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ABSTRACT 

The role of transverse momenta and spins in QCD at high energies 
Piet Mulders (Nikhef/VU University Amsterdam) 
 
The standard Parton Distribution Functions (PDFs) used to describe high-
energy scattering processes encode probabilities for finding specific quarks 
and gluons (partons) carrying fractions x of the parent hadron’s momentum 
(soft collinear part). The interactions of the partons (hard part) are calculated 
using perturbation theory in the Standard Model. The Transverse Momentum 
Dependent (TMD) distribution functions also take into account the transverse 
momentum of the partons. Is this dependence a useful addition? Can it be 
measured? Can the formalism be set up and used in the same successful way 
as collinear PDFs, which are related to expectation values of field operators 
using the Operator Product Expansion in QCD? The answer is yes, but … . 
But after accounting for the complications, quark and gluon TMDs offer new 
insight into spin and orbital substructure of hadrons while they also may 
provide new tools to explore physics beyond the Standard Model. 
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Content 

!   High energies: soft x hard 
!   Soft = hadron info (probabilities), hard = partonic cross section 
!   Probabilities include spin-spin correlations 

!   Are TMDs relevant and can they be measured?  
!   Yes, there are more spin-spin and also spin-orbit correlations 
!   Yes, they can be measured (DY, SIDIS, …) 

!   But there are complications!  
!   Gauge links, universality, factorization 

!   Theoretical framework: QCD 
!   Extension of OPE resummed into PDFs to TMDs (definite rank) 
!   Distribution and fragmentation functions (time reversal) 

!   The reward 
!   Novel hadronic info on spin and orbital structure 
!   Possible use of proton as tool (playing with partons) 
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Separating Soft and Hard Physics at high energies 
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High energy processes 

!   Collinear approach: 
The common procedure is to relate the hard partonic amplitude 
squared to the imaginary part of the forward elastic amplitude and 
expand this time ordered product, which is lightcone dominated into 
local operators (operator product expansion), of which only leading 
twist operators are needed at high energies. 

! Hadronic correlators: beyond the collinear approach 
Using hadronic correlators is at first sight more heuristic, but is easily 
seen to incorporate all features of the collinear approach. 
 

!   Parton model for distribution and fragmentation functions: 
Heuristic approach with parton probabilities and decay functions with 
natural link to hadronic correlators 

  
5 INTRODUCTION 
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QCD & Standard Model 

!   QCD framework (including electroweak theory) provides the machinery 
to calculate cross sections, e.g. γ*q → q, qq → γ*, γ* → qq, qq → qq, 
qg → qg, etc. 

!   E.g.  
 qg → qg 

 
 
 

!   Calculations work for plane waves 

_ _ 

) .( ( )0 , ( , )s ip
i ip s u p s e ξψ ξ −=



Hadron correlators 

! Hadronic correlators establish 
the diagrammatic link between 
hadrons and partonic hard 
scattering amplitude 

!   Quark, quark + gluon, gluon, … 
 

!   Disentangling a hard process into  
parts involving hadrons, hard 
scattering amplitude and soft 
part is non-trivial 
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122 5 Libby-Sterman analysis and power-counting
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Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan
process. (b) Space-time diagram for collinear subgraphs.

In light-front coordinates, we write the momenta as

PA =
(

P+
A , m2

A/2P+
A , 0T

)

, (5.15a)

PB =
(

m2
B/2P−

B , P−
B , 0T

)

, (5.15b)

q =

(

xAP+
A

√

1 + q2
T/Q2, xBP−

B

√

1 + q2
T/Q2, qT

)

. (5.15c)

Here the scaling variables are defined by

xA = Qey/
√

s, xB = Qe−y/
√

s, (5.16)

where y = 1
2 ln q

+
P

−
B

q
−

P
+
A

is the center-of-mass rapidity of the lepton pair, and

Q =
√

q2 is its invariant mass. In the center-of-mass, the large components

of the hadron momenta are P+
A and P−

B , both equal to
√

s/2 up to power-
suppressed corrections. Frequently, the cross section is integrated over qT,
and is presented as d2σ/(dQ2 dy).

