Physics at TLEP (and LEP3)

Outline

- Introduction : The SMS sent by LHC
- What precision for future measurements ?
- Possible paths towards the future
- Measurements at TLEP/LEP3 and comparative study
 - Higgs Factory mode (and top threshold)
 - TeraZ and MegaW modes
- Upgradeability at higher energies
- Other issues : detectors, cost, timescale, ...
- Possible work packages
- Conclusions

Bibliography

[1] CMS, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Phys.Lett. B716 (2012) 30-61 [2] CMS, "On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs", arXiv:1212:6639 (2012) [3] CMS, "Properties of the Higgs-like boson in the decay $H \rightarrow Z * Z * \rightarrow 4l$ in pp collisions at $\sqrt{s}=7$ and 8 TeV", CMS-PAS HIG-13-002 (2013) [4] K. Monig, "ATLAS and CMS Physics Prospects at the HL-LHC", talk given at the CLIC Workshop (Jan. 2013) [5] A. Blondel, Experimental Summary talk of the Rencontres de Moriond (Mar. 2012) [6] LHCb, "First evidence for the decay $B_s^{\circ} \rightarrow \mu^+\mu^{-\prime\prime}$, Phys.Rev.Lett. 110 (2013) 021801 [7] P. Janot and G. Ganis, "The HZHA Generator" in Physics at LEP2, CERN Report 96/01 (Vol.2) 309 [8] S. Dittmaier et al., "Handbook of LHC Higgs cross sections: inclusive observables", CERN-2011-002 (Vol.1) 76 [9] R.S. Gupta, H. Rzehak, J.D. Wells, "How well do we need to measure Higgs boson couplings?", arXiv:1206.3560 (2012) [10] H. Baer et al., "Physics at the International Linear Collider", in preparation, see http://lcsim.org/papers/DBDPhysics.pdf [11] CMS, "CMS at the High-Energy Frontier", ESPP Contribution #177 [12] ATLAS, "Physics at a High-Luminosity LHC with ATLAS", ATL-PHYS-PUB-2012-004 (2012), ESPP Contribution #174 [13] M. Zanetti, talk given at the 2nd LEP3 day (Oct. 2012) [14] H. Stoeck et al., "ILD Letter of Intent", arXiv:1006.3396 (2010) [15] P. Azzi et al., "Prospective studies for LEP3 with the CMS detector", arXiv 1208.1662 (2012) [16] J.E. Brau et al., "The physics case for an e⁺e⁻ linear collider", ESPP Contribution #69 [17] C.F. Dueriq, "Determination of the Higgs Decay Width at the ILC", talk given at the LCWS12 (Oct. 2012) [18] P. Janot, "Higgs beyond the LHC", talk given at the <u>HF2012 ICFA Workshop</u> (Nov. 2012) [19] M. Peskin, "Ultimate Higgs Measurements at ILC, LEP3 and TLEP", talk given at the 3rd TLEP3 day (Jan. 2013) [20] A. Blondel et al., Report of the ICFA Beam Dynamics Workshop, "Accelerators = for a Higgs Factory: Linear vs. Circular", HF2012 (2013) [21] Electroweak fits run by M. Gruenewald (private communication, Nov. 2012) [22] P. Janot, "Physics Landscape and TLEP/LEP3 motivation", talk given at the <u>1st TLEP3 day</u> (Jun. 2012) [23] A. Blondel, "Possibilities and conditions for very high precision electroweak measurements", talk given at the <u>3rd TLEP3 day (Jan. 2013</u>) [24] M.L. Mangano et al., "Higgs cross sections in pp collisions at very high energy", ESPP Contribution #176 [25] T. Price, "Measurement of the top Yukawa coupling at the ILC", talk given at the LCWS12 (Oct. 2012) [26] J. Tian, "Higgs self-coupling study at ILC", talk given at the LCWS12 (Oct. 2012) [27] T. Laštovička and J. Strube, "Higgs self-coupling study at CLIC", talk given at the LCWS12 (Oct. 2012) [28] E. Meschi, "Detectors for SHE-LHC and TLEP", talk given at the <u>3rd TLEP3 day</u> (Jan. 2013)

