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\w J ABSTRACT

The role of transverse momenta and spins in QCD at high energies
Piet Mulders (Nikhef/VU University Amsterdam)

The standard Parton Distribution Functions (PDFs) used to describe high-
energy scattering processes encode probabilities for finding specific quarks
and gluons (partons) carrying fractions x of the parent hadron’s momentum
(soft collinear part). The interactions of the partons (hard part) are calculated
using perturbation theory in the Standard Model. The Transverse Momentum
Dependent (TMD) distribution functions also take into account the transverse
momentum of the partons. Is this dependence a useful addition? Can it be
measured? Can the formalism be set up and used in the same successful way
as collinear PDFs, which are related to expectation values of field operators
using the Operator Product Expansion in QCD? The answer is yes, but ... .
But after accounting for the complications, quark and gluon TMDs offer new
insight into spin and orbital substructure of hadrons while they also may
provide new tools to explore physics beyond the Standard Model.



\ J Content

m High energies: soft x hard

Soft = hadron info (probabilities), hard = partonic cross section
Probabilities include spin-spin correlations

m Are TMDs relevant and can they be measured?
Yes, there are more spin-spin and also spin-orbit correlations
Yes, they can be measured (DY, SIDIS, ...)

m But there are complications!
Gauge links, universality, factorization

m Theoretical framework: QCD
Extension of OPE resummed into PDFs to TMDs (definite rank)
Distribution and fragmentation functions (time reversal)

m The reward
Novel hadronic info on spin and orbital structure
Possible use of proton as tool (playing with partons)



o

Separating Soft and Hard Physics at high energies



High ener rocesses
‘,‘ / g gy p

m Collinear approach:

The common procedure is to relate the hard partonic amplitude
squared to the imaginary part of the forward elastic amplitude and
expand this time ordered product, which is lightcone dominated into
local operators (operator product expansion), of which only leading
twist operators are needed at high energies.

m Hadronic correlators: beyond the collinear approach

Using hadronic correlators is at first sight more heuristic, but is easily
seen to incorporate all features of the collinear approach.

m Parton model for distribution and fragmentation functions:

Heuristic approach with parton probabilities and decay functions with
natural link to hadronic correlators

INTRODUCTION



| CD & Standard Model
o ;

m QCD framework (including electroweak theory) provides the machinery
to calculate cross sections, e.g. y*q — q, dq — v*, v* — qq, qq — qq,

qg — qg, etc.
m E.q.

49 — q9

m Calculations work for plane waves

(0| p.s) = (prs) e



Hadron correlators
o

m Hadronic correlators establish m Disentangling a hard process into
the diagrammatic link between parts involving hadrons, hard
hadrons and partonic hard scattering amplitude and soft
scattering amplitude part is non-trivial
Pp
m Quark, quark + gluon, gluon, ...

p.s)=1(p,s) e

(O, (&)

(X ©)|P)e Pa

J.C. Collins, Foundations of Perturbative
QCD, Cambridge Univ. Press 2011

(X, @47 p| P)emrmmsns




Hadron correlators
o

m At high energies interference terms suppressed and the
soft parts combine into forward matrix elements of
parton fields describing distribution (and pt I
fragmentation) parts i

—

B
P (P|P (0)y,(5)|P)

<I>(Ip) |
@, (p;P)=P,(p|p)= f (m)

m Also needed are multi-parton correlators

o (p-popi )= [ déj) 1 r-m$nn Pl (0)4" (), (5)|P)

m Correlators usually just will be parametrized in terms of
PDFs (nonperturbative physics)



W PDFs and PFFs

Basic idea of PDFs and PFFs is to get a full factorized description of
high energy scattering processes

o=H(p,p,,..) i calculable

5 2 defined (1)
KV"" ‘ss\V\Kfz > &
portable
14{ }xk ’
P B fff dp,..® (p,B;u) @D, (p,,F;u)
Give a meaning to ®0C, . (D Dyss W) @A (kK 50)....

integration variables!



| Hadron correlators
Nl

m Parton scattering

u(p,s)u(p,s)=p+m

m Parton model: p=xP“+...

u(p,s)u(p,s) = f(x)(p+m)
= f(x)xP +m f(x) + ..

m Correlators:

O(p,P) = xf(x)P + Mx e(x) + ....