We first discuss the DY amplitude. Its reduced graphs are constructed
by an elementary generalization of the construction for DIS. We now have
two collinear subgraphs, A and B, associated with each incoming particle.
As in DIS, we classify the reduced graphs by the number of outgoing
directions of lines from the hard scattering H. Now H has incoming lines
from each of the A and B subgraphs, and has the virtual photon taking
out momentum. This allows the minimal situation, illustrated in Fig. 5.17,
with no extra collinear groups at all going out from H. The soft subgraph
can create particles in the final state that fill in the rapidity gap between
the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig.
5.18 (which corresponds to Fig. 2.2 for DIS). Here we have shown the

11 February 2011

J.C. Collins, Foundations of Perturbative 
QCD, Cambridge Univ. Press 2011 

.( )0 , ( , ) ip
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1 1( ). .( ) ( ) i p
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p ipAX P e ξµ ηψ ξ η + − +



Hadron correlators 

!   At high energies interference terms suppressed and the 
soft parts combine into forward matrix elements of 
parton fields describing distribution (and 
fragmentation) parts 

!   Also needed are multi-parton correlators 

 
! Correlators usually just will be parametrized in terms of 

PDFs (nonperturbative physics) 
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Φij ( p;P) =Φij ( p | p) =
d 4ξ
(2π )4∫ ei p.ξ P ψ j (0)ψi (ξ ) P

ΦA;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)A

α (η)ψi (ξ ) P

  Φ(p)    

ΦA(p-p1,p) 
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PDFs and PFFs 

 Basic idea of PDFs and PFFs is to get a full factorized description of 
high energy scattering processes 

σ =|H ( p1, p2 ,...) |
2

σ (P1,P2 ,...) = ...dp1∫∫∫ ...Φa ( p1,P1;µ)⊗Φb( p2 ,P2;µ)

⊗

σ ab,c... ( p1, p2 ,...;µ)⊗Δc (k1,K1;µ)....

calculable 

defined (!) 
    & 
portable 

INTRODUCTION 

Give a meaning to 
integration variables! 



Hadron correlators 

!   Parton scattering 

!   Parton model: 

! Correlators:  
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u( p,s)u ( p,s) = /p+m

p = xPµ + ....

u( p,s)u ( p,s)⇒ f (x) ( /p+m) 
                       = f (x) x /P  + m f (x)  + ...

Φ( p,P) = x f (x) /P  + Mx e(x)  + ....



Role of the hard scale 

!   In high-energy processes other momenta are available, such that         
P.P’ ~ s with a hard scale s >> M2 

!   Additional scale accessible through non-collinearities, e.g. in SIDIS γ*+p 
is not aligned with produced hadron, or momenta inside a jet 

!   Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P’/P.P’) to 
make a Sudakov expansion of parton momentum (write s = Q2)  

!   Enables importance sampling (twist analysis) for integrated correlators,  
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Tx pp P nµµ µσ= + +

2 2. ~p P xM Mσ = −

. ~ 1x p p n+= =

~ Q ~ M  ~ M2/Q 

Φ( p) =Φ(x, pT , p.P) ⇒ Φ(x, pT ) ⇒ Φ(x) ⇒ Φ



Twist analysis in PDF parametrization 

!   Dimensional analysis to determine importance in an expansion 
in inverse hard scale (smaller dimensions preferred) 

!   Maximize contractions with n 

!   … or maximize # of P’s in parametrization of Φ 	



!   In addition any number of collinear n.A(ξ) = An(x) fields 
(dimension zero!), but of course in color gauge invariant 
combinations  
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dim[ψ(0) /nψ(ξ )]= 2
dim[ (0) ( )] 2n nF Fα β ξ =

dim[ψ(0) /n AT
α (η)ψ(ξ )]= 3

Φij
q (x) = f1

q (x)
( P )ij
2

⇔ f1
q (x) = dλ

(2π )∫ ei xλ P ψ(0) /nψ(λn) P

n n n ni iD i gA∂ → = ∂ +

T T T Ti iD i gAα α α α∂ → = ∂ +
dim 0: 

dim 1: 



(Un)integrated correlators 

 
!   Time-ordering automatic, allowing interpretation as forward 

anti-parton – target scattering amplitude 
!   Involves operators of twists starting at a lowest value (which 

is usually called the ‘twist’ of a TMD) 

 
!   Involves operators of a definite twist. Evolution via splitting 

functions (moments are anomalous dimensions) 

!   Local operators with calculable anomalous dimension  

! unintegrated 
 
!   TMD (light-front) 

!   collinear (light-cone) 

!   local 
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Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=0