Introduction : The SMS sent by LHC (1)

- A new boson with mass ~ 126 GeV, and with SMS properties
 - ► Example : H(126) → ZZ → 4 leptons in CMS

- H(126) couples to the Z boson (important for e⁺e⁻ colliders)
- All couplings compatible with those of the Standard Model Scalar
- Scalar hypothesis favoured over pseudo-scalar or spin-2 particle
- m_H known to ~ 400 MeV
- A factor 100 luminosity will bring the statistical uncertainty on μ to a couple %.

[1,2,3]

Introduction : The SMS sent by LHC (2)

Exotics (CMS)

- No sign of new physics below a scale of several 100's GeV
 - Supersymmetry (ATLAS)

All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

- Data at higher \sqrt{s} will extend the mass reach to ~500 GeV for SUSY
 - Will know more after the next LHC run at 14 TeV (2015-2017)

[4]

Introduction : The SMS sent by LHC (3)

If no new physics is found, what next?

Once m_H is known, the standard model has nowhere to go !

- Very strong incentive to revisit and improve all precision measurements
 - Z pole, WW threshold
 - Higgs couplings
 - Top quark properties
 - → Rare decays ($B_s \rightarrow \mu\mu$, etc.)
- ... and find indirect effects of new physics at larger scales

[5,6]

What is the precision needed ? (1)

Example : Precision for Higgs measurements

- Does H(126)
 - Couple to fermions ?
 - Account for fermion masses ?
 - Fully account for EWSB?
 - Has SM coupling to gauge bosons ?
 - Decay to new, visible, particles?
 - Decay to invisible particles ?
 - Have the "proper" mass and width ?
 - Show any sign of new physics ?

- What is the precision needed to answer all these questions in a useful manner?
 - Simple answer : measure as precisely as possible
 - Not very informative

[7,8]

What is the precision needed ? (2)

- Example : Precision for Higgs couplings
 - Maximal deviations with respect to SM couplings, as a function of new physics scale

• SUSY
$$\frac{g_{hbb}}{g_{h_{SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq 1 + 1.7\% \left(\frac{1 \text{ TeV}}{m_A}\right)^2$$
, for tan β = 5

• Composite Higgs
$$\frac{g_{hff}}{g_{h_{SM}ff}} \simeq \frac{g_{hVV}}{g_{h_{SM}VV}} \simeq 1 - 3\% \left(\frac{1 \text{ TeV}}{f}\right)^2$$

- Top partners $\frac{g_{hgg}}{g_{h_{\rm SM}gg}} \simeq 1 + 2.9\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2, \qquad \frac{g_{h\gamma\gamma}}{g_{h_{\rm SM}\gamma\gamma}} \simeq 1 0.8\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2$
- Other models may give up to 5% deviations with respect to the Standard Model
- Maximal deviations for the new physics scale still allowed by LHC results

	ΔhVV	$\Delta h ar{t} t$	$\Delta h \overline{b} b$
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of $\%$	tens of $\%$
Minimal Supersymmetry	< 1%	3%	$10\%^a, 100\%^b$

Strongly influences the strategy for Higgs factory projects

- Need at least a per-cent accuracy on couplings for a 50 "observation"
 - And sub-percent precision if new physics is at or beyond the TeV scale

[9, 10]

Paths towards the future : (HL-)LHC (1)

Executive summary (See Leandro's presentation this morning)

Approved LHC, 300 fb⁻¹ at 14 TeV :

- Higgs mass at 100 MeV
- Disentangle Spin o vs Spin 2 and main CP component in γγ/ZZ*
- Coupling precision / Experiment
 - Z, W, 5-6%
 - b, τ 10-15%
 - t, μ 3-2 σ effect
 - yy,gg 5-11%

HL-LHC, 3000 fb⁻¹ at 14 TeV:

- Higgs mass at 50 MeV
- More precise studies of Higgs CP sector

Coupling precision / Experiment

- Z, W, 1-5%
- b, τ, t, μ 3-10%
- γγ and gg 2-7%
- HH >3 σ (2 Expts)

