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About this talk

My background: I’m a physicist, not a statistician; my knowledge of
statistics is mainly self-taught from problems in HEP (mainly LHC).

This talk will cover a lot of material – but there are only a few central
concepts, which I will repeat often.

Please ask questions any time.
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Part I

Hypothesis Tests
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Introduction

Statistical hypothesis testing is a formal method for decision making using
data from a random process.

It is an attempt to disprove a null hypothesis H0, which is rejected if the
probability to observe the data that have actually been observed – or even
more extreme data – is very low for H0.

This probability is called the p-value. If it is below some (small)
pre-defined threshold α, the hypothesis H0 is rejected in favor of the
alternative H1.

I’ll use two examples: A counting experiment and a (more realistic) shape
analysis. Complications such as systematic uncertainties are added later.
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Introduction; Counting Experiment Definitions

Statistical Model

A statistical model specifies the probability to observe certain data d as a
function of the (real-valued) model parameters θ.

A simple statistical model is a counting experiment with known
background mean b = 5.2 and unknown signal s ≥ 0 we want to
“discover”. The data comprises only the number of observed events n,
which has a Poisson distribution around λ = b + s. b = 5.2 is constant
and s ≥ 0 is the (only) model parameter.

This statistical model can be summarized as:

p(n|s) = Poisson(n|λ = b + s) =
e−b−s(b + s)n

n!
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Introduction; Counting Experiment Definitions

Hypothesis Test

The null hypothesis – we would like to reject – is s = 0. The alternative
hypothesis is a positive signal, s > 0.

Given the observed number of events nobs, the p-value is the probability to
observe as least as many events for the null hypothesis s = 0:

p(nobs) =
∞∑

n=nobs

Poisson(n|λ = b = 5.2)

Remarks:

The p-value itself is a random variable.

Definition implies: p-value follows a uniform distribution on the
interval [0, 1] for H0 (or approximately if data is discrete)
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Introduction; Counting Experiment Definitions

Result

For the example of b = 5.2, the p-value is the probability to measure at
least as many events as observed for s = 0. This can be evaluated directly
numerically or by making toys (cf. exercise 1).

0 2 4 6 8 10 12 14
n

0.00

0.05
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0.15

0.20p

λ = b = 5.2

nobs = 8

p = 0.155

nobs p

6 0.419
8 0.155
10 0.040
12 0.0073
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Introduction; Counting Experiment Definitions

Possible Outcomes of a Hypothesis Test

There are two kinds of errors that can be made in the hypothesis test:

1 Rejecting H0 although it is true. This is the type-I error (or “error of
the first kind”).

2 Not rejecting H0 although it is false; type-II error (or “error of the
second kind”).

The first is usually regarded more severe. The probability for a type-I error
is the (“small”) threshold α used in the hypothesis test.

The type-II error is denoted β.
The probability to (correctly) reject H0 if the alternative H1 is true is the
power (1− β).
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Introduction; Counting Experiment Definitions

Remarks

For a given fixed type-I error rate α, one would prefer the test with
high power (1− β); this will be used as a criterion later.

The p-value is not the probability that the null hypothesis is true –
such a statement carries no meaning in frequentist statistics, where
probability always refers to (random) data and derived quantities,
never to model parameters (but: Bayesian view differs, as explained
later).

Rejecting the null hypothesis does not proof that the alternative
hypothesis is true: Usually, many alternatives to the null hypothesis
exist which are compatible with the observed observed data.
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Introduction; Counting Experiment Z -value, Normal Approximation
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Introduction; Counting Experiment Z -value, Normal Approximation

Z -value

To avoid handling small p-values, p is often expressed as Z -value
(“number of sigma”), defined as the lower integration bound for a
standard normal distribution such that the integral reproduces the p-value:

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5y

Z = 2

p ≈ 0.023

Z p

-1 0.84
0 0.5
1 0.16
2 0.023
3 1.3× 10−3

4 3.2× 10−5

5 2.9× 10−7
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Introduction; Counting Experiment Z -value, Normal Approximation

Normal Approximation I

For large b, the Poisson distribution is approximately normal with mean b
and standard deviation

√
b.

60 70 80 90 100 110 120 130 140
n

0.00

0.01

0.02

0.03

0.04

0.05p

λ = b = 100.0

nobs = 120

 The Z -value is
approximated by

Za =
s√
b

=
n − b√

b
.

Here: Za = 2.00 (true
Poisson Z = 1.91).
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Introduction; Counting Experiment Z -value, Normal Approximation

Normal Approximation II

Numerical example for the normal approximation

Za =
s√
b

=
n − b√

b

For b = 5.2:
n p Z Za

6 0.419 0.20 0.35
8 0.155 1.01 1.23
10 0.040 1.75 2.10
12 0.0073 2.44 2.98

For b = 100:
n Z Za

110 0.95 1.00
120 1.91 2.00
130 2.83 3.00
140 3.74 4.00

 Za overestimates actual Z , but reasonable approximation for many
applications; agreement becomes better for larger n.
(see also exercise 1. for more examples)
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Introduction; Counting Experiment Expected Z -value
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Introduction; Counting Experiment Expected Z -value

Expected Significance

The expected significance is defined as the “typical” (median) result for an
ensemble of data distributed according to a specific expected hypothesis
He .

It is a useful concept to

measure the (future) sensitivity (e.g. for more luminosity, . . . ),

compare the performance of two different analyses/experiments.

Note that the observed significance is a random variable and not a good
measure for performance comparison (see Backup).
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Introduction; Counting Experiment Expected Z -value

Expected Significance: Notes

Can use Monte-Carlo method: generate toy data according to He ,
calculate Z -value for each toy  distribution of Z -values. The
median of this Z -value distribution is the expected Z -value.

The expected hypothesis He has to be specified (fixing model
parameter values) to make “expected” statement well-defined.

Can also look not only at median but also at “typical spread” (central
1σ = 68% / 2σ = 95%)  “bands” of expected result.

“Expected result” can be generalized to other statistical methods
(e.g. limits  “Brazil band” plots).
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Introduction; Counting Experiment Expected Z -value

Expected Significance: Example

For b = 100, and an expected signal s = 20, the expected number of n is
given by a Poisson distribution with mean λ = 120.

