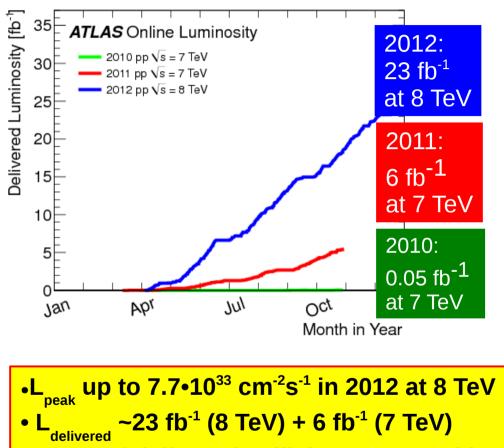
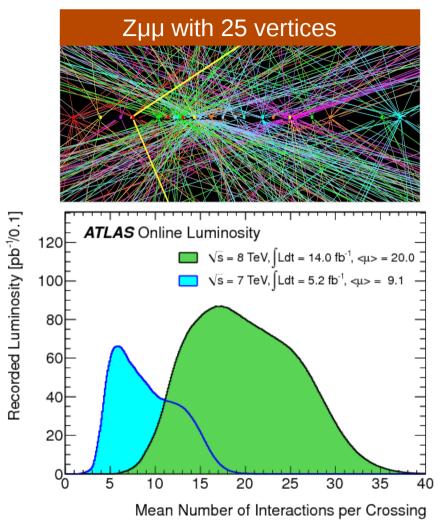
Higgs results in the WW(*) \rightarrow lvlv decay channel at ATLAS

M.Testa (LNF-INFN)

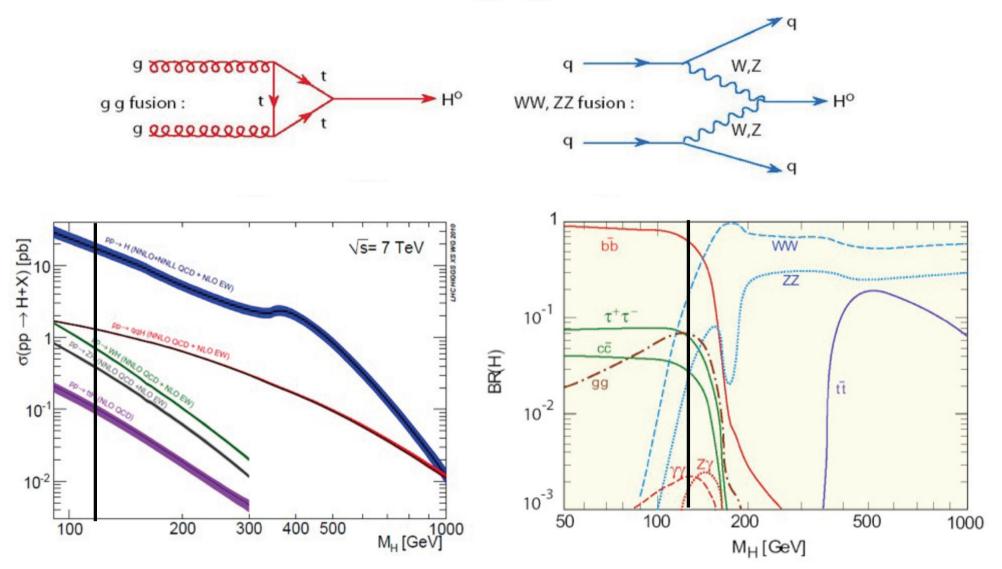


Outline


- LHC operations in 2012
- Higgs production and decay
- The H \rightarrow WW(*) \rightarrow lvlv analysis in ATLAS
- Experimental signature
- Backgrounds
- ggF/VBF categorization
- Results

See http://cds.cern.ch/record/1527126/files/ATLAS-CONF-2013-030.pdf

LHC & ATLAS performances


 ~90% of delivered collisions are used in ATLAS physics analyses

•Pile-up level above design value (50 ns bunch crossing)

• Many challenges to mitigate its impact at all levels: trigger, computing, reco/identification of physics objects

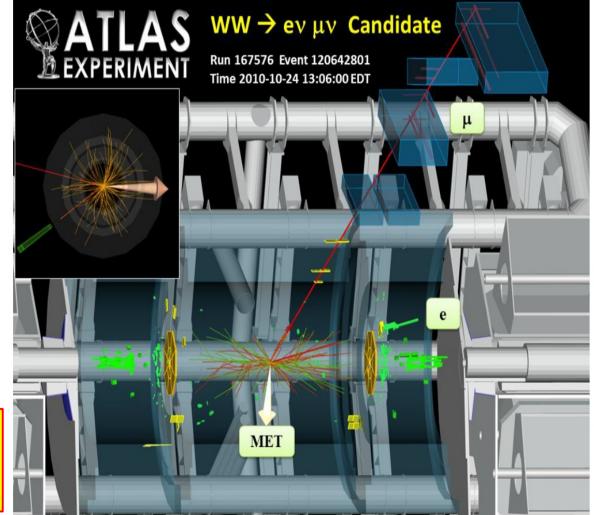
Higgs at LHC

- NNLO prediction for SM Higgs production cross section in most cases
 theory uncertainties reduced to < 20%
- H \rightarrow WW \rightarrow lvlv one of the most sensitive channel

Analysis Strategy

Experimental signature:

- Two high pT leptons
 - ee, µµ same flavour (SF)
 - eµ, µe opposite flavour (OF)


Two neutrinos

- Large E_^{miss}
- No mass peak
- (~20% mass resolution)
- counting experiment

Binned in jet multiplicity

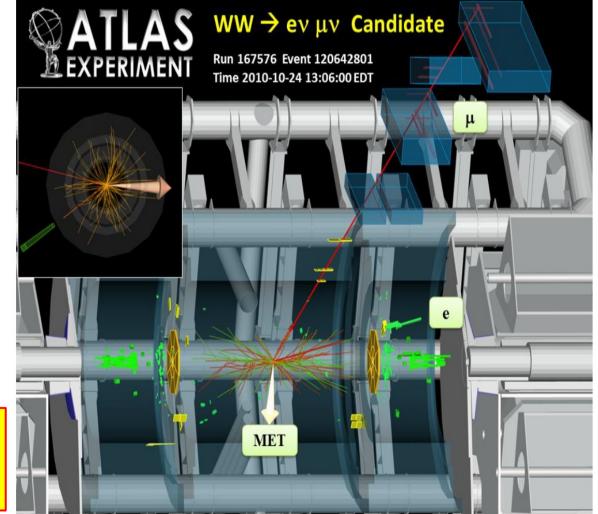
- Njet =0, 1 optimized for ggF
- Njet = 2 optimized for VBF

Use full data sample: data 2011 ($\sqrt{s} = 7$ TeV, Lint ~4.9 fb⁻¹) + data 2012 ($\sqrt{s} = 8$ TeV, Lint ~20.6 fb⁻¹)

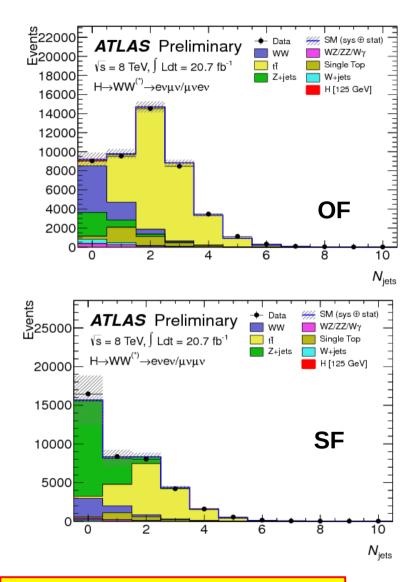
Analysis Strategy

Experimental signature:

- Two high pT leptons
 - ee, µµ same flavour (SF)
 - eµ, µe opposite flavour (OF)


Two neutrinos

- Large E_^{miss}
- No mass peak
- (~20% mass resolution)
- counting experiment

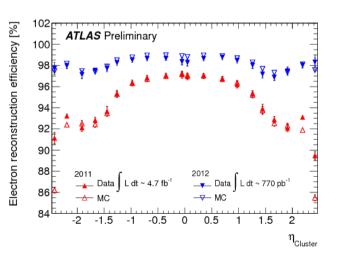

Binned in jet multiplicity

- Njet =0, 1 optimized for ggF
- Njet = 2 optimized for VBF

Use full data sample: data 2011 ($\sqrt{s} = 7$ TeV, Lint ~4.9 fb⁻¹) + data 2012 ($\sqrt{s} = 8$ TeV, Lint ~20.6 fb⁻¹)

Background

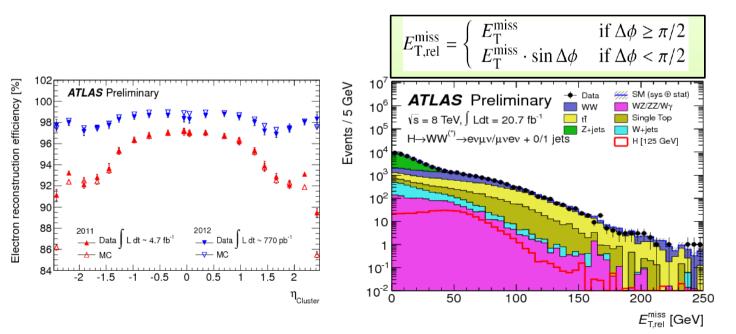
Key of the analysis: understand background and normalize to control regions


- Drell-Yan
 - large, reducible, require large E_T^{miss}
 - Z veto |m_{||}-M_z| <15 GeV
 - data-driven estimation
- Top (1+2j bins)
 - Large, reducible with cuts, modeled by MC
 - B-jets veto
 - Normalization from CR
- WW
 - Reducible by topological cuts
 - Normalization from CR
- W +jets
 - small
 - isolation, ID lepton
 - data-driven estimation
- di-boson (WZ,ZZ,Wy)

Small, reducible and modeled by MC

- Different background composition depending on the number of jets
 - 0 jet : WW(DY) dominate in OF (SF)
 - 1 jet : Top,WW and DY in SF
 - 2 jet: Top dominate, VBF topology