10



Role of the hard scale
\ v

In high-energy processes other momenta are available, such that
P.P’ ~ s with a hard scale s >> M?

m Additional scale accessible through non-collinearities, e.g. in SIDIS y*+p
is not aligned with produced hadron, or momenta inside a jet

m Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P//P.P’) to
make a Sudakov expansion of parton momentum (write s = Q?2)
p=xP"+ p; +on”

FootN o
~Q ~M o~ M2/Q o=pP-xM"~M

x=p =pn~1

m Enables importance sampling (twist analysis) for integrated correlators,

®(p)=D(x,p,,p.P) = D(x,p,) = Dx) = O

11



Twist analysis in PDF parametrization
o

m Dimensional analysis to determine importance in an expansion
in inverse hard scale (smaller dimensions preferred)

m Maximize contractions with n dim[y(0) sy (E)] =2
dim[F"* (0)F" (£)] =
dim[(0)it A; () y(8)]=3

m ... or maximize # of P’s in parametrization of ®

(7)),

Pj(x) = f/(¥) L £7(x) = [22 e Plipoyy(an)|P)

(27)

m In addition any number of collinear n.A(€) = A"(x) fields
(dimension zero!), but of course in color gauge invariant

combinations dimo: i9" — iD" =id" +gA”
dim 1: i0; —iD; =10, + gA;

12



Un)integrated correlators
\‘w Y (Un)integ

’ - (;l:f);; e <P‘T/_J(O) ?/J@)‘P> m unintegrated
d(§.Pyd’ TMD (light-front
(I)(x,pT;n) = f ('g(;jz) ST e'Ps <P‘1/J(O) I/J(S)‘P\E n=0. (lig ront)

m Time-ordering automatic, allowing interpretation as forward
anti-parton — target scattering amplitude

m Involves operators of twists starting at a lowest value (which
is usually called the ‘twist” of a TMD)

d(x) = f @em% <p‘1/j(0) UJ(S)‘ P\ m collinear (light-cone)

(231’-) /§.n=§T=O or| £2=0

m Involves operators of a definite twist. Evolution via splitting
functions (moments are anomalous dimensions)

=(P|p(0) w(&)|Fp = local

m Local operators with calculable anomalous dimension 13




relevance and measurability of TMDs

14



Access to transverse momenta: f(x) = f(Xx,p+)
o

m SIDIS: v* + H(P) > h(K) + X
Underlying hard process: v* + q(p) = q(k)

m Include transverse components in quark momenta p=xP+p,
k=~z"K+ k,
m Sufficiently high energies to identify fractions x and z:

x=pn/Pn=0"/2Pq=x,

up to 1/Q? -
Z = Khn/kn = PKh /Pq = Zh corrections! ,%ZJ
O
m Momentum conservation p + g = k tells us that transverse b"’
momentum can be accessed [via transverse momentum K, p ] §
<
%)

[qT q+x,P— Zth =k, pTJ

15



- Access to transverse momenta: f(x) 2> f(x,py)
o

— P & Also in hadroproduction at high energies fractional parton
Py =X F Pir momenta are fixed by external kinematics up to M2/Q2

P, = X5 + py; p,.P,  q.P
X, =pn=-—"— -

& Measure for mismatch for transverse momenta of partons
K,, DY: [ qr =q—=x 80 =x,5 = pir + Dyr ]
2-particle inclusive hadron-hadron scattering:

1 1
q4r =2z, K, +z, K, -xH - x,P,

Q\J.
&
b‘o
=Dir T Por — le - sz S
&
%)

It shows that care is needed: we need
pp-scattering more than one hadron and knowledge

|
Boer & Vogelsang of hard process(es)! 16



| New information in TMD's: f(x,p;)
o

m Quarks in polarized nucleon: § = S, (% +Mn) +S, Sf + S; =1

O (p; P,S) o« xf!(x,p;) P + S,xg’ (x,p;) Py,

2
/+Xh1qT (xp pT)$TP)/5 + '"\ chiral quarkS in

L-polarized N
unpolarized / compare
quarks

T-polarized quarks  u( p,s)u(p,s) = %(p +m)(1+ )/5,3‘)
in T-polarized N

m ... butalso

(p,°S,;)
M

O(p; P,S) x ... + xg! (x,p;)lz’y5 +

/Y

spin <> spin chiral quarks
in T-polarized N 17



New information in TMD's: f(x,p+)
o

m ... and T-odd functions

®(p; P,S) « ... + ihllq(x,p;)%]”ﬂ(pTAZST)x (L p)P o+

T-polarized quarks unpolarized quarks in /

in unpolarized N T-polarized N (Sivers)
spin €<-> orbit u(p,s)u(p,s) = %(10 +m)(1+ V5$)

m Note that there are parts that lack simple partonic interpretation
O(p; P,S) x...+ Mx e q(x,p;) + ...