Φ = P ψ(0)ψ(ξ ) P
ξ=0

Φ(x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=ξT =0 or ξ 2=0

Φ(x, pT , p.P) =
d 4ξ
(2π )4∫ ei p.ξ P ψ(0)ψ(ξ ) P



relevance and measurability of TMDs 
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Access to transverse momenta: f(x) à f(x,pT) 

!   SIDIS:                             γ* + H(P) à h(K) + X 
    Underlying hard process:   γ* + q(p) à q(k)           

!   Include transverse components in quark momenta 

!   Sufficiently high energies to identify fractions x and z: 

 
!   Momentum conservation p + q = k tells us that transverse 

momentum can be accessed [via transverse momentum Kh⊥(P,q)] 

 

Tp x pP≈ +
1

Tz kk K−≈ +

2. / . / 2 . Bx p n P n Q P q x= = =
. / . . / .h h hz K n k n P K P q z= = =

1
T B h h T Tq q x P z K k p−= + − = −

up to 1/Q2  
corrections! 
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Access to transverse momenta: f(x) à f(x,pT) 

!   Also in hadroproduction at high energies fractional parton 
momenta are fixed by external kinematics up to M2/Q2  

  

     

!   Measure for mismatch for transverse momenta of partons 

     DY:   

  2-particle inclusive hadron-hadron scattering: 

K2⊥ 

K1⊥ 
φ2 - φ1 

δφ	



pp-scattering 

1 11 1Tp Px p≈ +

2 22 2Tp Px p≈ +
1 2 2

1 1
1 2 1 2

. ..
. .
p P q Px p n
P P P P

= = =

1 1 2 2 1 2T T Tq q x P x P p p= − − = +

1 1
1 1 2 2 1 1 2 2

1 2 1 2

T

T T T T

q z K z K x P x P
p p k k

− −= + − −

= + − −

It shows that care is needed: we need 
more than one hadron and knowledge 
of hard process(es)! 

Boer & Vogelsang 



New information in TMD’s: f(x,pT)  

!   Quarks in polarized nucleon: 

 
 

 
 
!   … but also 
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u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)

Φq ( p;P,S) ∝ xf1
q (x, pT

2 ) /P  + SLxg1L
q (x, pT

2 ) /Pγ5

                        +xh1T
q (x, pT

2 ) /ST /Pγ5    +   ...

compare unpolarized 
quarks 

T-polarized quarks 
in T-polarized N 

S = SL
P
M

+Mn
!

"
#

$

%
&+ ST SL

2 + ST
2 = −1

chiral quarks in 
L-polarized N 

Φ( p;P,S) ∝ ... + 
( pT ⋅ ST )
M

xg1T
q (x, pT

2 ) /Pγ5    +   ...

chiral quarks   
in T-polarized N 

spin ßà spin 



!   … and T-odd functions 
 
 

!   Note that there are parts that lack simple partonic interpretation 
 
 

New information in TMD’s: f(x,pT)  
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u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)

Φq ( p;P,S) ∝ ... + ih1
⊥q (x, pT

2 ) /
pT
M

/P + i
( pT × ST )
M

xf1T
⊥q (x, pT

2 ) /P  + ...

compare 

unpolarized quarks in 
T-polarized N (Sivers) 

T-polarized quarks 
in unpolarized N 
(Boer-Mulders) 

parton mass? But these are linked to 
quark-gluon correlators via EQM 

Φ( p;P,S) ∝ ... + Mx e  q (x, pT
2 )  + ...

spin ßà orbit 

Higher-twist 



unpolarized quark 
distribution 

helicity or chirality 
distribution 

transverse spin distr. 
or transversity 

with pT 

with pT 

with pT 

with pT 

with pT 

T-odd 

Fermionic structure of TMDs 

f1q(x) = q(x) 

g1
q(x) = Δq(x)  

h1
q(x) = δq(x)  



New information in TMD’s: f(x,pT)  

!   Also for gluons there are new features in TMD’s 
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εµ ( p,λ)εν∗( p,λ)  = −gT
µν + ...

Φg  µν ( p;P,S) ∝− gT
µν xf1

g (x, pT
2 )  + iSLεT

µν xg1L
g (x, pT

2 )

                                    + 
pT
µ pT

ν

M 2
− gT

µν pT
µ

2M 2

!