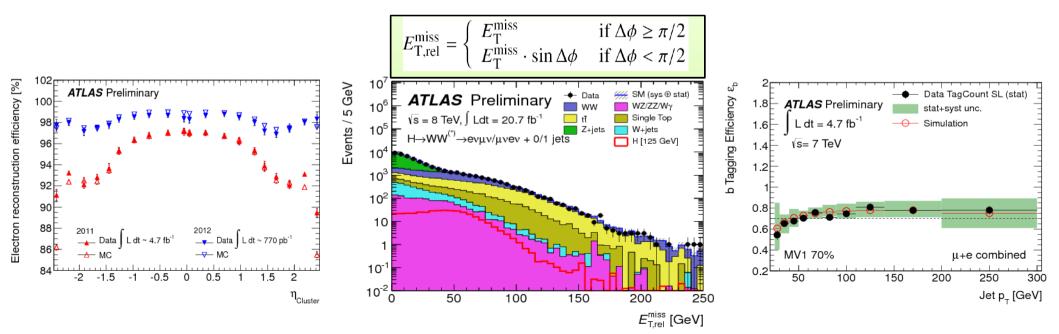
Pre-selection:Good leptons


Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	
Pre-selection	Two isolated leptons ($\ell = e, \mu$) with opposite charge Leptons with $p_T^{\text{lead}} > 25$ and $p_T^{\text{sublead}} > 15$ $e\mu + \mu e: m_{\ell\ell} > 10$ $ee + \mu\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 15$		
Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$	
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30$	$N_{b-jet} = 0$ - $e\mu + \mu e: Z/\gamma^* \rightarrow \tau \tau \text{ veto}$	

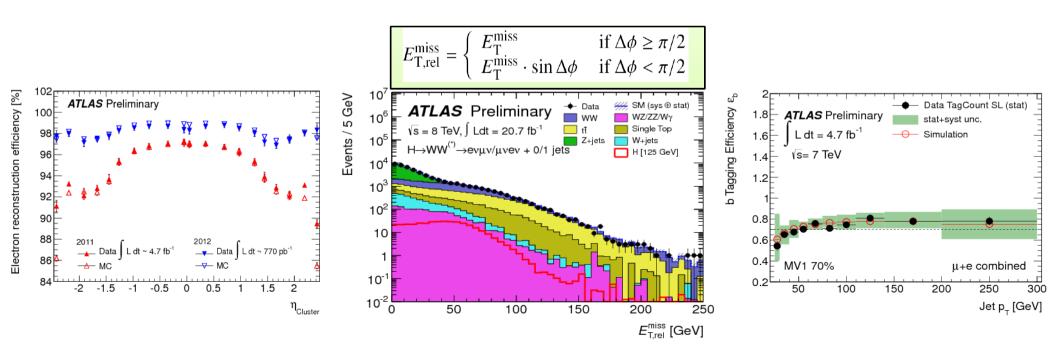
Pre-selection:Good leptons

DY suppression: E_T^{miss}

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$
Pre-selection	Two isolated leptons (Leptons with $p_T^{\text{lead}} > 2$ $e\mu + \mu e: m_{\ell\ell} > 10$ $ee + \mu\mu: m_{\ell\ell} > 12, m_{\ell} $	- 1
Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30$	$N_{b\text{-jet}} = 0$ - $e\mu + \mu e: Z/\gamma^* \to \tau\tau \text{ veto}$



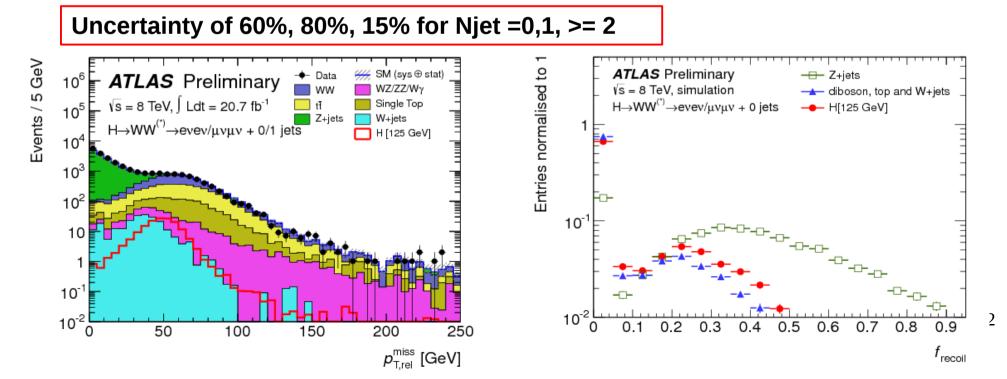
Pre-selection:Good leptons

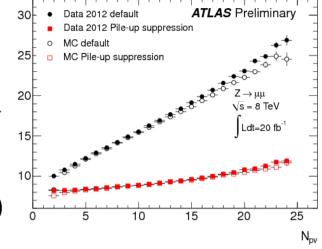

DY suppression: E_T^{miss}

Top suppression: Veto b-jet

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$
Pre-selection	Two isolated leptons Leptons with $p_{T}^{lead} > 2$ $e\mu + \mu e: m_{\ell\ell} > 10$ $ee + \mu\mu: m_{\ell\ell} > 12, m_{\ell\ell} $	
Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\tau}^{\ell\ell} > 30$	$N_{b-\text{iet}} = 0$ - $e\mu + \mu e: Z/\gamma^* \to \tau\tau \text{ veto}$