Assuming sizeable reduction of theory errors

[11,12]

Paths towards the future : HL-LHC (2)

Graphic representation of HL-LHC projected performance

Assumptions :

- 1. No new decay
- 2. $\Gamma_{\rm H}$ from SM (or BR(cc) from SM)

- Much better than originally expected before LHC started
 - Will need vigorous upgrade of CMS and ATLAS detectors
 - Per-cent to sub-percent precision will require new collider(s)

[11]

Paths towards the future : Precision Higgs Factories

Several options for Higgs factories are being studied

Precision Higgs Factories in e⁺e⁻ collisions (1)

• Physics case not driven by the fact that the collider is linear or circular

- Scan of the HZ threshold : $\sqrt{s} = 210-240$ GeV
- Maximum of the HZ cross section : √s = 240-250 GeV
- Just below the tt threshold : $\sqrt{s} \sim 340-350$ GeV

Spin Mass, BRs, Width, Decays Width, CP

Precision Higgs Factories in e⁺e⁻ collisions (2)

• A few specificities :

- e⁻ (e⁺) beam polarization is easy at the source (possible) for a linear collider.
 - Not critical for Higgs studies.
- No beam disruption from Beamstrahlung for a circular collider ($\sigma_y \sim 300 \text{ nm vs. } 5 \text{ nm}$ (a) ILC)
 - No EM backgrounds in the detector (photons, e+e- pairs);
 - No beam energy smearing energy spectrum perfectly known (lumi measurement)
 - Negligible pile-up from γγ interactions

- No drastic requirements for the detector and the background simulation
- Possibility of operating several IP's simultaneously in circular collider
 - vs. only one IP in linear collider

[13,14]

Precision Higgs Factories in e⁺e⁻ collisions (3)

• Number of Higgs bosons produced at $\sqrt{s} = 240-250$ GeV

	ILC-250	LEP3-240	TLEP-240	
Lumi / IP / 5 years	250 fb ^{−1}	o fb ⁻¹ 500 fb ⁻¹ :		
# IP	1	2 - 4	2 - 4	
Lumi / 5 years	250 fb ^{−1}	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹	
Beam Polarization	80%, 30%	-	-	
L _{0.01} (beamstrahlung)	86%	100%	100%	
Number of Higgs	70,000	400,000	2,000,000	
Upgradeable to	ILC 1TeV CLIC 3TeV	HE-LHC 33 TeV	SHE-LHC 100 TeV	

- LEP3 : 4-8 times more luminosity and 3-6 times more Higgs bosons than ILC
- TLEP : 20-40 times more luminosity and 15-30 times more Higgs bosons than ILC
 - In a given amount of time, Higgs coupling precisions scale like
 - ➡ 2% for ILC : 1% for LEP3 : 0.3% for TLEP
 - ➡ One year of TLEP = five years of LEP₃ = 15-30 years of ILC (at 240 GeV)

Higgs measurements at √s ~ 240 GeV (1)

Patrick Janot

cross section (fb)

Higgs Factory Mini Workshop Frascati, 14 Feb 2013

Higgs measurements at √s ~ 240 GeV (2)

- With $ZH \rightarrow e^+e^-X$ and $\mu^+\mu^-X$ events (cont'd)
 - Measure invisible decay branching ratio (X = nothing)
 - Precision on BR_{INV} ~ 1% with 250 fb⁻¹
 - Or exclude BR_{INV} > ~2% at 95% C.L.
- Measure other $\sigma_{HZ} \times BR(H \rightarrow ff, VV)$
 - With exclusive selections of Z and H decays
 - Precision of 1.5% to 8% with 250 fb⁻¹ for the copious decays (bb, WW, gg, ττ, cc)
 - Need more luminosity for rare decays ($\gamma\gamma$, $Z\gamma$, $\mu\mu$)
 - ➡ Particle flow, b and c tagging, lepton and photon capabilities needed