"
##

$

%
&&xh1

⊥g (x, pT
2 )   +   ...

compare 

Unpolarized gluons 
in unpol. N quarks 

linearly polarized  
gluons in unpol. N 
(Gluon Boer-Mulders) 

circularly polarized 
gluons in L-pol. N 

spin ßà orbit 

spin ßà spin 



Time reversal invariance 

!   TMD-correlators are not T-invariant (allowing specific 
spin-orbit correlations) 

!   QCD is T-invariant 

!   T-odd observables ßà T-odd TMDs 

!   Example of T-odd observable: single spin asymmetry 

 E.g. left-right asymmetry in  

!   Collinear hard T-odd contribution zero (~αs
2 , αsmq),     

 pT-contributions remain 
 

Tp x pP≈ +
1

Tz kk P−≈ +1 2 2 1 2 2

1 2

1 2 2 1 2 2 1 2 2

(

)

T T

T T T T T T

zPP S K p p S k
x x

p p S k p p S k p p S k

ππε ε

ε ε ε

≈

− − +

1 2( ) ( ) ( )p P p P K Xπ
↑

→

~ s3/2 

~ s 

Qiu & Sterman, 1997 

… + ‘normal’ twist three stuff (FF) 



Complications for TMDs 
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Large pT 

! pT-dependence of TMDs 

 

 
!      
 

!   Consistent matching to collinear situation: CSS formalism 

!     
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F(x,pT) 

d 2 pT
µ

∫ Φ(x, pT ) = Φ(x;µ
2 )

Fictitious 
measurement 

Large µ2 
dependence 
governed by 
anomalous dim 
(i.e. splitting 
functions) 

Φ(x, pT ) →
1

π pT
2

αs ( pT
2 )

2π
dy
y
P x
y

#

$
%

&

'
(

x

1

∫ Φ(y; pT
2 )

pT
2 > µ2 

JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199 
A Bacchetta, D Boer, M Diehl, PJM, JHEP 0808 (2008) 023 



Color gauge invariance 

!   Gauge invariance in a nonlocal situation requires a gauge link U(0,ξ) 

!   Introduces path dependence for Φ(x,pT) 
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0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P

ψ(0)ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0	


ξ.P 

ξΤ	



ξ	


Φ[U ](x, pT ) ⇒ Φ(x)
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u  Gauge links for TMD correlators process-dependent with simplest cases 

Which gauge links? 

2
[ ] . [ ]

[0, ]3 . 0

( . )( , (0) ( ); )
(2 ) j

q C i p CT
ij T i n

d P dx p n e P U Pξ
ξ ξ

ψ ψ ξ
ξ ξ
π =

Φ = ∫
. [ ]

[0, ] . 0

( . )( ; )
(2 )

(0) ( )ij
T

q i p n
nj i

d Px n e P U Pξ
ξ ξ ξ

ψ ψ ξ
ξ
π = =

Φ = ∫

Φ[-] Φ[+] 

Time reversal 

TMD 

collinear 

… An … 
… An … 

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165 
D Boer, PJM and F Pijlman, NP B 667 (2003) 201 

   SIDIS  DY 
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Which gauge links? 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different 
paths. Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147 
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301  

   gg è H 

 in gg  è QQ  



Which gauge links? 

!   With more (initial state) hadrons 
color gets entangled, e.g. in pp 

 
!   Outgoing color contributes future 

pointing gauge link to Φ(p2) and 
future pointing part of a loop in 
the gauge link for Φ(p1) 

 
!   Can be color-detangled if only pT 

of one correlator is relevant 
(using polarization, …) but must 
include Wilson loops in final U 
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1 1( ) (0 )ψ ξ ψ

1[ ,0 ]−∞

2[ , ]ξ −∞ 2[ ,0 ]−∞

1[ , ]ξ −∞

1 2[ , ][ , ]ξ ξ+∞ +∞

2 2( ) (0 )ψ ξ ψ

1 2[0 , ][0 , ]+∞ +∞

T.C. Rogers, PJM, PR D81 (2010) 094006 MGA Buffing, PJM, JHEP 07 (2011) 065 



Summarizing: color gauge invariant correlators 

!   So it looks that at best we have well-defined matrix elements for TMDs 
but including multiple possiblities for gauge links 

!   Leading quark TMDs: 
 

 

!   Leading gluon TMDs: 