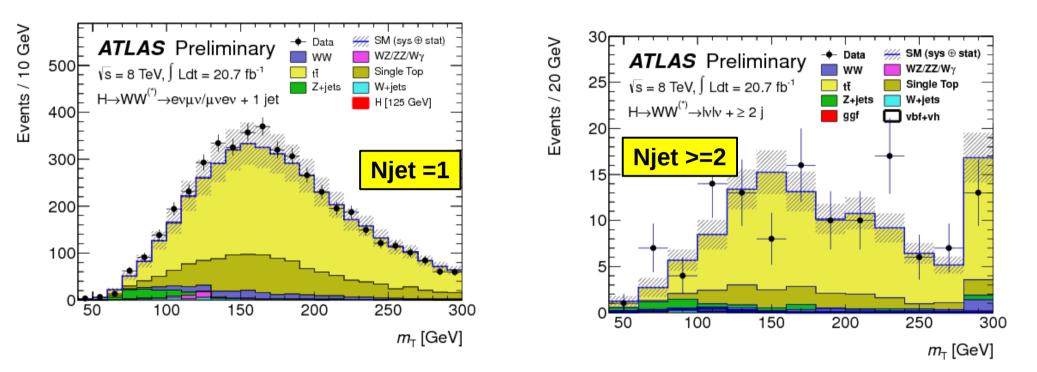
	Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$
Pre-selection:Good leptons	Pre-selection	Two isolated leptons ($\ell = e, \mu$) with opposite of Leptons with $p_T^{\text{lead}} > 25$ and $p_T^{\text{sublead}} > 15$ $e\mu + \mu e: m_{\ell\ell} > 10$ $ee + \mu\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 15$	
DY suppression: E ^{miss}	Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$
Top suppression: Veto b-jet		-	$N_{b-\text{iet}} = 0$
WW suppression based on topology	General selection	$\frac{ \Delta\phi_{\ell\ell,MET} > \pi/2}{p_{T}^{\ell\ell} > 30}$	- $e\mu + \mu e: Z/\gamma^* \rightarrow \tau \tau$ veto


SM DY background


Large background due to fake E_Tmiss

 \rightarrow increase of resolution with PileUp

DY Reduction crucial for SF finale state (high Z cross section) Use combination of


- E_{T,rel}miss calorimeter based, degradation with increasing of PileUp
- p_{T,rel}^{miss} use only track at the PV information, ~ independent on PileUp
- frecoil: ratio between vectorial sum pT of low-pT jets, opposite to pTllj and pTll

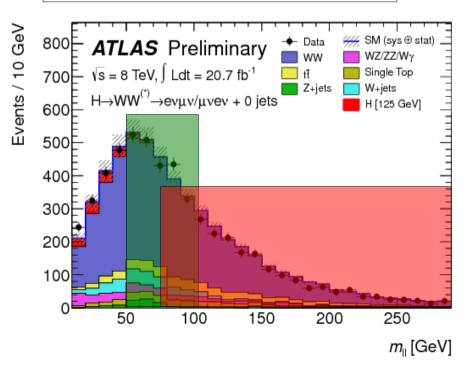
E^{miss},E_v^{miss} Resolution [GeV]

SM Top background

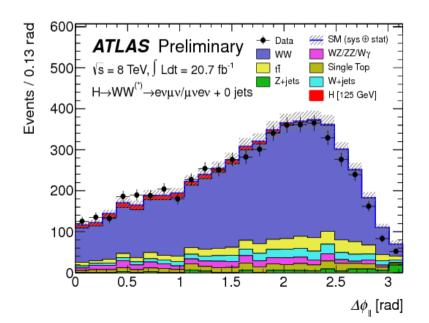
Definition of data control sample to normalize MC prediction

- reversing the b-jet veto
- Remove the requirements on $\Delta \phi II$ and mII.

Uncertainty: 28% for N_{iet} = 1, 39% for N_{iet} >=2j

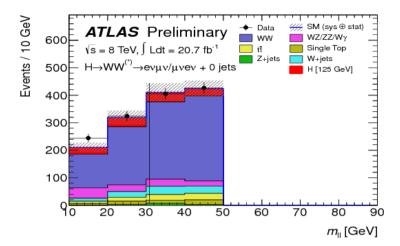

SM WW background

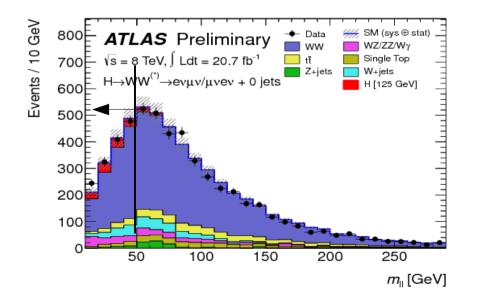
WW background dominates, crucial to understand Same final state of $\textbf{H} \rightarrow \textbf{WW}$