70 80 90 100 110 120 130 140 150
n

0.00

0.01

0.02

0.03

0.04

0.05p

median

Z = 1.9

s = 0
s = 20

Median expected
n = 120  expected
significance Z = 1.91.
Central 68% of s = 20
distribution (109–131)
 1σ expected
significance range:
0.85–2.93.
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Introduction; Counting Experiment Expected Z -value

Expected Significance in the Normal Approximation

For b = 100, s = 20, median n is 120.  expected Za = 2.0.
Approximation useful for luminosity projections: Increasing luminosity by a
factor f leads to a “

√
f ” behavior:

 to increase Z -value
by a factor of 2, need 4
times the data.
But: with systematic
uncertainties, picture
will change dramatically
[see later]

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 21 / 117



Introduction; Counting Experiment Expected Z -value

Expected Significance in the Normal Approximation

For b = 100, s = 20, median n is 120.  expected Za = 2.0.
Approximation useful for luminosity projections: Increasing luminosity by a
factor f leads to a “

√
f ” behavior:

2 4 6 8 10
f

0

1

2

3

4

5

6

7

Z a

 to increase Z -value
by a factor of 2, need 4
times the data.
But: with systematic
uncertainties, picture
will change dramatically
[see later]

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 21 / 117



Introduction; Counting Experiment Expected Z -value

Expected Significance in the Normal Approximation

For b = 100, s = 20, median n is 120.  expected Za = 2.0.
Approximation useful for luminosity projections: Increasing luminosity by a
factor f leads to a “

√
f ” behavior:

2 4 6 8 10
f

0

1

2

3

4

5

6

7

Z a

 to increase Z -value
by a factor of 2, need 4
times the data.
But: with systematic
uncertainties, picture
will change dramatically
[see later]

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 21 / 117



Generalization; Shape Model

1 Introduction; Counting Experiment

2 Generalization; Shape Model

3 Handling of Systematic Uncertainties

4 Asymptotics

5 Look-Elsewhere Effect

6 Goodness-of-Fit

7 Hypothesis Tests: Summary

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 22 / 117



Generalization; Shape Model Introduction
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Test Statistic, MC method
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Generalization; Shape Model Introduction

Introduction

So far: simplistic Poisson model with only one event count (“counting
experiment”).

Now: Generalize to a more realistic analysis in which the (binned) shape of
some reconstructed mass distribution (Mrec) is analyzed to search for a
resonance of unknown mass over some falling background.

Versions of such models are used in many channels of the Higgs boson
search at the LHC, but also many other searches.
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Generalization; Shape Model Introduction

Shape Model: Plot

For example, the expected Poisson means for background and data might
look like this:
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Mrec
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in Data
Background
Signal, M = 500

Can this data be seen as
evidence against the
background-only model?

Can we exclude H0 =
background only in favor
of H1 = background +
(scaled) M = 500
signal?

Next steps: statistical
model, hypothesis test!
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Generalization; Shape Model Introduction

Shape Model: Statistical Model

Probability to observe event counts ~n = (n1, n2, . . .) is a product of
Poisson probabilities in each bin:

p(~n|µ) =
∏

i

Poisson(ni |λi (µ)) with

λi (µ) = µsi + bi

where i = 1, . . . ,Nbins denotes the bin index. si and bi are the signal and
background templates, resp., which are typically derived from Monte-Carlo
simulation or from a background-enriched sideband.

µ ≥ 0 scales the signal template; it is the signal strength parameter. Apart
from a (known constant) factor, it is the signal cross section.
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Generalization; Shape Model Test Statistic, MC method
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Generalization; Shape Model Test Statistic, MC method

The role of the Test Statistic t

Reminder: The p-value is defined as the probability to observe data at
least as extreme (signal-like) as the one actually observed.

For a counting experiment, more events are more “extreme”, more
“signal-like”. In general, one has to summarize the “signal-likeness” in a
single number, this is the test statistic.

A possible choice is the (profile) likelihood ratio:

t = log
maxθ∈H1 L(θ|d)

maxθ∈H0 L(θ|d)

where we assume that the hypotheses H0 and H1 correspond to parameter
sub-spaces of a common stat. model; for searches: H0 is µ = 0 and H1 is
µ > 0.

Again: t measures the compatibility with H0; large values mean
incompatibility with H0, favoring H1.
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Generalization; Shape Model Test Statistic, MC method

p-value definition via t

The p-value is the probability to observe t ≥ tobs if H0 is true:

p = Pr(t ≥ tobs|H0).

This suggests using a Monte-Carlo method for calculating the p-value:

1 Generate a large number of toy data distributed according to H0.

2 For each toy data, calculate test statistic t.

3 For the observed data, calculate test statistic tobs.

4 The p-value is given by the fraction of toys with t ≥ tobs; if p < α,
reject H0.

The values of tobs for which H0 is rejected at level α is known as critical
region in t.
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Generalization; Shape Model Test Statistic, MC method

MC method for p: Example I
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Calculate t for data by making two likelihood fits (left: µ̂ = 0.72;
right: µ = 0 tobs = 4.92).
Generate 100,000 toy datasets for the null hypothesis µ = 0 by
generating Poisson random number in each bin according to the b
histogram
For each toy dataset, calculate t
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Generalization; Shape Model Test Statistic, MC method

MC method for p: Example II

Result of 100,000 toys: p̂ = 86/105  Ẑ = 3.13

0 2 4 6 8 10
t

10−1

100

101

102

103

104

105

N
to

ys
pe

rb
in

tobs = 4.92

N(t ≥ tobs) = 86
Limited number of toys
should be considered as
uncertainty on p̂.
Normal approximation
for Binomial error:
∆p =

√
p̂(1− p̂)/N  

p̂ = (8.6± 0.9)× 10−4

 Ẑ = 3.13± 0.03.
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Generalization; Shape Model Test Statistic, MC method

Test Statistic Choice: Power

There are many reasonable choices for the test statistic definition (e.g.
t = µ̂, the fitted signal cross section).

A criterion for the test statistic choice is the power 1− β, the probability
to reject the null hypothesis H0, if H1 is true. This is only well defined is
H1 is a simple hypothesis, i.e. it has no free parameters.

For simple H1 the most powerful test statistic is the likelihood ratio,

r =
L(θ1|d)

L(θ0|d)

where θ0 and θ1 are the parameter values for H0 and H1, resp.
(Neyman-Pearson Lemma).

The profile likelihood ratio is a generalization of this test statistic for
non-simple hypotheses.
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Generalization; Shape Model Test Statistic, MC method

Test Statistic Choice: Equivalence

Two apparently different test statistic definitions will lead to the same
p-value if they only differ by monotonic transformation, as statements
about quantiles are invariant under monotonic transformation.

One could also define t with switched sign and take the convention
that smaller values of the test statistic mean greater incompatibility
with H0; this would not change the result.

In a counting experiment with a search for a positive signal of
unknown magnitude, any reasonable test statistic is a monotonic
function in n – including the profile likelihood ratio t –; and will lead
to the exact same result.
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Generalization; Shape Model Test Statistic, MC method

Section Summary

The test statistic summarizes the data in a single number to quantify the
incompatibility with the null hypothesis.

We also saw:

How the test statistic is used in toy Monte-Carlo to define the p-value.

The power as a criterion to choose a test statistic.

That monotonic test statistic transformations do not change the
result.
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Handling of Systematic Uncertainties

Introduction

In the statistical model, each uncertainty is included as an additional
parameter, called nuisance parameter.

Often, there is some external knowledge about the possible values of those
nuisance parameters.

Introducing systematic uncertainties requires:

Changes of the statistical model, i.e. how the nuisance parameters
typically affect the probability.