Higher-twist parton mass? But these are linked to
quark-gluon correlators via EQM 18



Fermionic structure of TMDs

unpolarized quark <
distribution

with p; -

T-0dd ~

helicity or chirality

distribution %
f,9(x) = q(x)

d;%4(x) = Aq(x)

h,9(x) = dg(x
19(x) q( WithpT

transverse spin distr.
or transversity

fl(m}pg"}

pTXST
M

fir(z,p7)

St glL(«’b', pg‘)

pT-ST

qir(z, pg‘)

S5 har(z, pr)

o
i 2T pt

= (z,p3)

SL % hiLL(m}pg‘)

5 =
P 22 BT pi(2,7)

@

eSS0
@é@@*@*

Yo
5@

¢

Y




| New information in TMD's: f(x,p;)
o

circularly polarized
gluons in L-pol. N

/ spin €-> spin

D% (p; P,S) o« — g xfE(x, p2) +iS e xg? (x, p2)

wo.v u
(B B Ny

> >
Unpolarized gluons M 2M \

m Also for gluons there are new features in TMD's

in unpol. N quarks

linearly polarized
compare gluons in unpol. N

Vi v (Gluon Boer-Mulders)
e'(p, e (p,A) = -g;" +...
spin <-> orbit

20



Time reversal invariance
oV

& TMD-correlators are not T-invariant (allowing specific
spin-orbit correlations)

QCD is T-invariant

T-odd observables <-> T-odd TMDs

Example of T-odd observable: single spin asymmetry

E.g. left-right asymmetry in p(H)p, (F,) = #(K)X

® Collinear hard T-odd contribution zero (~ag*, a;m,),
pr-contributions remain p=xP+p,

¢ & ¢

gPlP2SZTKJr ~ iz (5 287k k=z'P+ kT
X1X%2
@ _ 8'<’91T)?252Tk _ 8F{P27\752Tk + 8P1P251\TkT\;)
@ ... + ‘normal’ twist three stuff (FF)

Qiu & Sterman, 1997



Complications for TMDs




\V J Large p-

m p-dependence of TMDs
u
| &’pp @x.py) = @(xi’)

pt p 1

_ Large u?
F(X,
( :pT) — Fictitious dependence

measurement
governed by
anomalous dim
(i.e. splitting
functions)

1 a(p,) @ b
B D(x, — d ()
O I - [y ( ) (v;P})

m Consistent matching to collinear situation: CSS formalism

JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199

A Bacchetta, D Boer, M Diehl, PIM, JHEP 0808 (2008) 023 23



& Color gauge invariance
o
m Gauge invariance in a nonlocal situation requires a gauge link U(0,£)
_ 1 cn oty —
POPE) = Y= E".E“P0)d, ...9, Y(0)
p n. N £
U0,5)=2 GXp(—igfdsﬂAﬂ)
0

FOUO.HY(E) = 3 E"..5(0)D, .. D, y(0)

m Introduces path dependence for ®(x,p+)

o (x,p,) = B(x) T

0
24




\‘ / Which gauge links?

B (x, py 1) = fd@z . >f o8 (Pl (OUSLy,@)|P),,.| D

D7 (x;n) = fd(fP) lp§<P|z/7j(0)U[[(;Z,]§]z/ji(§)|P>§'n=§T=O collinear

€ Gauge links for TMD correlators process-dependent with simplest cases

": “ai SIDIS
o éi/\g ' ; 4 ;"’—

2L AN
5o L = & e
®l-] . Pl+]
<t } ] & } -
£ Time reversal £

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165
D Boer, PIM and F Pijlman, NP B 667 (2003) 201 25



\‘ / Which gauge links?

wcer . o (dEP)E, e
O (x, prin) = [ oy

(Pl P O @) )

E.n=0

€ The TMD gluon correlators contain two links, which can have different
paths. Note that standard field displacement involves C = C

FPE) = Uy FP (&)U,
# Basic (simplest) gauge links for gluon TMD correlators: g9 > H
@, [++] — o1 |, ] g_
éT-_ . & _
e S| g_ _ o+ | | ;'_
C Bomhof, PIM, F Pijiman; EPJ C 47 (2006) 147 T -

