ)

Combining Gallium and reactor anomalies: compatible phase space regions $\Delta m_{new}^2 \approx eV^2$, $\sin^2(2\theta_{new}) \approx 0.1$ arXiv:1101.2755v4

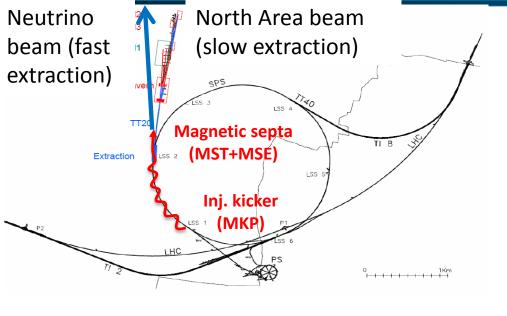

LSND: «evidence» of anti $v_{\mu} \rightarrow anti - v_e$


LSND: first piece of evidence in favor of beyond 3ν oscillations (3.8 σ)

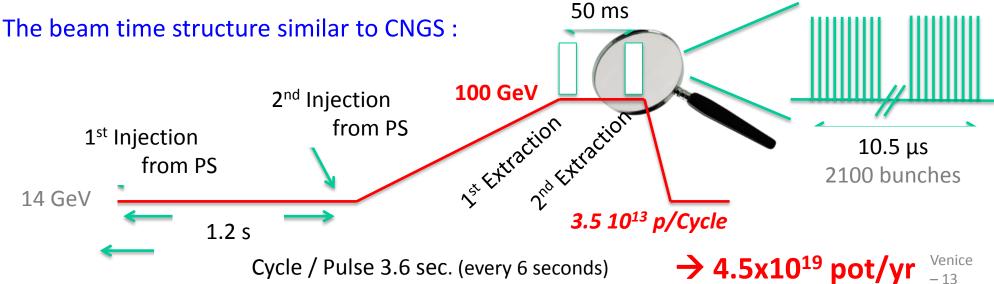
• appearance of $ar{
u}_e$ from $ar{
u}_\mu$, interpreted as oscillation with $\Delta m^2{\sim}1~{
m eV}^2$


MiniBooNE tested LSND parameter region

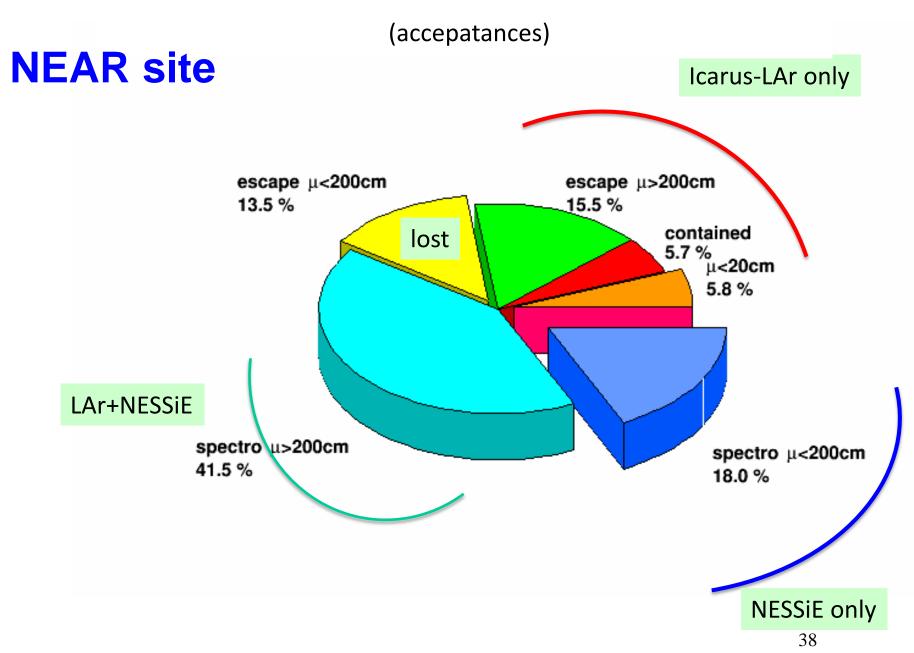
- (ν-mode) result: incompatible
- ($\bar{\nu}$ -mode) result: compatible