Changes of the significance calculation, i.e. how to include knowledge
about nuisance parameters in the inference.

Those items will be discussed separately in the following slides.
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Handling of Systematic Uncertainties

Example

In the counting experiment, assume that the expected background b = 5.2
has some uncertainty (e.g. from limited statistics in a sideband). This can
be included by changing the statistical model to:

p(n|s, b) = Poisson(n|λ = b + s)

where b now is a nuisance parameter, not a constant.

We assume that there is external knowledge about b (e.g. from a sideband
measurement) suggesting that b is around b0 = 5.2 with some uncertainty
∆b = 2.6.

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 37 / 117



Handling of Systematic Uncertainties

Changes to Significance Evaluation

We assume there is external knowledge about the nuisance parameters,
which has to be incorporated in the procedure. Possible methods include:

1 Make it internal to the model, i.e., fit the nuisance parameter
simultaneously with the parameter of interest (e.g. include sideband
in likelihood model).

2 Use Bayesian priors for the nuisance parameters and take prior-average

3 Include auxiliary measurements in the statistical model in an
approximate way and use bootstrapping.

Here, only item 2. is covered (see Backup for 3.).

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 38 / 117



Handling of Systematic Uncertainties

Changes to Significance Evaluation

We assume there is external knowledge about the nuisance parameters,
which has to be incorporated in the procedure. Possible methods include:

1 Make it internal to the model, i.e., fit the nuisance parameter
simultaneously with the parameter of interest (e.g. include sideband
in likelihood model).

2 Use Bayesian priors for the nuisance parameters and take prior-average

3 Include auxiliary measurements in the statistical model in an
approximate way and use bootstrapping.

Here, only item 2. is covered (see Backup for 3.).

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 38 / 117



Handling of Systematic Uncertainties

Changes to Significance Evaluation

We assume there is external knowledge about the nuisance parameters,
which has to be incorporated in the procedure. Possible methods include:

1 Make it internal to the model, i.e., fit the nuisance parameter
simultaneously with the parameter of interest (e.g. include sideband
in likelihood model).

2 Use Bayesian priors for the nuisance parameters and take prior-average

3 Include auxiliary measurements in the statistical model in an
approximate way and use bootstrapping.

Here, only item 2. is covered (see Backup for 3.).

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 38 / 117



Handling of Systematic Uncertainties Bayesian/Hybrid Method; Counting Experiment

3 Handling of Systematic Uncertainties

Bayesian/Hybrid Method; Counting Experiment

Test Statistic Definition

Shape Model Uncertainties

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 39 / 117



Handling of Systematic Uncertainties Bayesian/Hybrid Method; Counting Experiment

Bayesian vs. Frequentist “Probability”

Frequentist: “Probability is the relative frequency of a certain
outcome in an ensemble of (imaginary or real) repetitions of a
random process.”
Probability is only assigned to “data” and derived quantities (test
statistic, p-value, etc.), but not to model parameters, which have only
one true (unknown) value; the concept of probability does not apply.

Bayesian: “Probability can also be used to express the current state
of knowledge.”
In particular, it is valid to talk about the probability that a model
parameter takes certain values.

Here, we discuss a “mixed”/“hybrid” method: Significance and p-values
are a frequentist concept, but the use of nuisance parameter priors is
Bayesian.
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Handling of Systematic Uncertainties Bayesian/Hybrid Method; Counting Experiment

Prior-Averaging

Modify the Monte-Carlo method for p-value calculation: To generate toy
data,

1 Draw a random value for each nuisance parameter from its prior.

2 Draw random data from the probability according to the stat. model
evaluated for those (random) parameter values.

Then, as usual: p-value is the fraction of toys in which t ≥ tobs.

Formally, the resulting p-value is:

pa =

∫

θ
P(t > tobs|θ)π(θ)dθ

where π(θ) is the prior for the nuisance parameters θ.
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Example I: Counting Experiment

For a normal prior on b with mean b0 = 5.2 distribution for n changes:

0 2 4 6 8 10 12 14
n

0.00

0.05

0.10

0.15

0.20

0.25p

b0 = 5.2

nobs = 8

p = 0.155

no uncertainty

In general: adding
systematic uncertainties
“broadens” the test
statistic distribution,
thus enlarging the
p-value, reducing the
Z -value.
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For a normal prior on b with mean b0 = 5.2 distribution for n changes:

0 2 4 6 8 10 12 14
n

0.00

0.05

0.10

0.15

0.20

0.25p

b0 = 5.2

nobs = 8

p = 0.162

no uncertainty
uncertainty: 10.0%

In general: adding
systematic uncertainties
“broadens” the test
statistic distribution,
thus enlarging the
p-value, reducing the
Z -value.
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Example I: Counting Experiment

For a normal prior on b with mean b0 = 5.2 distribution for n changes:

0 2 4 6 8 10 12 14
n

0.00

0.05

0.10

0.15

0.20

0.25p

b0 = 5.2

nobs = 8

p = 0.195

no uncertainty
uncertainty: 30.0%

In general: adding
systematic uncertainties
“broadens” the test
statistic distribution,
thus enlarging the
p-value, reducing the
Z -value.
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Handling of Systematic Uncertainties Bayesian/Hybrid Method; Counting Experiment

Example II: Normal Approximation

For large b, Poisson is approximately normal. Distribution for n
approximately convolution of two normals with σ1 =

√
b and σ2 = ∆b

 normal with std. dev. σ =
√

b + (∆b)2.

40 60 80 100 120 140 160
n

0.00

0.01

0.02

0.03

0.04

0.05

p

b uncertainty: 0.0%

nobs = 120
p = 0.028

Poisson ⊗ Normal

Normal, σ =
√

b + (∆b)2
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√
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40 60 80 100 120 140 160
n

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

p

b uncertainty: 10.0%

nobs = 120
p = 0.087

Poisson ⊗ Normal

Normal, σ =
√

b + (∆b)2
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Example II: Normal Approximation

For large b, Poisson is approximately normal. Distribution for n
approximately convolution of two normals with σ1 =

√
b and σ2 = ∆b

 normal with std. dev. σ =
√

b + (∆b)2.

40 60 80 100 120 140 160
n

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016p

b uncertainty: 30.0%

nobs = 120
p = 0.266

Poisson ⊗ Normal

Normal, σ =
√

b + (∆b)2
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Normal Approximation: Formula

For large b, n follows a normal distribution with standard deviation

σ =
√

b + (∆b)2

and the approximate Z -value is thus given by

Za =
s√

b + (∆b)2
=

n − b√
b + (∆b)2

,

which is a generalization of the formula given earlier for ∆b = 0.