F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301 ingg 2> QQ 26



Which gauge links?
o o

m With more (initial state) hadrons y(&,) . 9(0,)
color gets entangled, e.g. in pp

w(&) 9O
I Ou_tgping color c_ontributes future @ Can be color-detangled if only p;
pointing gauge link to ®(p,) and of one correlator is relevant
future pointing part of a loop in (using polarization, ...) but must

the gauge link for ®(p,) include Wilson loops in final U

T.C. Rogers, PIJM, PR D81 (2010) 094006 MGA Buffing, PIJM, JHEP 07 (2011) 065
27



Y Summarizing: color gauge invariant correlators
\ N/

m So it looks that at best we have well-defined matrix elements for TMDs
but including multiple possiblities for gauge links

m Leading quark TMDs:

pT ST
U €r U
¥z, prin) = { 17w,02) = 5 2) T+ oo
V5P, -\ P
W) 804 b (@) B 4 iV p2) %}5
m Leading gluon TMDs:
U v pg|U] VG%TST 1Lg[U] 2
erlu/[ ]<a77pT) — _gl;” fl ( 7pT)_|_g'u M 1T (a?7pT)
v g[U PPy v D Lg[U
—1—%% gﬂ ](xapT) + < ]QQT —955 2]\;2) hi o ](az,pi)
1% S 1%
_ pT{’upT} hJ—Q[U]( )_ pT{MS }—I_E T{’upT} hg[U](CU 2)
2M2 7pT 4M 17T ’pT



Opportunities to see color phases in QCD

=

(U

Y(E) = Pexp(-z-gfdsmu)wm

Figures by Kees Huyser

29
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'?

+ 2. r'l By (s‘)

Next step

30



' T Operator structure in collinear case (reminder)
h/

m Collinear functions and x-moments

v (0= [ e (Pl L) P)

d(&.P) eip-§
(27)

-/ % (Pl O UL (D) y(@)|P)

m Moments correspond to local matrix elements with calculable anomalous
dimensions, that can be Mellin transformed to splitting functions

@ = (P|p(0)(D")" y(0)|P)

m All operators have same twist since dim(D") = 0

§.n=5,=0

VD (x) = (Plg(0) (@) UL w(E)| P)

§.n=§,=0

§.n=§,=0

31



| Operator structure in TMD case
o

m For TMD functions one can consider transverse moments
d(& P)d gT lp§

x.pyim) = [ S (PlRO U Y|P,
p;‘f(I)[i](x,pT;n) =fd(i;j2;z S lp§<P|I/J(O)UDO‘(+OO)UI/J(§)|P>

m Transverse moments involve collinear twist-3 multi-parton correlators
®, and @ built from non-local combination of three parton fields

D (x-x,3, | ) = [LZLLLL to-mizenen pl i) o i) (&) | P)

§.n=5,=0

27y’

(I)g(x)=fa’x1 O (x=x,,x, | x)

a 1 no
D’ (x) = PVfdxlx—CDF (x—x,x |x)

1

T-invariant definition 39



| Operator structure in TMD case
o

m For TMD functions one can consider transverse moments
d(& P)d gT lp§

x.pyim) = [ S (PlRO U Y|P,
p;‘f(I)[i](x,pT;n) =fd(i;j2;z S lp§<P|I/J(O)UDO‘(+OO)UI/J(§)|P>

m Transverse moments involve collinear twist-3 multi-parton correlators
®, and @ built from non-local combination of three parton fields

(- x,,, ) = [LZLLEL go-mznn pl o) D (o) (&) P)

§.n=5,=0

(2m)’

(I)g(x)=fa’x1 O (x=x,,x, | x)

a 1 no
D’ (x) = PVfdxlx—CDF (x—x,x |x)

1

T-invariant definition 33



. Operator structure in TMD case
o

m Transverse moments can be expressed in these particular collinear
multi-parton twist-3 correlators (which is NOT suppressed!)

n d(x) = [d’p, p; @ (x, pin) = D (x)+ CUladl (x)

/‘ T Cl=x]

T-even T-odd (gluonic pole or ETQS m.e.)
(B2 (x) = @4 (1)~ @%(x0)| | @) = @ (x,0] )|

m This gives rise to process dependence in PDFs, for unpolarized case
1 .
M(Da W)= .. hl“l)“”(x) = ... Cg” hl“l)(x)

m Weightings defined as

o) n
B @) = [ dsz(— L ) B, p})

34



" Operator structure in TMD case
o

m Transverse moments can be expressed in these particular collinear
multi-parton twist-3 correlators (which is NOT suppressed!)

n d(x)= [d’p, p; @ (x, pin) = P (x)+ CUladl (x)