Patrick Janot

Higgs Factory Mini Workshop Frascati, 14 Feb 2013

[10,15,16]

Higgs measurements at √s ~ 240 GeV (3)

- $\hfill\square$ Higgs width from the Hvv final state
 - From $\sigma_{WW \rightarrow H}$ and BR(H \rightarrow WW)
 - $\sigma_{WW \rightarrow H} \sim g_{HWW}^2$
 - BR(H \rightarrow WW) = $\Gamma_{H\rightarrow WW} / \Gamma_{H} \sim g_{HWW}^2 / \Gamma_{H}$
 - ⇒ $\Gamma_{H} \sim \sigma_{WW \rightarrow H}$ / BR(H→WW)
 - Contribution to Hvv from HZ ~ 40 pb
 - Known from $ZH \rightarrow e^+e^-X$ and $\mu^+\mu^-X$
 - Contribution from WW fusion ~ 6 pb
 - To be measured
 - Select vvbb events from ZH and WW fusion
 - Needs adequate b tagging and particle flow
 - Fit the missing mass distribution for N_{WW→H→bb}
 - $\sigma_{\rm HZ} \times BR(H \rightarrow bb)$ known to ~1.5% or better
 - $\sigma_{WW \rightarrow H} = N_{WW \rightarrow H \rightarrow bb} / BR(H \rightarrow bb)$
 - ▶ Precision on $\sigma_{WW \rightarrow H}$ ~ 14% with 250 fb⁻¹
 - $\Gamma_{\rm H} \sim \sigma_{\rm WW \rightarrow H}$ / BR(H \rightarrow WW), measured up to 15% precision with 250 fb⁻¹ [17]

- Hence measure the total width $\Gamma_{\rm H}$ with a precision of 21%
 - Reduced to 12% in combination with WW fusion measurement
 - Could be further reduced with other Z decays

(Need full simulation and WW/ZZ simultaneous fit)

• Note : Precision of a few % can be reached on $\Gamma_{\rm H}$ if one assumes no exotic Higgs decays

Linear vs Circular at √s ~ 240 GeV

• Precision on H(125) branching fractions, width, mass, ... after 5 years

	ILC	ILC LEP ₃ (4)		
$\sigma_{\rm HZ}$	2.5%	1.3%	0.4%	
σ _{HZ} ×BR(H→bb)	1.0%	0.5%	0.1%	
σ _{HZ} ×BR(H→cc)	6.9%	4% (*)	1.3%	
σ _{HZ} ×BR(H→gg)	8.5%	4.5% (*)	1.4%	
σ _{HZ} ×BR(H→WW*)	8.0%	3.0%	0.9%	
σ _{HZ} ×BR(H→ττ)	5.0%	3.0%	0.9%	
σ _{HZ} ×BR(H→ZZ*)	28%	7.1%	3.1%	
σ _{HZ} ×BR(H→γγ)	27%	6.8%	3.0%	
σ _{HZ} ×BR(H→μμ)	-	28%	13%	
σ _{ww→H}	12%	5% (*)	2.2%	
Γ_{H} , Γ_{INV}	10%, < 1.5%	4%, < 0.7%	1.8%, < 0.3%	
m _H	40 MeV	26 MeV	8 MeV	

- LEP3 numbers obtained from a CMS simulation x 4, except (*) extrapolated from ILC
 - Need a refined vertex detector for gg and cc BR accurate measurements
- TLEP numbers extrapolated from LEP3 column

[10,15,16]

Measurements at √s ~ 350 GeV (ILC/TLEP)

Luminosity similar for ILC and TLEP

- At each IP : 350 fb⁻¹ over 5 years
 - With possibly 4 detectors at TLEP
- More study of the Hvv final state with $H \rightarrow bb$
 - Contribution from HZ : ~ 25 fb
 - Contribution from WW→H : ~ 25 fb

H v		ILC (250+350)	TLEP (240+350)
н	$\sigma_{WW ightarrow H}$	12% → 4%	2.2% → 1.5%
v.	Γ_{H}	10% → 5.5%	1.8% → 1.3%