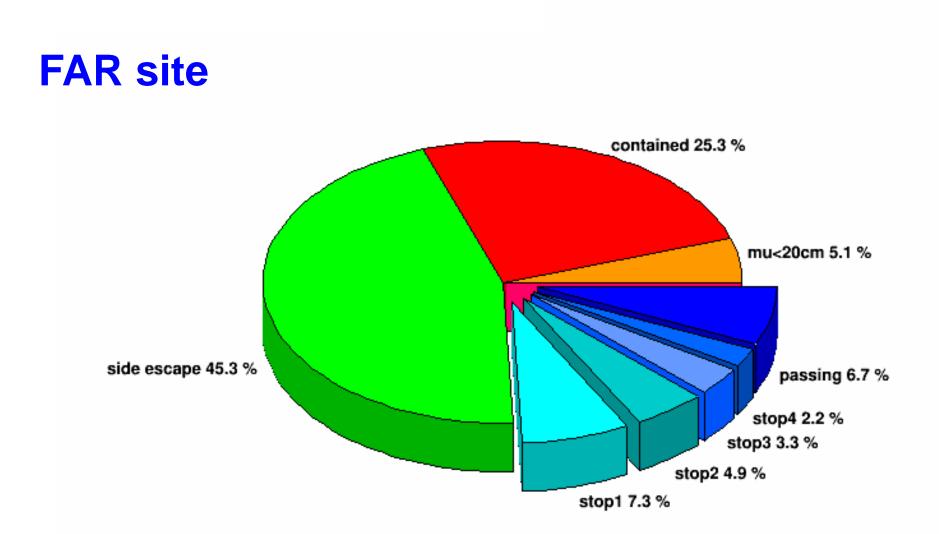
Black: LSND; Red: MiniBooNE

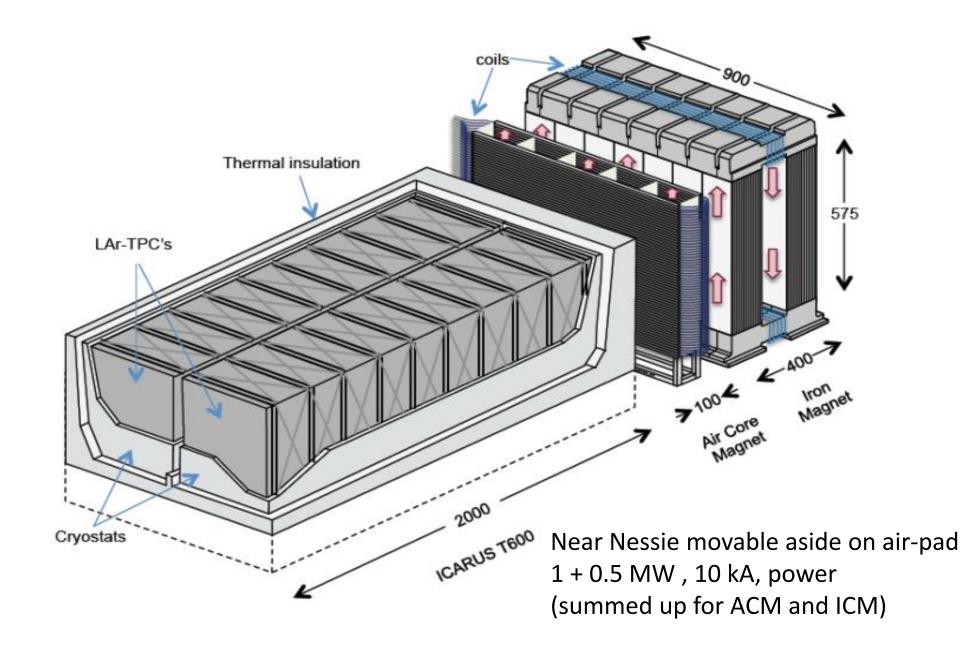

Allowed parameter space

Which type of beam can CERN offer?

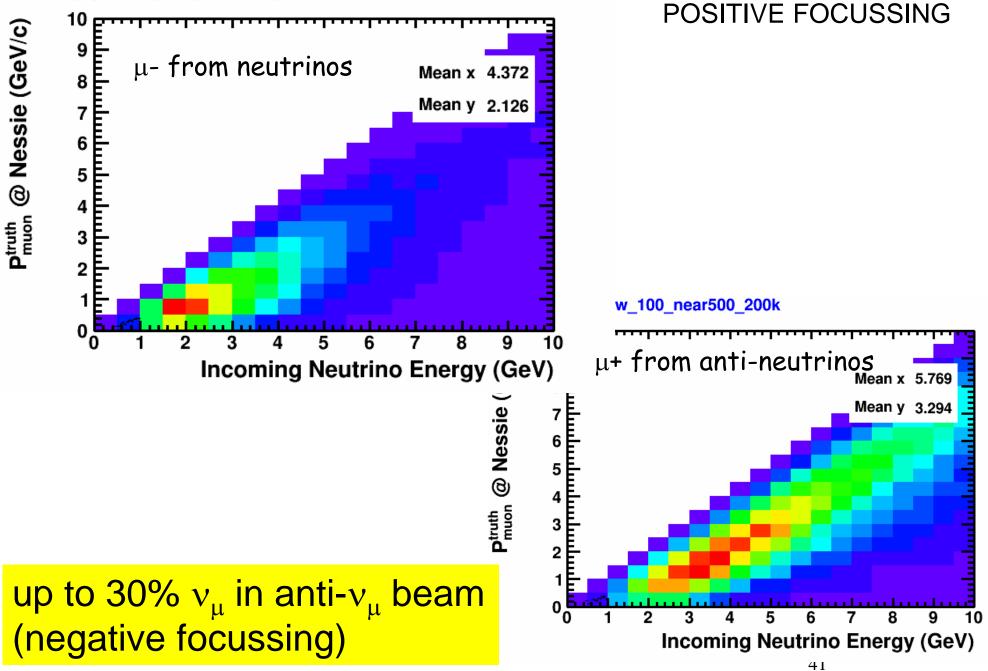


Fast extraction


- Beam excitation via injection kicker in LSS1 + extraction in LSS2 via existing septa (incompatibility with simultaneous north area slow extracted beam !)
- Solution tested for low intensities during recent beam tests



Neutrino Interactions in the Liquid Argon



muon stopping in the iron spectrometer

numu_spsNew_100_near500_200k