This very simple formula exhibits some interesting features that help to
understand some general properties of HEP analyses.
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Normal Approximation: Luminosity Projection

For b = 100, s = 20, the expected significance as a function of the
luminosity scaling factor f :

2 4 6 8 10
f

0

1

2

3

4

5

6

7

8

Z a b uncertainty: 0.0% Without uncertainty,
increase like

√
f . With

systematic uncertainty:
expected significance
limited by s/∆b.
 s/

√
b is a good

“figure of merit” if
statistical uncertainties
dominate; s/b better if
background systematics
dominate.
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Handling of Systematic Uncertainties Bayesian/Hybrid Method; Counting Experiment

Section Summary

The Bayesian method assigns a prior to the nuisance parameter; the
p-value is defined as the prior-averaged probability to observe such an
H0-incompatible test statistic value.

We also saw:

How this can be applied to a counting experiment with a background
rate uncertainty

Asymptotic expected significance for the counting experiment and
how this can motivate the widely-used “figures of merit” s/

√
b and

s/b
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Handling of Systematic Uncertainties Test Statistic Definition

Test Statistic

Test Statistic t defined as ratio of profile likelihoods for null and
alternative:

t = log
maxθ∈H1 L(θ|d)

maxθ∈H0 L(θ|d)
= log

maxµ≥0 L(µ|d)

L(µ = 0|d)
.

Now, model parameters θ include the parameter of interest (signal
strength µ) and nuisance parameters θn: θ = (µ, θn). Change t:

1 Fix nuisance parameters to most probable value θn,0 in maximization,
i.e. only vary µ:

t ′ = log
maxµ≥0 L(µ, θn,0|d)

L(µ = 0, θn,0|d)

2 Replace L with the posterior, i.e. multiply by the nuisance parameter
prior π:

t̃ = log
maxµ≥0,θn L(µ, θn|d)× π(θn)

maxθn L(µ = 0, θn|d)× π(θn)
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Handling of Systematic Uncertainties Test Statistic Definition

Test Statistic and p-value

Both t ′ and t̃ have been used in HEP analyses.

The definition of the test statistic is orthogonal to the definition of the
ensemble H0 used to define the p-value:
For a MC method, this means it is crucial to vary the nuisance parameters
in the toy data generation, while it’s not necessary to vary them in the
definition of t.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Introduction

In general: Each uncertainty  one (additional) nuisance parameter in the
statistical model.

Next slides give examples for this principle for typical uncertainties of
binned shape analyses

Rate uncertainties from theory prediction, sideband estimation, . . .

Shape uncertainties from energy calibration/efficiency uncertainties,
MC parameters, . . .

MC Statistic Uncertainties from limited size of MC sample (not
covered here)
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Handling of Systematic Uncertainties Shape Model Uncertainties

Formal Shape Model

The statistical model is the product of Poisson in each bin:

p(n|θ) =
∏

i

Poisson(ni |λi (θ))

where i is the bin index and the expected number of events in bin i , λi , is
given by the sum of (scaled) signal and background histograms:

λi (θ) = µsi +
∑

p

cp(θn)bpi (θn).

p denotes the different background processes which are expected to
contribute. The bin-independent coefficient cp(θn) encodes
(process-specific) rate uncertainties, while bpi (θn) is the most general
dependence, a shape uncertainty.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Rate Uncertainties: Example

In the shape example model, we might estimate a 10% uncertainty on the
overall rate of the background:

0 200 400 600 800 1000
Mrec

0

10

20

30

40

50

60

70

E
ve

nt
s

pe
rb

in Data
Background
Signal, M = 500

 Have “plus” and
“minus” templates by
scaling the “nominal
template up and down
by 10%.
 introduce nuisance
parameter which scales
the template
accordingly.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Rate Uncertainties: Implementation

In the statistical model, had expression for Poisson mean

λi (θ) = µsi +
∑

p

cp(θn)bpi (θn).

Rate uncertainties can be included in the coefficient cp, e.g. by using

cp(θu) = θu

where θu has a log-normal prior around 1 (see Backup.). Equivalently, we
can also use:

cp(θu) = eθu∆b

where the nuisance parameter θu has a normal prior around 0 with standard
deviation 1, which corresponds to a scale factor with a log-normal prior.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Equivalent Parametrizations

We just saw two different, but equivalent methods to introduce a
log-normal scale factor.

This is an example of a more general principle:
The statistical model can be re-parametrized, which changes both the
“model response” to the nuisance parameter and the parameter prior.

Using this freedom, one can use independent standard normal priors for
the nuisance parameters, which will be assumed from now on.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Shape Uncertainty: Introductory Example

In the shape model, assume you have three different methods to get the
background shape, which look like this:
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in nominal
minus
plus

 Can introduce the
nuisance parameter and
use it in the model to
interpolate smoothly
between the three
templates, if assuming
the “plus” and “minus”
correspond to a ±1σ
uncertainty.
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Shape Uncertainties: Introduction

Can have uncertainties also affecting shape in a general way (e.g. by
energy calibration, . . . ).

Typically, in an analysis, one would

Use MC sample (or sideband) to get a shape for a process “nominal
template”

Modify the MC (or sideband) to get “±1σ effects” of some
uncertainty, e.g. by re-weighting events, modifying the energy
calibration, using a different sideband, . . .
 “plus”/“minus” template
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Handling of Systematic Uncertainties Shape Model Uncertainties

Shape Uncertainties: Statistical Model

Follow general recipe: introduce nuisance parameter θu with standard
normal prior, and write the model prediction for the Poisson mean λi as a
function of the new parameter.

It should interpolate smoothly between the “minus” template for θu = −1,
the “nominal” template at θu = 0 and the “plus” template at θu = +1.

There are many possibilities to achieve this; here: Use cubic interpolation
for |θu| < 1 and linear extrapolation for |θu| > 1.
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Shape Uncertainties: Single Bin Behavior

Example interpolation for the bin around Mrec = 835:

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
θu

18

19

20

21

22

23

24

b p
i(θ

u
)

bipu+ = 21.9

bipu− = 19.3

bip0 = 20.2

bipu± are the bin
contents for the “plus”
and “minus” templates;
bip0 for the “nominal”.
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Shape Uncertainties: Shape Behavior

Applying template morphing for certain values θu, the background
template looks like this:
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in nominal θu = 0.0

minus θu = −1.0

plus θu = 1.0

Interpolation agrees with
intuitive expectation.
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Applying uncertainties

Using the prior averaging method means that toy data is drawn for
random values for θu  test statistic distribution is broadened:

0 2 4 6 8 10
t

10−1

100

101

102

103

104

105

N
to

ys
pe

rb
in

tobs = 4.92

N(t ≥ tobs) = 86

No uncertainties:
p̂ = 0.00086, Ẑ = 3.1.

With 10% rate
uncertainty: p̂ = 0.096,
Ẑ = 1.3.

With shape uncertainty:
p̂ = 0.052, Ẑ = 1.6.
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Applying uncertainties

Using the prior averaging method means that toy data is drawn for
random values for θu  test statistic distribution is broadened:
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Applying uncertainties

Using the prior averaging method means that toy data is drawn for
random values for θu  test statistic distribution is broadened:
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tobs = 4.92

N(t ≥ tobs) = 5173

No uncertainties:
p̂ = 0.00086, Ẑ = 3.1.