- Small improvement for other σ×BR's
- Measure CP mixture to ~5%
- Scan of the tt threshold
 - From the cross section
 - Top mass and width to 50 MeV or better
 - Probe the ttH coupling to 30%
 - No beamstrahlung is a advantage
 - Study rare top decays

Ζ, γ^{*}

 \mathbf{Z}^*

w

[10,17]

Higgs couplings for Precision Higgs Factories (1)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, Standard Model decay width

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

→ ILC250 would be a good complement to LHC (Γ_{H} , Γ_{inv} , g_{Hcc} , g_{Hbb})

[11,16]

Higgs couplings for Precision Higgs Factories (2)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, Standard Model decay width

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

→ ILC250/350 would be a good complement to LHC ($\Gamma_{\rm H}$, $\Gamma_{\rm inv}$, $g_{\rm Hcc}$, $g_{\rm Hbb}$)

Patrick Janot

[11,16]

Higgs couplings for Precision Higgs Factories (3)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, Standard Model decay width

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

► LEP3 would be an advantageous back-up : larger lumi, several IP, smaller cost

Higgs couplings for Precision Higgs Factories (4)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, Standard Model decay width

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

TLEP would be a superior option (see zoom next page)

Higgs couplings for Precision Higgs Factories (5)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, Standard Model decay width

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

TLEP : sub-percent precision, needed for NP sensitivity beyond 1 TeV

Higgs couplings for Precision Higgs Factories (6)

- $\hfill\square$ Same conclusion when $\Gamma_{\rm H}$ is a free parameter in the fit
 - Plot shown only for ILC350 and TLEP, with an accurate width measurement

$$\sigma_{HZ} \propto g_{HZZ}^2$$
, and $\sigma_{HZ} \times \text{BR}(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / \Gamma_H$

TLEP : sub-percent precision, adequate for NP sensitivity beyond 1 TeV

[19]

Higgs couplings for Precision Higgs Factories (7)

Table 2.1: Expected performance on the Higgs boson couplings from the LHC and e^+e^- colliders, as compiled from the Higgs Factory 2012 workshop.CLIC numbers from Ref [11-12].

Accelerator \rightarrow	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity \downarrow	$300 \text{ fb}^{-1}/\text{expt}$	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 500 GeV (500 fb ⁻¹) 1.4 TeV (2 ab ⁻¹)	240 GeV 2 ab^{-1} (*)	240 GeV 10 ab^{-1} 5 yrs (*)
			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 3 yrs (*)
$N_{\rm H}$	1.7×10^{7}	1.7×10^{8}	$6 \times 10^4 \mathrm{ZH}$	10^{5} ZH $1.4 \times 10^{5} \text{ Hvv}$		$4 \times 10^5 \mathrm{ZH}$	$2 \times 10^{6} \mathrm{ZH}$
m _H (MeV)	100	50	35	35	~70	26	7
$\Delta\Gamma_{ m H}$ / $\Gamma_{ m H}$			10%	3%	6%	4%	1.3%
$\Delta\Gamma_{ m inv}$ / $\Gamma_{ m H}$	Indirect (30%?)	Indirect (10% ?)	1.5%	1.0%		0.35%	0.15%
$\Delta g_{ m H\gamma\gamma}$ / $g_{ m H\gamma\gamma}$	6.5 - 5.1%	5.4 - 1.5%		5%	N/A	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	N/A	2.2%	0.7%
$\Delta g_{ m Hww}$ / $g_{ m Hww}$	5.7 - 2.7%	4.5 - 1.0%	4.3%	1%	1%	1.5%	0.25%
$\Delta g_{ m HZZ}$ / $g_{ m HZZ}$	5.7 - 2.7%	4.5 - 1.0%	1.3%	1.5%	1%	0.65%	0.2%
$\Delta g_{ m HHH}$ / $g_{ m HHH}$		< 30% (2 expts)		~30%	~20%		
$\Delta g_{ m H\mu\mu}$ / $g_{ m H\mu\mu}$	< 30%	< 10%			15%	14%	7%
$\Delta g_{ m H au au}$ / $g_{ m H au au}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	3%	1.5%	0.4%
$\Delta \overline{\mathrm{g}_{\mathrm{Hcc}}}$ / $\mathrm{g}_{\mathrm{Hcc}}$			3.7%	2%	4%	2.0%	0.65%
$\Delta g_{ m Hbb}$ / $g_{ m Hbb}$	15 - 6.9%	11 - 2.7%	1.4%	1%	2%	0.7%	0.22%
$\Delta g_{Htt} / g_{Htt}$	14 - 8.7%	8.0 - 3.9%		15%	3%		30%