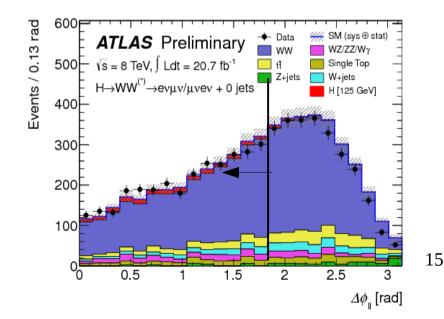

 exploit spin correlation: small opening angle, low mll

$$m_{ll} = \sqrt{2E_1E_2(1-\cos\Delta\varphi_1)}$$

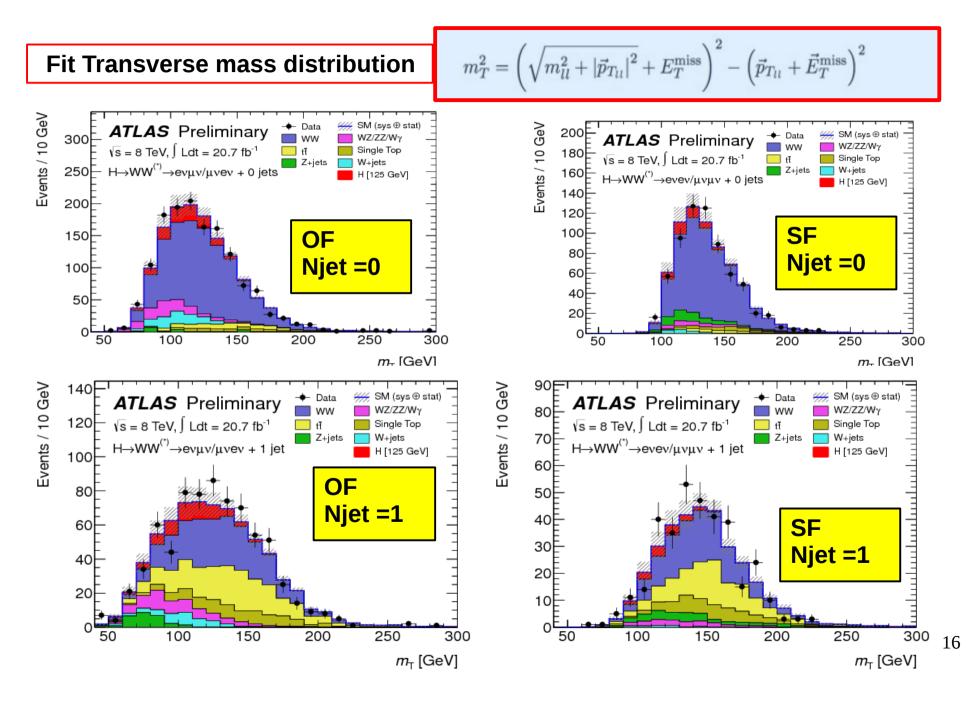
nd $W^{-} e^{-v} e^{-v}$ $V^{-} e^{-v} e^{-v}$ $V^{-} e^{-v} e^{$