With 10% rate
uncertainty: p̂ = 0.096,
Ẑ = 1.3.

With shape uncertainty:
p̂ = 0.052, Ẑ = 1.6.
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Handling of Systematic Uncertainties Shape Model Uncertainties

Comments

Most methods are somewhat ad-hoc and use the simplest functional
dependence for λ(θ). if result sensitive to this choice, something
less arbitrary should be used.

The shape model with template morphing are advanced techniques.

Only covered binned analyses, but general principle also applies to
models describing unbinned data: introduce nuisance parameters and
parametrize model response.
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Asymptotics

Asymptotics: Motivation

For the p-value, need to know test statistic distribution for H0. In general,
this is not known analytically  use toy Monte-Carlo.

Practical problem: large significance requires large number of toys (≈ 108

or more for Z ≥ 5)  long running time.

For counting experiment with background systematics, had simple formula
for significance,

Za =
n − b√

b + (∆b)2

which is valid for large n.

This also allowed easy computation for expected significance.

Now: Generalization of for more complicated models.
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Asymptotics

Wilks’ Theorem

Suppose the null hypothesis H0 corresponds to fixing certain model
parameters in the statistical model, and the alternative hypothesis H1 is
the complement.

For n→∞, the likelihood-ratio test statistic

Λ = 2 log
maxθ∈H1 L(θ|d)

maxθ∈H0 L(θ|d)
= 2t

follows a χ2
k -distribution where the number of degrees of freedom k is the

number of fixed parameters in H0.

For the case of searching a signal, H0 : µ = 0, H1 : µ > 0, there is 1
degree of freedom and the asymptotic Z -value is given by

Za =
√

2t.
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Asymptotics

Asymptotics: Shape Example I

For the shape model, determines the Z -value via the tail distribution of
the test statistic t.
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Toy-based Z -value was
Zt = 3.13± 0.03.
Asymptotic Z -value is
Za =

√
2tobs = 3.14.
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Asymptotics

Comments

Only applicable in the “asymptotic regime” in case n is “large”:

In the asymptotic regime, can estimate all model parameters from
data with errors shrinking as 1√

n

Often, can apply formulae even for smaller n, e.g. to the binned shape
model if it approximately normal (n large in all bins; prior on θ is
normal) and linear (λ(θ) is a linear function in θ)

If in doubt, check with Monte-Carlo.

Can generalize formula for asymptotic test statistic distribution for µ > 0.
This is useful for expected significance and CLs limit construction.
This is used in Higgs searches; see Cowan, Cranmer, Gross, Vitells:

Eur.Phys.J.C71:1554,2011; arXiv:1007.1727
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Look-Elsewhere Effect
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Look-Elsewhere Effect

Problem formulation

The threshold α is the type-I error rate: if p-value < α, the null hypothesis
is rejected.

If repeating this procedure many times using the same null hypothesis (but
e.g. many different alternatives), the probability that some test rejects H0

becomes much larger than α.

This is the look-elsewhere effect, and it has to be considered in the
statistical procedure.
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Look-Elsewhere Effect

Simple Case

For n independent alternatives, the probability to reject H0 is actually:

1− (1− α)n ≈ nα

(where the approximation assumes nα� 1).

Example: If making 10 independent tests with H0 = Standard Model, the
chance to see a “3σ” effect (α = 0.0013) in one of them is 1.3%; if
looking at 100 channels it is 12%.

The “independence” assumption made here means that the p-values follow
independent uniform distributions on [0, 1] under H0.

In such a case, can correct the “local” p-value to a “global” p-value by
dividing it by the “trial factor” n.
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Look-Elsewhere Effect

Realistic Example

Search for a particle with unknown mass, so instead of 1 possible signal at
Mrec = 500, consider 3 potential signals.
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in Data
Background
Signal, M = 500

We had: p = 8.6 · 10−4;
Z = 3.1 for a signal
m = 500. But: if we
searched on the whole
spectrum, the
probability to observe
such a deviation
anywhere is larger!
How likely is it to
observe such a low
p-value for any of the
three masses?
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Look-Elsewhere Effect

Example: Solution

In this case, can use a Monte-Carlo method:

1 Generate toy data according to background-only model H0

2 For each toy, calculate the p-values for all three signal hypothesis “as
usual” (using tail of TS distribution).

3 For each toy, calculate the minimum p-value over the three mass
hypotheses.  distribution for pmin under H0

4 The “global”, look-elsewhere-corrected p-value is given by the
probability to observe pmin ≤ pobs

min.

Here: pobs
min = 8.6 · 10−4. Probability to observe such low pmin is 2.2 · 10−3.

Note that this is just the usual MC method for a hypothesis test with pmin

as test statistic.
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Look-Elsewhere Effect

Example: Trial Factor and Resolution

If testing many signals in small spacing: signal shapes overlap due to
finite resolution.

Data with a small p-value for e.g. m = 500 will also have small
p-value if testing for m = 501.

Joint distribution of p-values for different hypothesis no longer
independent.

Factor between global p-value and local p-value is smaller than
number of tested signals.

In the example, had a trial factor of 2.6, somewhat smaller than the
number of channels 3. For many tested masses, the number of
“independent” channels is of the order

tested mass range

mass resolution

and is independent of the number of tested masses.
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Look-Elsewhere Effect

General Handling of Look-Elsewhere Effect

To cite a “global” p-value, one can:

Can use trial factor n directly. But: Only possible if channels are
(approximately) independent, or if “effective” number of independent
channels known.

Use Monte-Carlo to generate toy data according to background-only
as in the example. But: assumes that we can generate
background-only toys suitable for all signal hypotheses. (If we e.g. use
a different event selection for each signal, that’s very hard and might
be unfeasible.)

Look at the fluctuations of the observed limit w.r.t. the expected
limits in data  estimate for effective number of independent
channels, which can be used as trial factor
(see Gross, Vittels: Eur.Phys.J.C70:525-530,2010; arXiv:1005.1891; this is the

method used in LHC Higgs searches)
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Look-Elsewhere Effect

Other Incarnations of LEE

Not only in searches for particles with unknown mass, but whenever
making many hypothesis tests, one might be susceptible to the LEE and
should correct for it, e.g. when

repeating tests for different dataset sizes n (cf. to Luc’s example at
the end of first set of slides),

using different test statistics for the same data–model comparisons.

making a large number of data–model or data–data comparisons (e.g.
making many monitoring histograms)

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 75 / 117



Goodness-of-Fit
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Goodness-of-Fit

Definition

A goodness of fit test is a hypothesis test where the null hypothesis H0 is:
the data follows the distribution of the statistical model.
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Are the data compatible
with the
background-only
hypothesis?

Note: no explicit
alternative.
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Goodness-of-Fit

χ2 Test

χ2 test statistic is defined as the sum of k independent normally
distributed quantities Xi ,

χ2 =
k∑

i=1

(Xi − µi )2

σ2
i

.