[20]

Higgs couplings for Precision Higgs Factories (8)

• A slide from M. Peskin at the 3rd TLEP/LEP3 Worskshop (10-Jan-2013)

The 80 km tunnel envisioned for TLEP can also host a hadron collider (TLHC). This might well be the future of particle physics in Europe.

I will now discuss the estimates of Higgs measurement capabilities of these machines and the conversion of those estimates to measurement errors on the Higgs couplings.

It will be obvious that - weighting all claims equally - TLEP has the best capabilities. It has the highest luminosity, can plausibly support multiple detectors, and can reach energies well above the Higgs threshold. In the following, I will omit the comparison with TLEP in the figures. The final errors would in any event be tiny on the graphs that I will show. These are given in a table at the end of the lecture.

Measurements at smaller \sqrt{s} (1)

- Larger luminosity at smaller \sqrt{s} for circular colliders
 - Use the RF power to accelerate more bunches : L ~ 1/E⁴
 - Crossing point with ILC at √s ~ 350 GeV

Measurements at smaller \sqrt{s} (2)

- **Revisit and improve the LEP precision measurements**
 - Can do the entire LEP1 physics programme
 - In 5 minutes (TLEP) ; in 1h (LEP3); or in a week (ILC)
 - Huge potential in a year of TLEP (LEP₃) at $\sqrt{s} = m_z \text{ or } 2m_w$:

Measurements at smaller \sqrt{s} (3)

• Would open a whole new book in EWSB precision measurements

- With TeraZ and m_w to 0.3 MeV at TLEP :
 - ➡ Predicts m_{top} to 100 MeV (SM) was 10 GeV at LEP.
- With m_{top} and m_H measured at TLEP240/350:
 - SM accurate closure test
- Case 2 : Some weakly interacting new physics in the loops ?
 - Will cause inconsistency between the various observables

Measurements at smaller \sqrt{s} (4)

- Experimental challenges are numerous : TLEP(Z)
 - At TLEP(Z), the hadronic Z event rate will be 30 kHz
 - Same rate of bunch crossings as at LHC (40 MHz)
 - CMS current high-level trigger rate is about 1 kHz
 - (But hadronic Z events typically 20 times smaller than typical LHC event)
 - Need to design a detector and a DAQ system able to cope with these rates
 - A clever mixture of LHC detector (rate) and ILC detector (precision)
 Need to study what is the precision needed for each sub-detectors
 Is a CMS-like detector sufficient ? (~OK for Higgs studies)
 - Small angle Bhabha event rate (lumi measurement) will be even larger
 - Essential to measure cross sections, hence the Z lineshape (m_Z, Γ_z)
 - Negligible beamstrahlung is a great advantage
 No background in the luminometers
 Energy spectrum perfectly known (hence Bhabha cross section)
 - Will need theoretical developments to understand σ_{e+e-} to better than 5 x 10⁻⁵
 - Limiting uncertainties on $\alpha_{\text{QED}}(m_Z)$ and $\alpha_s(m_Z)$ must be overcome
 - Possible with the billions of $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$ and $q\bar{q}g$ events ?
 - ➡ Will affect all Z peak asymmetries, and m_Z vs m_w interpretation

[22,23]

Measurements at smaller \sqrt{s} (5)