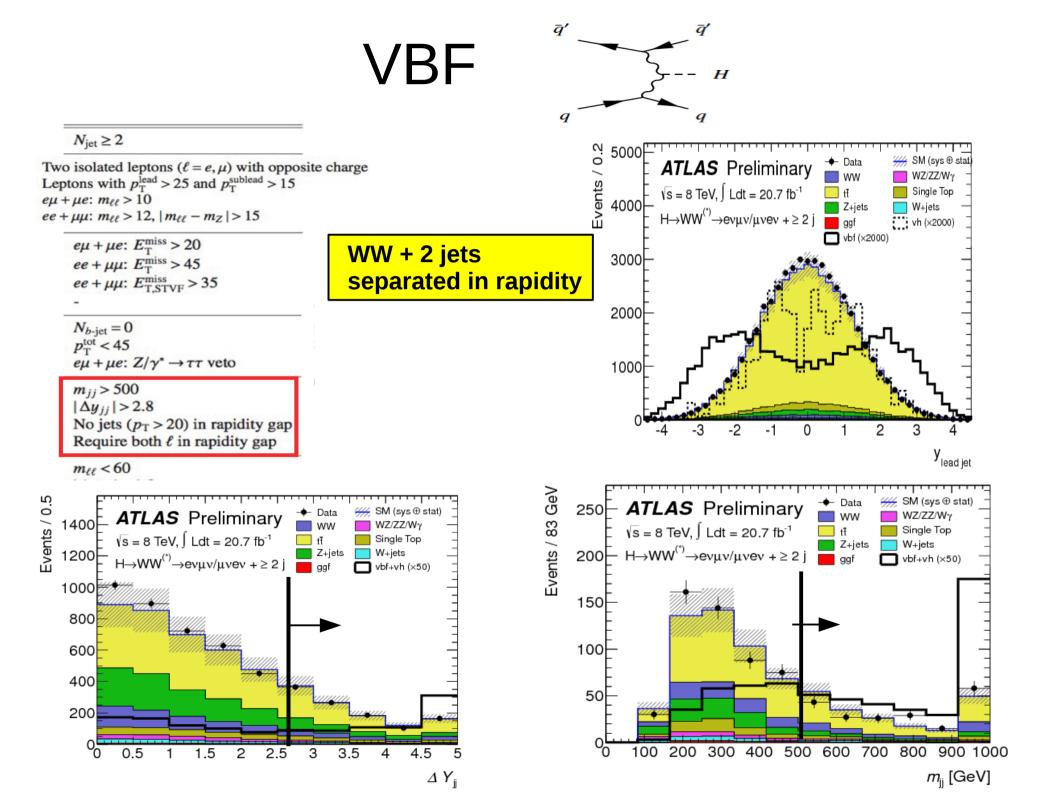

14


Signal extraction

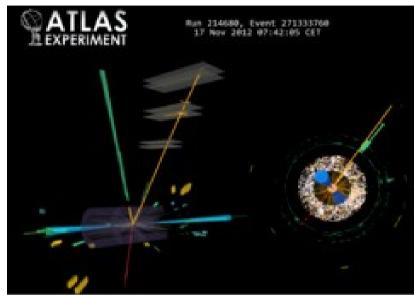

- Split signal region in 2 mll bins

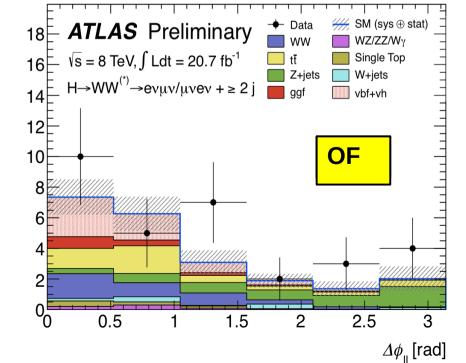
 improves the sensitivity (different S/B ratio and background composition)
- Cut based analysis
- Final fit on MT

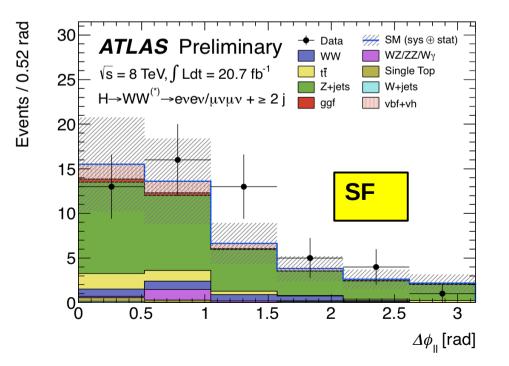

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$
$H \to WW^{(*)} \to \ell \nu \ell \nu$ topology	$m_{\ell\ell} < 50$ $ \Delta\phi_{\ell\ell} < 1.8$ $e\mu + \mu e$: split $m_{\ell\ell}$ Fit $m_{\rm T}$	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e$: split $m_{\ell\ell}$ Fit $m_{\rm T}$