For making data-model comparisons, have to use binned data (k =number
of bins):

µi is the Poisson mean for this bin as predicted by the model

Xi is the number of events in bin i

σi =
√
µi is the standard deviation for the normal approximation of a

Poisson distribution

χ2 follows the (well-known) χ2 distribution with k degrees of freedom.
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Goodness-of-Fit

χ2 Test: Example

For the shape model, compare data to background-only with χ2 test
(remember: had Z = 3.1 for hypothesis test sensitive to M = 500):
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Signal, M = 500

χ2
obs = 33.8

p-value: probability to
observe even more
extreme (larger) χ2

value: pχ2 = 0.29,
Zχ2 = 0.56.
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Goodness-of-Fit
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Goodness-of-Fit

χ2 Test: Comments

χ2 test works requires binned data

µi should be large enough to justify the normal approximation of the
Poisson.

In general, fitting the model to the data will reduce data–model
difference  degrees of freedom for χ2 distribution is reduced by
number of fit parameters.

χ2 test sensitive to “overall deviation”: In current example, χ2 test
was not sensitive to “local” 3.1σ effect of M = 500 peak.
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Goodness-of-Fit

KS Test

As test statistic, use the maximum of the difference in the cumulative
distributions of model and data:

dmax = max
x
|Fd(x)− Fm(x)|

where Fd(x) is the cumulative distribution for the data (“empirical
distribution function”), and Fm(x) for the tested model.

KS test does not require binning of the data; binning decreases dmax  
data look more compatible.

For large n: p ≈ 1
2 e−2ndmax .
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Goodness-of-Fit

KS Test: Example

For the shape model, can determine cumulative distributions F , determine
dmax.
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Using asymptotic
formula: pKS = 0.10
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KS Test: Example

For the shape model, can determine cumulative distributions F , determine
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Goodness-of-Fit

KS Test: Example

For the shape model, can determine cumulative distributions F , determine
dmax.
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Using asymptotic
formula: pKS = 0.10
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Goodness-of-Fit

Comments

Many more test statistic definitions possible (sensitive to different
kinds of deviation): Run test, Cramér-von-Mises test, . . .

If test statistic distribution for H0 not known, e.g.

not in asymptotic limit or
if fitting parameters to data before calculating test statistic, or
using bins for KS

can (should!) determine test statistic distribution for H0 with toy
Monte-Carlo.

Here: compared data to model. But: can use tests also to make
data–data comparisons where H0 is that both datasets follow same
(unknown) parent distribution.
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Hypothesis Tests: Summary

Beyond present Examples

I did not cover the more general case of unbinned or non-Poisson data.
The main steps remain the same: Write down statistical model, introduce
systematics via nuisances, construct likelihood function and test statistic,
and sample toy data to derive the p-value (or use asymptotic likelihood
properties).
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Hypothesis Tests: Summary

Summary

We have seen:

Definition of the p-value as the probability to observe such a large
(“signal-like”) deviation for the null hypothesis H0; small p-values are
regarded as evidence against H0, preferring the alternative

The role of the test statistic as measure of “signal-like”

Monte-Carlo approach for p-value computation

How nuisance parameters are introduced in the statistical model, how
test statistic is modified, and the Bayesian (“hybrid”) method to treat
prior information

Approximate formula for the Z -value for a simple counting
experiment, which qualitatively shows the same properties as more
complicated models
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Part II

Confidence Intervals
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Frequentist Limits

Introduction and Definitions

Confidence intervals are probabilistic statement about the value of
parameters of a statistical model. They are calculated at a given
confidence level which specifies the (claimed/desired) coverage.

The coverage is the probability that the interval contains the true value. In
general, the coverage is a function of the true parameter values.

A method is said to over-cover (and conservative) if the coverage is above
the confidence level; the opposite is under-coverage. Sometimes, exact
coverage cannot be reached (e.g. due to discrete data); in this case one
usually chooses to construct the method to over-cover.
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Frequentist Limits

Counting Experiment

Consider the simple counting model with b = 5.2 and unknown s ≥ 0 with

p(n|s) = Poisson(n|s + b).

For a given observation (e.g. nobs = 5), what statement can be made
about s?
For example, we would expect to rule out large values for s, e.g. s = 100.

This is a question for a hypothesis test.

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 91 / 117



Frequentist Limits

Counting Experiment

Consider the simple counting model with b = 5.2 and unknown s ≥ 0 with

p(n|s) = Poisson(n|s + b).

For a given observation (e.g. nobs = 5), what statement can be made
about s?
For example, we would expect to rule out large values for s, e.g. s = 100.

This is a question for a hypothesis test.

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 91 / 117



Frequentist Limits

Intervals and Hypothesis Tests

Upper limit construction by hypothesis test “inversion”:

1 For a given s = s0, make a hypothesis test with the null hypothesis
s = s0 and the alternative s < s0 with type-I error α (e.g., α = 0.05).

2 Repeat step 1 for different values of s0.

3 The confidence interval for s comprises exactly those values s0 for
which the hypothesis test could not reject the null hypothesis s = s0.

For this formulation of the hypothesis test (s = s0 vs. s < s0), we get an
upper limit.

The confidence level is (1− α) (here: 95%).

This is known as the Neyman Construction. It can be visualized as “belt
construction” on the (n–s) plane.

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 92 / 117



Frequentist Limits

Comment

This close relation to hypothesis testing means many aspects from HT
also apply here:

explicitly introduce test statistic for shape models; again: Test
statistic choice not unique, can use profile likelihood ratio t

use toy Monte-Carlo to get test statistic distribution for H0

handling of systematic uncertainties via Bayesian/hybrid method

use of asymptotic methods

concept of “expected limit” by running the method (imaginatively or
with MC) on an ensemble representing the expected data (usually
background-only)

. . .
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Frequentist Limits

Neyman Construction: Belt

Example: Counting experiment with b = 5.2. As a function of s,
determine n0 for which p(nobs < n0|s) ≤ α:
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s = 6.3:
p(nobs < 6) = 0.03 < α

Example: nobs = 8, the
95% C.L. upper limit for
s is 9.2.
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Frequentist Limits

Neyman Construction: Coverage

Coverage for µ = µ0:

The probability to observe a number of events included in the belt is
[≥](1− α) = 0.95, by construction of the belt.

In exactly those cases, the resulting interval will include µ0.

 The probability that the interval includes µ0 (coverage) is (1− α), as
desired.

Exact coverage is not always possible due to discreteness. In this case, one
usually chooses to be conservative, i.e. to over-cover.

The coverage can be determined with toy Monte-Carlo for any method by
counting the fraction of toys for which the interval contains the true value.
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Frequentist Limits

Coverage Example

For the counting experiment example, the coverage as a function of s is:
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C.L. = 95%

This is the “belt size” as
a function of s.

Now: Generalize
construction to shape
models.
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Frequentist Limits

Test Statistic

As for HT, introduce test statistic as a measure for incompatibility with
null hypothesis that signal strength µ = µ0 versus alternative µ < µ0:

tµ0 = log
maxθ∈H1 L(θ|d)

maxθ∈H0 L(θ|d)
.