- Experimental challenges are numerous : TLEP(Z)
 - Z lineshape needs a precise beam energy measurement
 - Resonant depolarization unique @ circular machines
 - Intrinsic precision ~ 100 keV (LEP1) / measurement
 Decreases like 1 / √#(Measurements)
 - Requires beam transverse polarization
 - In one non-colliding bunch, during operations
 Continuous energy measurement
 - No extrapolation needed (tides, trains, rain...)
 - Will require installation of polarization wigglers
 - ➡ Natural polarization time ~ 150 h at TLEP ...
 - Polarized asymmetry (A_{LR}) requires longitudinal polarization
 - Hence spin rotators and polarimeters at each IP
 - Then need to keep polarization in collisions
 That's the main unknown

i nat s the main Unknown

Dedicated operations with lower luminosity ?

• Dedicated study is needed here

 ν

Measurements at smaller \sqrt{s} (6)

- Experimental challenges are numerous : m_w at TLEP(W) and TLEP(H) [22]
 - With 2.5 ab⁻¹ at TLEP(W) and 10⁷ WW events/expt at threshold : σ(m_w) ~ 0.4 MeV
 - With 2.5 ab⁻¹ at TLEP(H), 4×10⁷ W pairs/expt : σ(m_w) ~ 0.2 MeV

- Need to know beam energy to few 0.1 MeV, but no beam polarization at these energies
 - Use the precision Z mass measurement from the Z pole
 - → With 5×10^7 Z(γ) events (Z → e⁺e⁻, $\mu^+\mu^-$) / expt at TLEP(W)
 - → With 2×10⁶ Z pairs and 5×10⁶ Z(γ) events (Z → e⁺e⁻, $\mu^+\mu^-$) / expt at TLEP(H)

Can reach combined statistical precision on E_{beam} of 0.2 MeV and 0.4 MeV

- Need to understand all systematic effects that would affect the measurement
 - Both theoretical and experimental

Upgradeability at larger \sqrt{s} (1)

- All existing proposals have access to larger \sqrt{s}
 - To discover New Physics in a direct manner
 - To measure more difficult Higgs couplings : g_{Htt} and g_{HHH}
 - ILC350 can be upgraded to ILC500/ILC1TeV, or even to CLIC (3 TeV)
 - LEP₃ can be upgraded to (or preceded by) HE-LHC (33 TeV)
 - TLEP can be upgraded to SHE-LHC (100 TeV)

Patrick Janot

Higgs Factory Mini Workshop Frascati, 14 Feb 2013 [24]

Upgradeability at larger \sqrt{s} (2)

Summary for Htt and HHH couplings

[11,12,25,26,27]

Other Higgs couplings benefit marginally from high energy

• For similar new physics reach, similar ttH/HHH precision with pp and e⁺e⁻ colliders

Detectors for TLEP and LEP₃ (1)

[28]

- For LEP₃, obvious detectors are CMS and ATLAS
 - CMS demonstrated to be adequate with today's design + upgraded pixel detector
 - Phase 2 upgrades : LEP3 could be seen as an alternative to HL-LHC
 - Tunnel By-passes need to be dug out for the accelerating ring
- For TLEP, new detectors are in order (used CMS for Higgs studies in this talk)
 - Holistic view : design caverns and detectors to be re-used in pp collisions (as new)
 - TeraZ sets the scale for DAQ (2600 bunches) + forward EM calorimetry (lumi)
 - TLEP(H) sets the scale for precision (tracker, ECAL, particle flow, b tagging)
 - SHE-LHC sets the scale for magnetic field, calorimeter depths, tracker p_T reach

Detectors for TLEP and LEP3 (2)

