Search for the SM Higgs Boson at CMS

Francesco Fabozzi

INFN-Napoli & Università della Basilicata On behalf of the CMS collaboration

LNF-2013-1 Winter Institute on Hot Topics at LHC LNF, 24 January 2013

Outline

- This talk will be focused on the recent results from Standard Model (SM) Higgs boson searches at CMS
- Introduction
- Search channels of SM Higgs boson
 Focus on the low mass range
- Analysis strategies and results
- Combination of results, first measurements of boson properties

The CMS experiment @ LHC

The CMS detector

The CMS collaboration

About 3000 collaborators from 179 Institutes and 41 countries Note: detector image in full scale

Particle reconstruction at CMS

A particle-flow algorithm combines the information from all the sub-detectors in order to provide mutually exclusive lists of particles

LHC impressive performances!

SM Higgs production and decay at LHC

New boson observation (a) 125 GeV

Physics Letters B 716 (2012) 30-61

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC *

CMS Collaboration*

CERN, Switzerland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

ARTICLE INFO

ABSTRACT

Article history: Received 31 July 2012 Received in revised form 9 August 2012 Accepted 11 August 2012 Available online 18 August 2012 Editor: W.-D. Schlatter

Keywords: CMS Physics Higgs

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

Also SM Higgs exluded @95%CL in 110-122.5 GeV and 127-600 GeV m_{H} intervals

Question: is it the SM Higgs? Goal: Study properties of resonance and fully explore its decay channels

SM Higgs production and decay at LHC

SM Higgs search channels at CMS

5 channels explored							
Channel	m _H range (GeV)	Luminosity (fb-1)		m _H resolution	value value		
		7 TeV	8 TeV		d 10 ⁻⁵		
Н-> үү	110-150	5	5	1-2 %	10 ⁻¹⁰		
H->bb	110-135	5	12	10%			
Η->ττ	110-145	5	12	20%	10 ⁻¹⁵ Combine		
H->WW	110-600	5	12	20%	$= - H \rightarrow bb$		
H->ZZ	110-1000	5	12	1-2%	10^{-20} $H \rightarrow \gamma\gamma$		
					110 115 12		
Sensitiv	e also to h	igh m _H					

Expected sensitivities for a SM Higgs boson

Expected significance (a) $m_H = 125 \text{ GeV}$: 7.8 σ

$H \rightarrow \gamma \gamma$ channel

Photon energy and uncertainty estimated event-by-event with multivariate regression technique

Main backgrounds:

- prompt γγ production (irreducible)
- γ +jet and jet-jet (< 30% contribution)

$H \rightarrow \gamma \gamma$ channel: event categories

Events classification in independent categories of different S/B, selection optimized for each category

- *VBF-category*: highest S/B, 2 high- p_T jets, $\Delta \eta > 3.5$; sub-splitting in tight ($m_{jj} > 500$ GeV) and loose (250 < $m_{jj} < 500$ GeV) category; cuts exploiting correlation between diphoton and di-jet system applied
- *Remaining events split in 4 categories:* based on output of di-photon BDT discriminant exploiting signal-like kinematics, di-photon mass resolution, photon BDT identification
- Cut-based analysis performed as cross-check

Event		SM Higgs boson expected signal ($m_{\rm H} = 125 {\rm GeV}$)					Background		
categories		Events	ggH	VBF	VH	ttH	$\sigma_{ m eff}$ (GeV)	FWHM/2.35 (GeV)	$m_{\gamma\gamma} = 125 \text{GeV}$ (events/GeV)
1	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
- L	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
5.31	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3
ζ,	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
Te	Dijet tight	2.6	23%	77%	_	_	2.06	1.57	1.3 ± 0.2
30	Dijet loose	3.0	53%	45%	2%	_	1.95	1.48	3.7 ± 0.4

$H \rightarrow \gamma \gamma$ channel: signal extraction

Fit to $m_{\gamma\gamma}$ data distribution in each category

$H \rightarrow \gamma \gamma$ channel: results

$$\sigma/\sigma_{SM} = 1.56 \pm 0.43$$
 @ 125 GeV

H→ZZ channel

4l channel (=4µ, 4e, 2e2µ)

Signature: two pairs of isolated, high p_T leptons of opposite sign and originating from the primary vtx;

Z bosons can be off-mass shell: $40 < M_{Z1} < 120 \text{ GeV}$ $12 < M_{Z2} < 120 \text{ GeV}$

PAS HIG-12-041

High lepton efficiency through a broad p_T range is crucial

Dominant backgrounds:

- non resonant ZZ (irreducible)
- Z+jets (mainly Zbb) and ttbar

$H \rightarrow ZZ$: selected events

• ZZ bkg determined from simulation

• *Reducible bkg extrapolated from control regions (e.g. same charge lepton pair with loosened lepton isolation/ID)*

$H \rightarrow ZZ$: signal extraction

Simultaneous likelihood fit of (m_{4l}, K_D) distribution for the three channels

H→ZZ: results

$H \rightarrow ZZ$: spin-parity properties

Using similar K_D approach to discriminate between different J^P states

H→WW

$H \rightarrow WW \rightarrow 212v$ channel

Three channels:

- μμ, ee (same-flavour events SF)
- *eµ (different-flavour events DF)*

Signature: two isolated, high p_T leptons of opposite sign; large missing transverse energy (MET) in the event

MET is crucial for DY rejection

- Use of projected MET to nearest lepton direction improves $DY \rightarrow \tau \tau$ rejection
- Best sensitivity for $m_H \approx 2m_W$
- Robust lepton ID and MET reconstruction in high PU environment for being sensitive down to 120 GeV

Scalar boson + V-A decay => Small leptons opening angle

$H \rightarrow WW \rightarrow 212\nu$: event categories

- Events classification in independent 0-, 1-, 2-jet (VBF) exclusive categories (by counting jets with $p_T > 30 \text{ GeV}$)
- Selection optimized for the different categories

DF 0-jets category provides the best sensitivity DF 1-jets + SF 0-jets contribute for another 10% to the sensitivity VBF -> highest S/B but low yield

Dominant backgrounds:

- DF + 0-jets -> non resonant WW, W+jets,
- DF+n-jets -> also ttbar
- SF -> also DY

$H \rightarrow WW \rightarrow 212v$: signal extraction

$H \rightarrow WW \rightarrow 212\nu$: results

Best fit $\sigma/\sigma_{SM} = 0.74 \pm 0.25$ @ 125 GeV

$H \rightarrow \tau \tau$ channel

Channels considered: $\tau_h \tau_h$, $e \tau_h$, $\mu \tau_h$, $e \mu$, $\mu \mu$

PAS HIG-12-043

Signature: two isolated, high p_T leptons/tau with opposite charge; large missing transverse energy (MET) in the event

Main backgrounds: DY $\rightarrow \tau \tau$ (irreducible), W+jets

W+jets rejection: in signal MET \sim collinear with direction of visible decay products

Additional criteria for bkg rejection

- *Veto events with additional leptons*
- *Veto events with b-tagged jets*

Improved MET measurement in high-PU environment with a multivariate regression technique

$H \rightarrow \tau \tau$: event categories

$H \rightarrow \tau \tau$: signal extraction

Simultaneous binned likelihood fit to the $m_{\tau\tau}$ invariant mass distributions

ML technique for reconstruction of $\tau\tau$ *invariant mass provides mass resolution* ~ 20%

Data-driven methods for bkg estimation, e.g.:

- DY→ττ: "embedding" of simulated tau decay in Z→μμ control sample (Z→μμ constrains also normalization)
- W+jets: sideband of m_T
- QCD: same sign events, fake rate method

$H \rightarrow \tau \tau$ channel: results

H→bb

H→bb channel

PAS HIG-12-044

- Favoured BR at low mass, but huge bkg in inclusive channel (di-jet QCD production)
- Associated VH production channel must be exploited
- Channels considered: VH, with V=Z, W; $Z \rightarrow \mu\mu$, ee, $\nu\nu$; $W \rightarrow \mu\nu$, $e\nu$

Background: mainly W/Z+jets and top; also diboson and multijet events

H→bb channel: event categories

Exploit boosted kinematics of the jj system and of V boson for bkg rejection

- Large p_T of di-jet and V
- Large $\Delta \Phi(V, H)$

Splitting of events in low- and high-boost categories; analysis optimized for each category

Variable	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$p_{\mathrm{T}}(\mathbf{V})$	[120 - 170] (> 170)	[50 - 100] (> 100)	-
E ^{miss}		-	[130 - 170] (> 170)

Recalibration of jet energy using a MVA regression technique improves di-jet resolution by 10%

H→bb: signal extraction

Fit distribution of a BDT discriminant using in input m_{ii} +additional kinematic variables

 p_{T_i} : transverse momentum of each Higgs daughter

m(jj): dijet invariant mass

 $p_{\rm T}(jj)$: dijet transverse momentum

 $p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)

CSV_{max}: value of CSV for the Higgs daughter with largest CSV value

CSV_{min}: value of CSV for the Higgs daughter with second largest CSV value

 $\Delta \phi$ (V, H): azimuthal angle between V (or E_T^{miss}) and dijet

 $|\Delta \eta(\mathbf{jj})|$: difference in η between Higgs daughters

 $\Delta R(jj)$: distance in η - ϕ between Higgs daughters

Naj: number of additional jets

 $\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$)