As for t, large values incompatibility with H0 (which is now different for
each µ0!).

 MC description for Neyman construction: For a fixed µ0

1 generate toy data and calculate test statistic tµ0  test statistic
distribution

2 calculate test statistic value tobs
µ0

for data; the p-value is the fraction

of toys with tµ0 ≥ tobs
µ0

Repeat for many µ0; interval is given by µ0 for which p > α.
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Frequentist Limits

Neyman Construction: MC method

Sketch of test statistic distributions for different values for µ0:
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p = 0.16

µ0 = 0.0

Frequentist 95% C.L.
upper limit: µ = 2.
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Frequentist Limits
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Frequentist Limits

Neyman Construction: MC method

Sketch of test statistic distributions for different values for µ0:
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Frequentist Limits

Neyman Construction: p vs. µ0

Plot the p-value vs. µ0 for the hypothesis test H0 : µ = µ0 versus the
alternative H1 : µ < µ0:
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µ0
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α = 0.05

toy MC

The 95% C.L. upper
limit is the value µ0 at
which p = 0.05.
For MC method, one
would “scan through”
µ0, make toys at each
point to get the value of
µ0 for which p = 0.05.
(See exercise 2).
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Frequentist Limits

Empty Intervals: Example

In the Neyman construction, it can happen that one cites empty intervals,
e.g. for nobs = 1, one would state s < 0 at 95% C.L.:
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For a correct-coverage
method and true µ = 0,
this happens in 5% of
the cases, if nobs

happens to be small.
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Frequentist Limits

Empty Intervals: Discussion

Empty (or very small) intervals are unsatisfactory:

We know we are in the “5% type I error” case.

We would cite a very strong limit although there is no experimental
sensitivity for such small values.

To avoid citing such intervals, one can modify the frequentist construction
 “modified frequentist intervals” also known as the “CLs method”.
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CLs limits

8 Frequentist Limits

9 CLs limits

10 Frequentist Intervals

11 Bayesian Intervals
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CLs limits

A closer look

Small/empty intervals happen in case of incompatibility with
background-only model (e.g. very few events even for background-only).
 Also look at test statistic distribution for background-only model µ = 0.
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ps+b = 0.05

µ = µ0 = 2.0

Idea: increase limit if
data is incompatible
with background-only
hypothesis µ = 0.  
increase interval in case
of small values for pb.
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CLs limits

CLs definition

The CLs-value is a modified p-value such that it is large for small pb

CLs :=
ps+b

pb

(
=

CLs+b

CLb

)
.

[Note that in the literature, pb is often defined differently and the denominator then is

(1 − pb). ]

In the limit construction, use CLs in place of ps+b as before: Find limit is
µ for which CLs = α.

Notes:

CLs ≥ ps+b by construction  CLs limits are always more
conservative than “purely frequentist” (Neyman) limits

The CLs method prevents citing limits with no experimental sensitivity
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Frequentist Intervals

8 Frequentist Limits

9 CLs limits

10 Frequentist Intervals

11 Bayesian Intervals
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Frequentist Intervals

Neyman Construction

So far: For each s, include upper (1− α) = 95% of n in belt  upper
limits.
Now: include central 95%  “central” intervals.
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p = α

But: Ordering is
somewhat arbitrary;
central intervals only
one choice.
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Frequentist Intervals

Ordering Rule; Feldman-Cousins

Previous slide: central Neyman intervals.

But: Have to decide beforehand whether we want intervals or limits.

Feldman and Cousins proposed to include those values of n in the belt in
decreasing order of the likelihood ratio test statistic:

S =
L(s0|n)

maxs L(s|n)
,

i.e. include those points first where s = s0 is a “good fit” to data,
compared to other values for s.
As usual, include points in the belt until reaching a probability of (1− α)
for each value of s0.
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Frequentist Intervals

Feldman-Cousins: Example

For counting experiment with b = 5.2, the Feldman-Cousins band looks
like this:
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Automatic transition
from “limit-like”
intervals to two-sided
intervals.
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Frequentist Intervals

Feldman-Cousins: Example

For counting experiment with b = 5.2, the Feldman-Cousins band looks
like this:
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Frequentist Intervals

Feldman-Cousins: Comments

Suitable for calculating intervals for parameters with physical limits
(e.g. cross sections, ratios, masses . . . ).

Does not require to decide beforehand whether to cite a limit or a
two-sided interval (“unified” construction).

Empty/small intervals are also avoided to some degree  alternative
to CLs

Generalization: use profile likelihood ratio test statistic t̃µ0 with
H0 : µ = µ0 versus H1 : µ 6= µ0 as ordering criterion.

Reference: Feldman, Cousins Phys.Rev.D57:3873-3889,1998; arXiv: 9711021.
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Bayesian Intervals

8 Frequentist Limits

9 CLs limits

10 Frequentist Intervals

11 Bayesian Intervals
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Bayesian Intervals

Introduction

In contrast to frequentist statistics, Bayesian statistics allows probabilistic
statements about model parameters.

Bayes’ Theorem gives a formula for the posterior of the parameters θ,
given data d :

p(θ|d) =
p(d |θ)π(θ)

π(d)

where

π(θ) is the prior for the parameters θ

p(d |θ) is the probability to observed data d , given θ – this is the
statistical model

π(d) is the prior probability to observe data d (for fixed d , this is just
a number making the left side a properly normalized probability; we
usually do not need it.)
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Bayesian Intervals

Example

For the counting experiment with known b = 5.2 and a flat prior for the
signal s, the posterior is (apart from normalization) Poisson(n|s + b), but
read as a probability in s, not in n(!)
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As might be expected
intuitively, maximum
posterior at s = 0 for
n < b and at n − b for
n > b.
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Bayesian Intervals

Intervals

To get confidence intervals from posterior, choose range of s s.t. posterior
probability coincides with confidence level (1− α) [cf. Luc’s talk].
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p = (1− α) = 0.95 n = 10

Include lower 95%  
95% C.L. upper limit.
Central 68%
Maximum posterior  
shortest interval
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Bayesian Intervals

Marginal Posterior

In general, the model parameters θ include nuisance parameters θn.

For inferences about µ, use the marginal posterior in µ, in which the
nuisance parameters have been “integrating out”:

p(µ|d) =

∫

θn

p(θ|d)dθn = c

∫

θn

p(d |θ)π(θ)dθn

where c is a normalization constant.
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Bayesian Intervals

Example

For a normal prior on b with mean b0 = 5.2, look at the marginal posterior
for nobs = 8 for ∆b = 0%
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As expected intuitively,
posterior is broadened
 intervals and limits
derived from marginal
posterior will be larger.
(See also exercise 3.)