28 
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow
in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
inclusive deep inelastic scattering one finds that the relevant TMD is Φ[+] with a
future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)

with the spin vector parametrized as Sµ = SLPµ + Sµ
T +M2 SLnµ and shorthand

notations for g[U ]
1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow
in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
inclusive deep inelastic scattering one finds that the relevant TMD is Φ[+] with a
future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)

with the spin vector parametrized as Sµ = SLPµ + Sµ
T +M2 SLnµ and shorthand

notations for g[U ]
1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)



Opportunities to see color phases in QCD 
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Next step 
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Operator structure in collinear case (reminder) 

!   Collinear functions and x-moments 

!   Moments correspond to local matrix elements with calculable anomalous 
dimensions, that can be Mellin transformed to splitting functions 

!   All operators have same twist since dim(Dn) = 0  
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂n )N−1U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dn )N−1ψ(ξ ) P
ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P



Operator structure in TMD case 

!   For TMD functions one can consider transverse moments 

 

 

!   Transverse moments involve collinear twist-3 multi-parton correlators 
ΦD and ΦF built from non-local combination of three parton fields  
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)UDT

α (±∞)Uψ(ξ ) P
ξ .n=0

ΦF
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)Fnα (η)ψ(ξ ) P

ξ .n=ξT =0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U [±] ψ(ξ ) P

ξ .n=0

FF(p-p1,p) 
ΦA

α (x) = PV dx1∫ 1
x1
ΦF
nα (x − x1,x1 | x)

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-invariant definition 



Operator structure in TMD case 

!   For TMD functions one can consider transverse moments 

 

 

!   Transverse moments involve collinear twist-3 multi-parton correlators 
ΦD and ΦF built from non-local combination of three parton fields  
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)UDT

α (±∞)Uψ(ξ ) P
ξ .n=0

ΦD
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0) DT

α (η) ψ(ξ ) P
ξ .n=ξT =0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U [±] ψ(ξ ) P

ξ .n=0

FF(p-p1,p) 
ΦA

α (x) = PV dx1∫ 1
x1
ΦF
nα (x − x1,x1 | x)

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-invariant definition 



CG
[±] = ±1

Operator structure in TMD case 

!   Transverse moments can be expressed in these particular collinear 
multi-parton twist-3 correlators (which is NOT suppressed!) 

!     

 

!   This gives rise to process dependence in PDFs, for unpolarized case 

 
!   Weightings defined as 
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Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]πΦG
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x)

T-even T-odd (gluonic pole or ETQS m.e.) 

h1
⊥(n) (x) = d 2 pT −

pT
2

2M 2

#

$
%%

&

'
((

n

h1
⊥(x, pT

2 )∫

1
M
Φ

∂
α[U ](x) = ... h1

⊥(1)[U ](x) = ...CG
[U ] h1

⊥(1) (x)



Operator structure in TMD case 

!   Transverse moments can be expressed in these particular collinear 
multi-parton twist-3 correlators (which is NOT suppressed!) 

!     

 

 
!   For a polarized nucleon: 
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1
M
Φ

∂
α[U ](x) = ...g1T

⊥(1) (x)+ ...h1L
⊥(1) (x)( )+ ...CG[U ] f1T⊥(1) (x)

T-even T-odd 

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]πΦG
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x)

T-even T-odd (gluonic pole or ETQS m.e.) 

CG
[±] = ±1



Distributions versus fragmentation 

!   Operators: !   Operators: 
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Φ[U ]( p | p) ~ P |ψ(0)U[0,ξ ]ψ(ξ ) | P Δ(k | k)
~ 0 |ψ(ξ ) | KhX KhX |ψ(0) | 0

X
∑

ΔG
α (x) = ΔF

nα ( 1Z ,0 | 1Z ) = 0

Δ
∂
α[U ](x) = Δ

∂
α (x)

ΦG
α (x) =ΦF

nα (x,0 | x) ≠ 0

Φ
∂
α[U ](x) = Φ

∂
α (x)+CG

[U ]πΦG
α (x)

T-even T-odd (gluonic pole) 

T-even operator combination, 
but no T-constraints! 

out state 

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503 



Double transverse weighting 

!   The double transverse weighted distribution function contains multiple  
4-parton matrix elements 

 

 

 

!   Note: “               ” 

 

 

!   Separation in T-even and T-odd parts is no longer enough to isolate 
process dependent parts       also Pretzelocity function is non-universal 