/‘ T Cl=x]

T-even  T-odd (gluonic pole or ETQS m.e.)
[Ci)g‘(x) = % (x)— cpj(x)] [cbg(x) = 0" (x,0| x)]

m For a polarized nucleon:

|
— o (x) = ( g0 (x)+ ...h“”(x)) ... ClU 0 (x)

M 1L T
! !
T-even T-odd

35



m Operators: m Operators:

out state
) (p| p)~(P POV, w(E)|P)  AKIK) /
~ Y (0|w(&) | K,X)(K,X|$(0)]0)

alU] =N [U] a
O (x) =D (x)+C, TD(x)

70

T-even  T-odd (gluonic pole)

[(I)g (x) = D77 (x,0]x) = O] T-even operator combination,

but no T-constraints!

| AL =AK(5,0]5)=0

AV (x) = A%(x)

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503 36



Double transverse weighting
o

m The double transverse weighted distribution function contains multiple
4-parton matrix elements

O (x) = DY (x) + Cholar” @, (x) + C e D () + DL ()

0

l l |

T-even T-even T-odd
(I)g‘f[U}(x) _ ...h#z)[U](x) m Note:"o0=D-4

! ™~

[ hliTu)[U](x) _ hllT@)(A)(x) + CLUIRA@UED (1) }

GG 1T

m Separation in T-even and T-odd parts is no longer enough to isolate
process dependent parts —s also Pretzelocity function is non-universal

m ... although Cltl = Cgl = 1 (so not different in DY and SIDIS)

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 37



| Double transverse weighting
o

m Pretzelocity type of correlations come actually in three matrix elements
and have to be parametrized using three functions

DL (x) = DL (x)+ Cl) WD, (x)+ C (D (x) + DL () |

; S ;

Tr (GG yy) Tr(GG) Tr(yy)
L(2)[U] _ 1,L(2)(4) [U] 7,L(2)(B1) (U] 7,L(2)(B2)
[ th (x) - th (x) + CGG,lth (x) T CGG,2h1T (x) J

U 7] ] U[D] NL TrC(U[D]) [l
olU] H!F] ol Pl +]
c +1 3 1

Coon 1 9 1

oY 0 0 4
GG,2

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 38



N The next step: TMDs of definite rank
o

m Expansion into TMDs of definite rank
CI)[U](x,pT) = ﬁ)(x,p;) + CéU]ini&)i (x, p;) + Cé%],cn2pm(’f>gac (x,p;) +...
+p, @ (x,p)+ C([;U]JtpT (I)?GG}(x,p;) +...

+ pTy&)ga(x,p;) +...

+...

m Depending on spin and type of operators, only a finite humber needed
m Example: quarks in an unpolarized target

Bxp?) = (1, D)L

5 Jt(I)“(x pT) = (zh (x, pT)yT )’F

M| 2

39



Summarizing quark TMDs up to spin 1/2 targets

GLUONIC POLE RANK
0 1 2 3
@(w,p?p) WC[U] 7'(‘20([;(](];’6 qDGG,c WchU(]}G,c (I)GGG,C
Dy 7TC' (I){ac;} 7T2Cc[;Uc];,c &){8GG},C
Boo 7rC CID{aag}
D00

PDFs FOR SPIN 0 HADRONS

Ji hi
+
PFFs FOR SPIN 0 HADRONS
D
Hi-
+

PDFs FOR SPIN 1/2 HADRONS

g1, ha fiT

h#Bl) hJ_(BZ)

1
gir, hlL

1(A4)
hir

PFFs FOR SPIN 1/2 HADRONS

G1, Hq

1 1
G1T7 H1L7 DlT

L
Hir

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph]
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Conclusions
o

m (Generalized) universality using definite rank functions: azimuthal
dependence of transverse momentum multiplying functions f(x,p2).

m Rank 0 are the well-known collinear functions (three quark and two
gluon spin distributions)

m Rank m is coupled to cos(m¢) and sin(m¢) azimuthal asymmetries.
Leading azimuthal asymmetries with m up to 2(Sp,4rontSparton)-

m Multiple distribution functions showing up in azimuthal asymmetries
(depending on color structure of operators), e.g. three pretzelocities.

m In principle distinguishable in different experiments (with different color
flow in tree-level diagrams):

gluon + gluon = colorless (distinguish CP+ from CP- Higgs)
gluon-gluon - quark-antiquark pair.
m Novel information on hadron structure (comparison with lattice calc.)
m Factorization studies are a next step
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Thank you
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