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 115 / 117



Bayesian Intervals
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Bayesian Intervals

Example

For a normal prior on b with mean b0 = 5.2, look at the marginal posterior
for nobs = 8 for ∆b = 30%
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As expected intuitively,
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(See also exercise 3.)
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Bayesian Intervals

Properties of Bayesian Intervals

Bayesian intervals do not have guaranteed coverage; this is not a
central concept in Bayesian statistic. But: can still determine
coverage. In practice, coverage for limits in case of flat prior for signal
is often fulfilled approximately.

Posterior depends on prior; this is a source of fundamental criticism of
the Bayesian method; even using a “flat” prior is ambiguous:
transformation of variables can make a “flat” prior non-flat! Can try
to make this subjectiveness objective by formal prior selection rules
(cf. Luc’s talk).
Current HEP practice:

Check (frequentist) coverage properties
Check whether result is sensitive to prior by checking different
“reasonable” priors
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Bayesian Intervals

Interval Summary

Relation between hypothesis tests and (frequentist) confidence
intervals  inherit concepts and methods from hypothesis tests (test
statistic, systematics handling, . . . )

Additional degree of freedom: Ordering rule in Neyman construction
 central intervals, Feldman-Cousins

CLs method to “fix” very small / zero exclusions

Purely Bayesian method: Derive (marginal) posterior and choose
interval from there.
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Part III

Backup
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p-value Distribution for Discrete Data

The p-value is defined to observe at least as extreme data for H0.

If the data in the statistical model is discrete, the p-value can’t follow a
proper uniform distribution on [0, 1].

In general (also for discrete data):

Pr(p ≤ p0|H0) ≤ p0 for 0 ≤ p0 ≤ 1.

In words: The probability to observe a p-value below some threshold p0 is
at most p0 (and if equality holds, p-value is indeed uniform on [0, 1]).
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“Expected” vs. “Observed” Result

Consider two counting experiments A, B searching for the same signal,
both expecting background b = 100, and signals sA = 20 and sB = 15,
clearly indicating a better performance for A.

By chance, nA = 120, sB = 120, giving ZA ≈ 1 and ZB ≈ 1.3, so using the
“observed” significance, experiment B is “better”, which is of course
nonsense.

Related issue in the statement: “Experiment A sees 3σ effect, experiment
B sees 3.5σ effect, so in summary we have a 3.5σ effect” (or similar
statement for limits).
However, this is wrong from the statistical point of view, as minimum of
two p-values is not a proper p-value (refer to look-elsewhere effect).
 solution: Always use expected significance and decide which
analysis/experiment to use without using the (random) data result.
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Frequentist Interpretation; Bootstrapping

12 Frequentist Interpretation; Bootstrapping

Jochen Ott INFN School of Statistics 2013 Hypothesis Tests and Confidence Intervals 121



Frequentist Interpretation; Bootstrapping

Model Reminder

The observed data can be summarized as the number of observed events
n. The probability to observe n events is given by a Poisson probability:

p(n|θ) = Poisson(n|λ(θ)).

The Poisson mean λ(θ) is given by the sum of (scaled) signal and
background yields,

λi (θ) = µs + b(θn),

where the model parameters θ comprise the signal strength parameter µ
and the nuisance parameters θn: θ = (µ, θn).

External knowledge about the nuisance parameters is encoded in the prior
π(θn).
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Frequentist Interpretation; Bootstrapping

Frequentist Interpretation

The Bayesian posterior f is given by the likelihood times the prior
(assumed to be normal here):

f (θ) = L(θ|d)×N (θn),

(apart from an unimportant normalization). f (θ) can be used in place of
plain L at many places (e.g. parameter estimation, definition of t).

Frequentist re-interpretation:

f (θ) ∝ L(θ|d)×
∏

u

e
− (θu−µu )2

2δ2
u

where µu = 0 and δu = 1, u runs over all nuisance parameters.
This can be interpreted as the likelihood function of a slightly different
model by swapping θu and µu. The µu now are random variables, part of
the data. The data comprise the number of observed events and the
values for µu (with µu = 0 for the observed data).
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Frequentist Interpretation; Bootstrapping
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Frequentist Interpretation; Bootstrapping

Frequentist Interpretation: Comments

No longer need (Bayesian) concept of prior for model parameters θu;
instead, have extended the data by µu.

Allows to use purely frequentist concepts for defining ensembles of
toys data; but: requires to choose parameter values.

Choose parameter values by fitting to data: “(parametric)
bootstrapping”.

If want to keep structure for f , have to use conjugate distribution for
µu in the frequentist model. Normal distribution is self-conjugate  
use normal model for distribution of µu.
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Frequentist Interpretation; Bootstrapping

Updated Monte-Carlo Method for p-value

For the p-value calculation with Monte-Carlo, the steps are modified:

1 Make a maximum likelihood fit to data (with null hypothesis H0) to
get estimates for nuisance parameters θu, θ̃u.

2 Generate toy data by sampling from the model at the fitted values for
θu; in particular, draw a Gaussian for µu around θ̃u with width 1.

For each toy data, calculate the test statistic value, e.g. using the t ′ or t̃
definitions. The fraction of toys for which t ≥ tobs is the p-value.
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Frequentist Interpretation; Bootstrapping

Summary; Comments

The expression for the posterior can be interpreted purely frequentist way
of a slightly different statistical model with an extended dataset. For that
model, can apply parametric bootstrapping and proceed with a purely
frequentist framework.

Notes:

The frequentist approach allows the application of asymptotic
formulas

This is the method used in the LHC Higgs combination.
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Frequentist Interpretation; Bootstrapping

Rate Uncertainties: Normal vs. log-normal I/II

The uncertainty on b was implemented by using the stat. model

p(n|s, b) = Poisson(λ = s + b)

with a normal prior for b around known b0 with known width ∆b.

But: λ can become negative with non-zero probability, for which a Poisson
is not defined.

Instead, use a log-normal prior for a scale factor for b0:

λ(s, f ) = s + f · b0

where f has a log-normal prior, i.e., log f has a normal distribution.
An equivalent formulation is

λ(s, θ) = s + eθ log(1+∆b)b0

where the n.p. θ has a normal prior with mean 0 and standard deviation 1.
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Frequentist Interpretation; Bootstrapping

Rate Uncertainties: Normal vs. log-normal II/II

Comparing the prior for the scale factor between normal and log-normal:
∆b = 0.1:
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f

0.0
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4.5p
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Log-normal avoids
unphysical jump /
truncation at f = 0,
while normal prior
requires that for large
∆b.
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Frequentist Interpretation; Bootstrapping

Rate Uncertainties: Normal vs. log-normal II/II

Comparing the prior for the scale factor between normal and log-normal:
∆b = 0.3:
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Log-normal avoids
unphysical jump /
truncation at f = 0,
while normal prior
requires that for large
∆b.
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Frequentist Interpretation; Bootstrapping

Rate Uncertainties: Normal vs. log-normal II/II

Comparing the prior for the scale factor between normal and log-normal:
∆b = 1.0:
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Log-normal avoids
unphysical jump /
truncation at f = 0,
while normal prior
requires that for large
∆b.
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