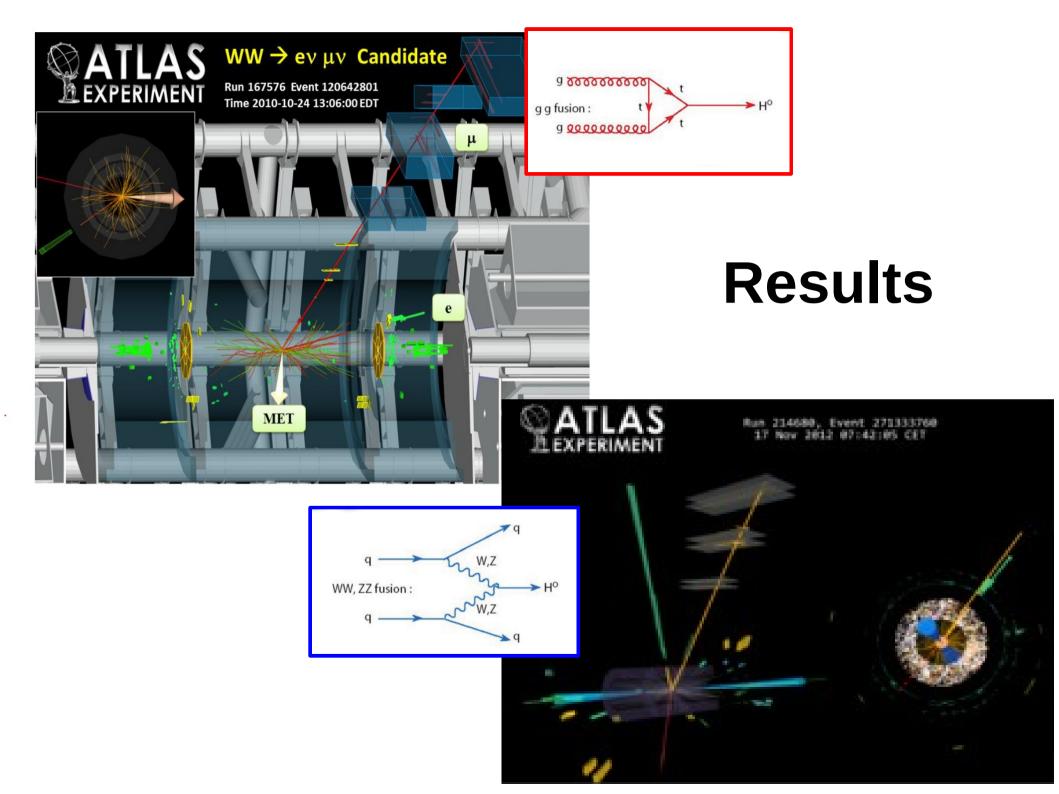
Signal extraction

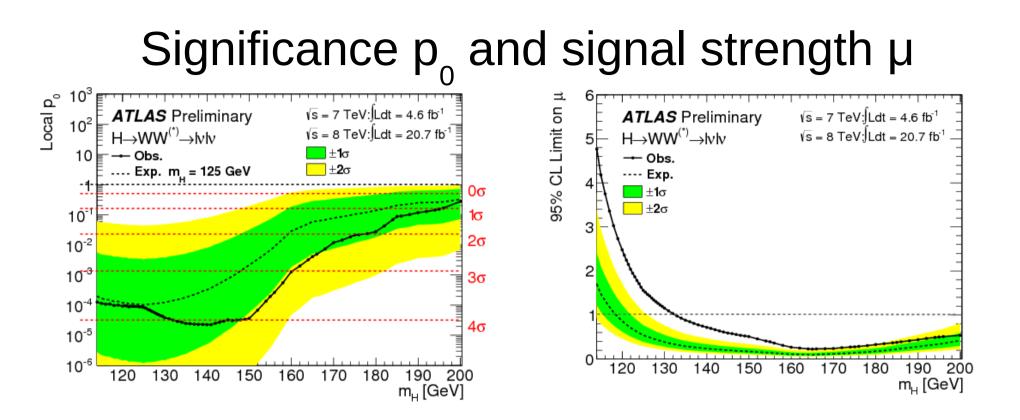




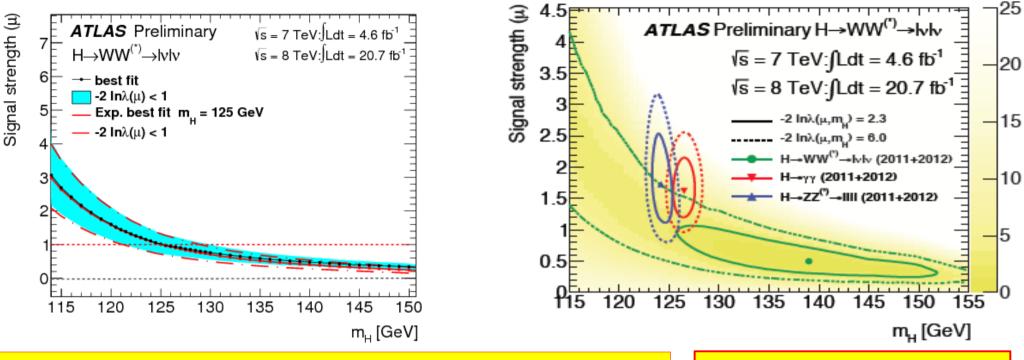

VBF

Backgrounds:


- Top dominate, constrained by CR
- WW from theory (37% uncertainty)
- DY from CR
- **ggF** signal considered as background



Events / 0.52 rad



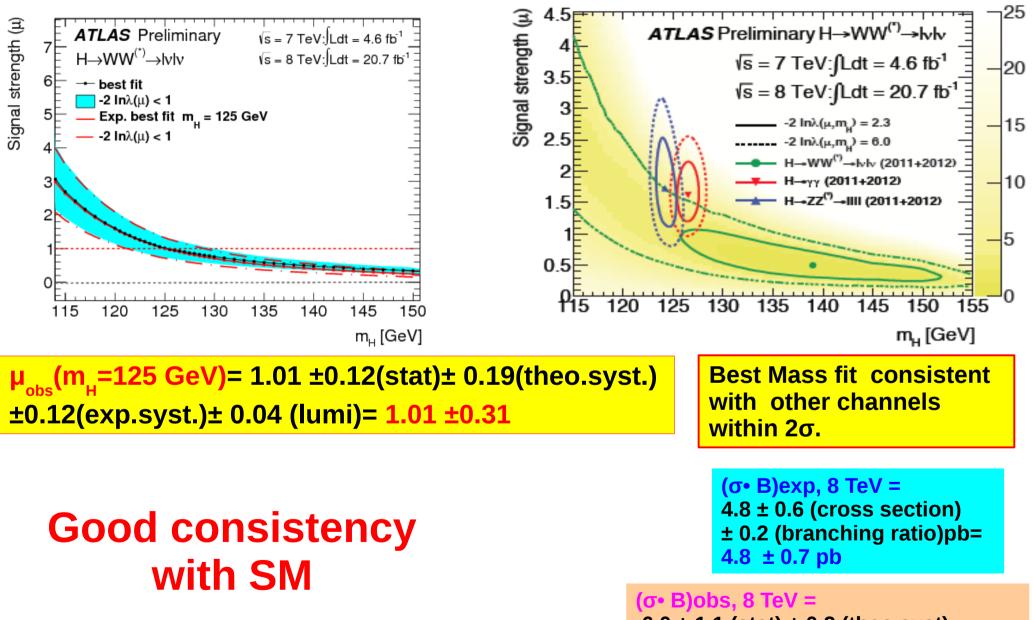
Significance at mH 125 GeV: exp = 3.7σ , Obs = 3.8σ Largest significance at mH = 140 GeV, 4.1σ