!   …. although CGG
[+] = CGG

[-] = 1 (so not different in DY and SIDIS) 
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Φ
∂∂
αβ[U}(x) = Φ

∂∂
αβ (x)+CGG

[U ]π 2ΦGG
αβ (x)+CG

[U ]π Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )
T-even T-odd T-even 

Φ
∂∂
αβ[U}(x) = ...h1T

⊥(2)[U ](x) ∂ = D− A

h1T
⊥(2)[U ](x) = h1T

⊥(2)(A) (x)+CGG
[U ]h1T

⊥(2)(B1) (x)

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 



Double transverse weighting 

! Pretzelocity type of correlations come actually in three matrix elements 
and have to be parametrized using three functions 

38 MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 

Φ
∂∂
αβ[U ](x) = Φ

∂∂
αβ (x)+CGG ,c

[U ] π 2ΦGG ,c
αβ (x)+CG

[U ]π Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )

5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×〈P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S〉

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

h1T
⊥(2)[U ](x) = h1T

⊥(2)(A) (x)+CGG ,1
[U ] h1T

⊥(2)(B1) (x)+CGG ,2
[U ] h1T

⊥(2)(B2) (x)

 Trc(GG ψψ)  Trc(GG) Trc(ψψ) 



The next step: TMDs of definite rank 

!   Expansion into TMDs of definite rank  

 
 
!   Depending on spin and type of operators, only a finite number needed 
!   Example: quarks in an unpolarized target 
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Φ[U ](x, pT ) = Φ(x, pT
2 )+CG

[U ]π pTi ΦG
i (x, pT

2 )+CGG ,c
[U ] π 2 pTij ΦGG ,c

ij (x, pT
2 )+ ...

+ pTi Φ∂
i (x, pT

2 )+CG
[U ]π pTij Φ{∂G}

ij (x, pT
2 )+ ...

+ pTij Φ∂∂
ij (x, pT

2 )+ ...

+ ...

Φ(x, pT
2 ) = f1 (x, pT

2 )( ) P2 π ΦG
α (x, pT

2 ) = ih1
⊥(x, pT

2 )
γT
α

M

#

$
%%

&

'
((
P
2



Summarizing quark TMDs up to spin 1/2 targets 
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9

GLUONIC POLE RANK
0 1 2 3

Φ(x, p2T ) πC
[U ]
G ΦG π2C

[U ]
GG,c ΦGG,c π3C

[U ]
GGG,c ΦGGG,c

Φ̃∂ πC
[U ]
G Φ̃{∂G} π2C

[U ]
GG,c Φ̃{∂GG},c . . .

Φ̃∂∂ πC
[U ]
G Φ̃{∂∂G} . . . . . .

Φ̃∂∂∂ . . . . . . . . .

TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f [U ]
1TT (x, p

2
T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f [U ]
1TT (x, p

2
T
) = f (A)

1TT (x, p
2
T
) + C [U ]

GG,c f
(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent prefactor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions

of definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a
(T-forbidden) transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2,
T-odd function h⊥

1LT (x, p
2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ),

introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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GLUONIC POLE RANK
0 1 2 3
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for a transversely polarized spin 1/2 target.
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TABLE V: The operator structure of quark TMD
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onic pole matrix elements vanish.
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TABLE VI: The operator structure of quark
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onic pole matrix elements vanish.
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(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f [U ]
1TT (x, p

2
T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f [U ]
1TT (x, p

2
T
) = f (A)

1TT (x, p
2
T
) + C [U ]

GG,c f
(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent prefactor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions

of definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones,
etc. The first victim of the application of time-reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a
(T-forbidden) transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2,
T-odd function h⊥

1LT (x, p
2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ),

introduced as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.
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f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)

1T

g1T , h
⊥
1L

h
⊥(A)
1T

TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T

H⊥
1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f⊥[U ]
1TT (x, p2

T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f⊥[U ]
1TT (x, p2

T
) = f⊥(A)

1TT (x, p2
T
) + C [U ]

GG,c f
⊥(Bc)
1TT (x, p2

T
), (36)

h⊥[U ]
1TT (x, p2

T
) = C [U ]

G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent pre-factor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions of

definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones, etc. The
first victim of the application of time reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a (T-forbidden)
transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2, T-odd function
h⊥
1LT (x, p

2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ), introduced

as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The
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TABLE II: The contributions in the TMD correlator for correlators ordered in columns according to the
number of gluonic poles (G) and ordered in rows according to the number of contributing partial derivatives
(∂ = D−A). The rank of these operators is equal to the sum of these numbers. Their twist is equal to the
rank + 2.