- Basic requirements (examples)
 - Vertex detector with impact parameter resolution ~ 5 μ m (CMS : 20 μ m)
 - For b and c tagging
 - Very large number of channels (cf ILC)
 - Tracker detector with $\sigma(p_T)/p_T^2 \sim 10^{-5}$ (CMS : 10⁻⁴)
 - For precise recoil mass determination in (Z \rightarrow l⁺l⁻) + H and in H \rightarrow $\mu^{+}\mu^{-}$
 - All silicon, with large number of channels
 - ECAL resolution of the order of 1% at 60 GeV (~same as CMS)
 - For $H \rightarrow \gamma \gamma$ (and all decays with electrons : WW, ZZ, $\tau \tau$)
 - ECAL and HCAL with decent transverse and longitudinal segmentation, inside the coil
 - For Particle Flow towards HZ and WW \rightarrow H discrimination (and precise jets, p_{miss})
 - Study trade-offs between ILC proposals and CMS crystals
 - Efficient and pure muon Id
 - For $H \rightarrow ZZ$, W^+W^- , $\mu^+\mu^-$, $\tau^+\tau^-$
 - Extremely fast DAQ
 - Detector with ~10¹⁰ channels
 - TLEP-H : low occupancy, zero suppression, read out each BX (100 kHz)

Simple trigger needed for TeraZ (40 MHz -> 100 kHz)

[28]

Possible Timescales

Similar timescales for TLEP and LEP3

TLEP

- Design study : 2013-2017
- Next European Strategy Workshop : 2017-2018
- Decision to go and start digging : 2018-2019
- Start installation in parallel with HL-LHC running : 2023 ...
- Start running at the end of HL-LHC running : 2030 ...

LEP3

- Design study : 2013-2017 (spin-off of TLEP design study)
- Next European Strategy Workshop : 2017-2018
- Decision to go : 2018-2019
- Start installation at the end of LHC running : 2022 ...
 - Tunnel probably irradiated at the end of HL-LHC
 - ➡ LEP₃ is an alternative of HL-LHC, and could be followed by HE-LHC in 2040
- Start running when ready : 2027 ...

Cost (can be wrong by a factor 2)

- LEP₃ : A cost-effective option
 - Tunnel: o \$ Cryoplant: o\$
 - Two detectors : o\$ Four detectors : 1 G\$
 - RF + Magnets + Injector Ring : 1 G\$

- Total : 1 2 G\$
- 100,000 Higgs boson / detector / 5 years @ 240 GeV : <u>5 k\$ / Higgs boson</u>

TLEP : A long-term vision

- Tunnel: 3 G\$ Cryoplant: 1 G\$ of which 6 G\$ in commonTotal : 7 G\$with SHE-LHC Four detectors : 2 G\$
- RF + Magnet + Injector Ring : 1 G\$

<u>150 k\$ / Higgs boson</u>

500,000 Higgs boson / detector / 5 years @ 240 GeV : <a> <

Comparison with ILC

- Total Cost : ~ 10 G\$
- 70,000 Higgs boson / 5 years @ 240 GeV

Possible Work Packages

Possible Work Packages

Conclusions (1)

• A very much SM-like Higgs boson was discovered at the LHC

- So far with no evidence of BSM Physics or of an extended Higgs sector
 - Up to a scale of several hundred GeV to 1 TeV
- A sub-per-cent precision Higgs factory will be critical
 - For establishing whether the SM-like boson is THE Higgs boson
 - To see whether there is any evidence for small deviations from SM predictions
 - To provide hints for the energy scale of the BSM physics that couples to the Higgs boson
 - To possibly unravel an extended Higgs sector

Adequately high-statistics Z and W factories will also be important

- To do the ultimate closure test of the SM from the knowledge of m_{top} and m_H
- To probe Weakly-Interacting New Physics beyond to TeV scale

Conclusions (2)

• The LHC run at 13 TeV may revolutionize the current physics perspective

- New discoveries will strongly influence the strategy for future collider projects
 - And so will absence of new discoveries, possibly even more strongly
 - We will know much more in 2015-2017

Future projects should therefore encompass

- A high-precision Higgs factory
 - Including high-statistics Z, W, and possibly top, factories
- A high-energy-frontier facility able to study the new physics discovered at the LHC
 - And to probe much higher scales
- It is probably too early (and maybe imprudent) to decide now
 - The European Strategy Group encourages studies of e⁺e⁻ and pp colliders at CERN
 - The TLEP + SHE-LHC package is a (the?) long term vision for Europe
 - The LEP₃ + HE-LHC package would be a cost-effective back-up solution