Exclusion limit at 95% CL: Expected: mH >119 Observed: mH> 133 GeV

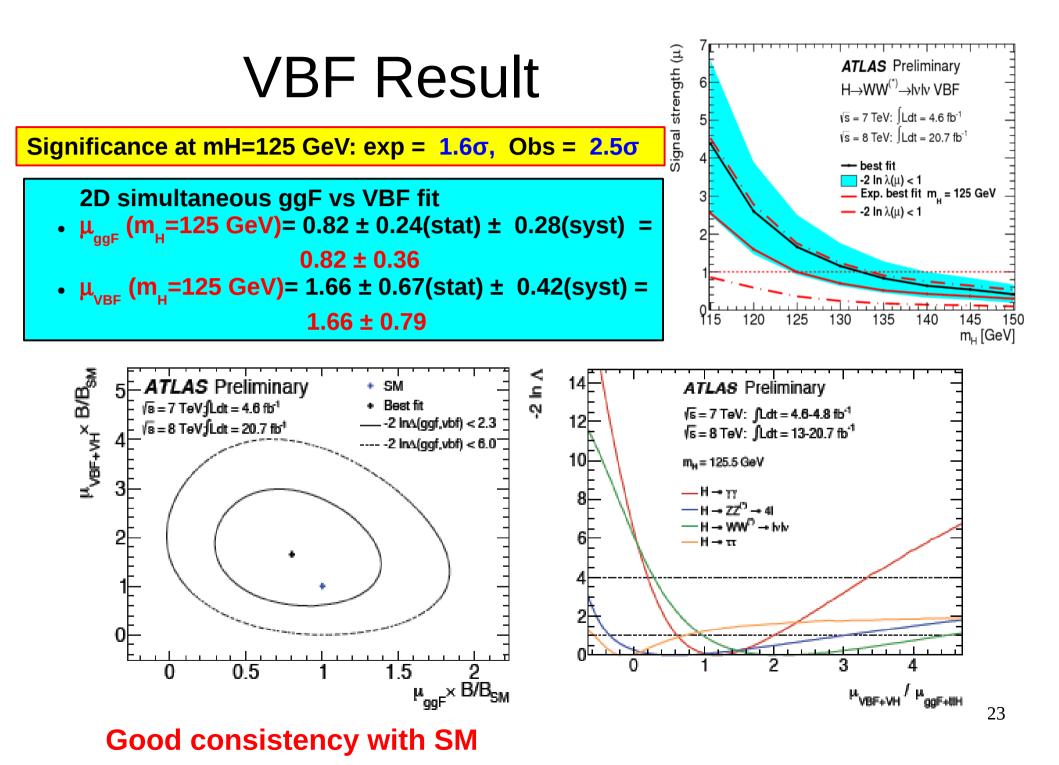
Good consistency with SM

Signal strength and best mass fit

μ_{obs}(m_H=125 GeV)= 1.01 ±0.12(stat)± 0.19(theo.syst.) ±0.12(exp.syst.)± 0.04 (lumi)= 1.01 ±0.31

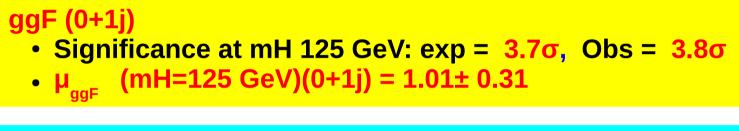

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

Best Mass fit consistent with other channels within 2σ .


(σ• B)exp, 8 TeV = 4.8 ± 0.6 (cross section) ± 0.2 (branching ratio)pb= 4.8 ± 0.7 pb

(**σ**• **B**)obs, 8 TeV = 6.0 ± 1.1 (stat) ± 0.2 (theo.syst) ± 0.7 (exp.syst) ± 0.3 (lumi) pb= 6.0 ± 1.6 pb

Signal strength and best mass fit


6.0 ± 1.1 (stat) ± 0.2 (theo.syst) ± 0.7 (exp.syst) ± 0.3 (lumi) pb= 6.0 ± 1.6 pb

Summary

Excess in $H \rightarrow WW \rightarrow IvIv$ already in the July discovery with 4.7fb⁻¹ + 5.8 fb⁻¹

Recently H \rightarrow WW \rightarrow lvlv analyzed on full ~25 fb⁻¹ LHC Run1 dataset

VBF

- Significance at mH 125 GeV: $exp = 1.6\sigma$, Obs = 2.5σ
- μ_{qqF} (mH=125 GeV)(0+1+2j) = 0.82 ± 0.36, μ_{VBF} (0+1+2j) = 1.66 ± 0.79

Measurements are consistent with SM expectations

Backup

Systematics

	Signal processes (%)		Background processes (%)			
Source	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Theoretical uncertainties						
QCD scale for ggF signal for $N_{jet} \ge 0$	13	-	-	-	-	
QCD scale for ggF signal for $N_{iet} \ge 1$	10	27	-	-	-	÷
QCD scale for ggF signal for $N_{iet} \ge 2$	-	15	4	-	-	÷
QCD scale for ggF signal for $N_{iet} \ge 3$	-	-	4	-	-	
Parton shower and UE model (signal only)	3	10	5	-	-	
PDF model	8	7	3	1	1	1
$H \rightarrow WW$ branching ratio	4	4	4	-	-	
QCD scale (acceptance)	4	4	3	-	-	
WW normalisation	-	-	-	1	2	4
Experimental uncertainties						
Jet energy scale and resolution	5	2	6	2	3	7
b-tagging efficiency	-	-	-	-	7	2
$f_{\rm recoil}$ efficiency	1	1	-	4	2	

Channel	∆tot(%)
0j signal	20
0j background	4.7
1j signal	33.8
1j background	8.2
2j signal	11.3
2j background	8.3

Signal yield

Data 2011 $\sqrt{s} = 7$ TeV, Lint ~4.9 fb⁻¹ $e\mu + \mu e + \mu\mu + ee$

Njet	Signal	Tot Bkg	Data
0	25±5	161±11	154
1	7±2	47±6	62
>=2	1.4±0.2	4.6±0.8	2

Data 2012 √s = 8 TeV, Lint ~20.6 fb⁻¹ eµ + µe + µµ + ee

Njet	Signal	Tot Bkg	Data
0	92±20	739±39	831
1	40±13	261±28	309
>=2	10.6±1.4	36±4	55