 $\Delta \theta_{\text{pull}}$: color pull angle [35] \rightarrow Useful to determine if jets come from a color-singlet object

H→bb channel: results

Combination

Exclusion limits

PAS HIG-12-045

Significance of the excess

Mass measurement

Combination of yy and ZZ (high resolution channels)

Signal strenght compatibility with SM

 $\sigma/\sigma_{\rm SM}$ @ 125.8 GeV = 0.88 ± 0.21

Compatibility with SM couplings

Introducing scale factors κ_i modifying the SM couplings (κ_i =1 for SM)

Fermiophobic scenario excluded at CL > 95%

Compatibility with SM couplings

Introducing scale factors κ_i modifying the SM couplings (κ_i =1 for SM)

Couplings with gg and \gamma\gamma proceeds via loop \rightarrow *sensitive to new physics*

Conclusions

- New boson observation @ 125 GeV reported last July
 - Question: is it the SM Higgs?
 - Main goal is to understand its properties and fully investigate all possible decay channels
- First answers based on 2011(~5 fb⁻¹) + 2012 (~12 fb⁻¹, still partial) data sample
 - 5 main channels investigated (a large multiplicity of sub-channels and categories)
- Excess of events is confirmed with significance of 6.9σ
 - Significance now > 3 σ in WW,
 - broad excess of events also in fermionic channels
- Mass best fit 125.8 ± 0.4 (stat.) ± 0.4 (syst.) GeV
 - signal strenght compatible with SM
- Events observed in ZZ channel favour the 0+ hypothesis vs. 0-
- Still more data from the full 2012 needs to be analyzed!

Backup slides

$H \rightarrow WW \rightarrow 212v$: bkg determination

Data driven bkg estimates:

- *W*+*jets* -> *using jet fake-rates applied to control sample (one lepton failing ID)*
- Top -> "top-tagging" of events
- *WW* -> use control region m_{ll} >100 GeV, extrapolation to signal region
- DY bkg normalization from number of events within 7.5 GeV around Z-boson mass

Uncertainty on the bkg determination is the largest source of systematics (along with theoretical uncertainty on Higgs cross-section)

Systematic uncertainties

Systematics are, of course, channel and analysis dependent The following table summarizes sources and uncertainties in a particular analysis as an example

	Table from H	I→bb analysis
Source	Source	
Luminosity		2.2-4.4%
Lepton efficiency and trigg	er (per lepton)	3%
$Z(\nu\nu)H$ trigger	rs	3%
Jet energy scal	e	2–3%
Jet energy resolu	tion	3–6%
Missing transverse energy		3%
b-tagging		3–15%
Signal cross section (scale and PDF)		4%
Signal cross section (p_T boost, EWK/QCD)		5–10% / 10%
Signal Monte Carlo statistics		1-5%
Backgrounds (data estimate)		(≈ 10%)
Single-top (simulation estimate)		15-30%
Dibosons (simulation estimate)		30%

H→ττ: event selection

For each channel, further splitting of events in categories by counting jets with $p_T > 30 \text{ GeV}$

- 0-jet used only to constrain bkg
- 1-jet, high τp_T
- 1-jet, low τp_T
- $2 \text{ jet } (p_T > 30) VBF$

Expected and observed events in $\mu \tau_h$ channel for each category						
Process	0-Jet	1-Jet	VBF			
$Z \rightarrow \tau \tau$	64948 ± 3628	13292 ± 745	80 ± 9			
QCD	12515 ± 622	3156 ± 222	32 ± 5			
W+jets	5160 ± 615	3610 ± 233	36 ± 3			
Z+jets (l/jet faking τ)	1200 ± 193	452 ± 52	1 ± 0.4			
tŦ	8 ± 0.8	350 ± 34	4 ± 1			
Dibosons	95 ± 10	216 ± 25	1 ± 0.4			
Total Background	83926 ± 3736	21076 ± 815	154 ± 10			
$H \rightarrow \tau \tau$	-	112 ± 9	8 ± 0.9			
Data	81297	21107	174			

Final selection criteria optimized in each channel/ category

Signal Eff.

$gg \rightarrow H$	-	$4.50 \cdot 10^{-3}$	8.41 ·10 ⁻⁵
$qq \rightarrow H$	-	$9.75 \cdot 10^{-3}$	$3.90 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	-	6.19 ·10 ⁻³	$1.52 \cdot 10^{-5}$

Mass measurement