PDFs FOR SPIN 0 HADRONS
f1 h⊥

1

TABLE III: The assignment of TMD PDFs
for a spin 0 or unpolarized target to the quark
correlators as given in Table II involve at most
rank 1 TMD correlators. There is no T-even
function corresponding to Φ̃i

∂ .

PDFs FOR SPIN 1/2 HADRONS

g1, h1 f⊥
1T h

⊥(B1)
1T , h⊥(B2)
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TABLE IV: The assignment of TMD PDFs for
a polarized spin 1/2 target to the quark corre-
lators as given in Table II involve at most rank
1 TMD correlators for longitudinal polarization,
while they involve also rank 2 TMD correlators
for a transversely polarized spin 1/2 target.

PFFs FOR SPIN 0 HADRONS
D1

H⊥
1

TABLE V: The operator structure of quark TMD
PFFs for spin 0 or unpolarized hadrons. All glu-
onic pole matrix elements vanish.

PFFs FOR SPIN 1/2 HADRONS
G1, H1

G1T , H
⊥
1L, D

⊥
1T
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1T

TABLE VI: The operator structure of quark
TMD PFFs for polarized spin 1/2 hadrons. Glu-
onic pole matrix elements vanish.

B. Results for spin 1 hadrons

Extension to higher spin targets is straightforward. We illustrate this by giving in Table VII the assignments for
spin 1 tensor polarized TMD functions. These were first given in Ref. [25]. The (slightly updated) parametrization
of the TMD correlator for the TMD PDFs for a tensor polarized target are given in Appendix C as well as the

parametrization of the TMD PFFs in Appendix D. From these tensor polarized spin 1 contributions, the f⊥[U ]
1TT (x, p2

T
)

and h⊥[U ]
1TT (x, p2

T
) can be written as a combination of multiple universal PDFs, multiplied with process dependent

gluonic pole factors,

f⊥[U ]
1TT (x, p2

T
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G h⊥(A)
1TT (x, p2

T
) + C [U ]

GGG,c h
⊥(Bc)
1TT (x, p2

T
). (37)

Note that the h⊥[U ]
1TT (x, p2

T
) is a rank 3 object, for which all contributing universal functions are multiplied with a

process dependent pre-factor. A special case is the T-odd TMD PDF h1LT , which is forbidden because of time-reversal
invariance. Following Ref. [25], this rank 0 TMD PDF is defined as the combination h1LT (x, p2T ) = h′

1LT (x, p
2
T
) +

h⊥(1)
1LT (x, p2

T
) and is shown as the wiped-out function in Table VII. It shows a nice feature of our TMD functions of

definite rank. In the first column only T-even TMD PDFs are allowed, in the second column only T-odd ones, etc. The
first victim of the application of time reversal invariance for leading quark TMDs, thus, is h1LT (x, p2T ), a (T-forbidden)
transversely polarized quark distribution function in a tensor polarized hadron. Note that the rank 2, T-odd function
h⊥
1LT (x, p

2
T
) is allowed. The only rank 0 function for a tensor polarized spin 1 target thus is f1LL(x, p2T ), introduced

as the distribution b1 in Ref. [26].
For fragmentation functions, gluonic pole contributions all vanish and only the first column survives. The

+ 

+ 



Conclusions 

!   (Generalized) universality using definite rank functions: azimuthal 
dependence of transverse momentum multiplying functions f(x,pT

2).  
!   Rank 0 are the well-known collinear functions (three quark and two 

gluon spin distributions) 
!   Rank m is coupled to cos(mφ) and sin(mφ) azimuthal asymmetries. 

Leading azimuthal asymmetries with m up to 2(Shadron+sparton). 
!   Multiple distribution functions showing up in azimuthal asymmetries 

(depending on color structure of operators), e.g. three pretzelocities. 
!   In principle distinguishable in different experiments (with different color 

flow in tree-level diagrams):  
 gluon + gluon à colorless (distinguish CP+ from CP- Higgs)  
 gluon-gluon à quark-antiquark pair.  

!   Novel information on hadron structure (comparison with lattice calc.) 
!   Factorization studies are a next step  
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