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Exercises on Probability Theory and Bayesian

Statistics

Luc Demortier1

Problem 1: Eliminating nuisance parameters by conditioning.
In the frequentist paradigm, handling nuisance parameters can be a thorny problem. A
method that sometimes works is based on the idea of conditioning. To illustrate this ap-
proach, suppose we measure an event count N that is Poisson distributed with mean µν,
where µ is the parameter of interest and ν a nuisance parameter. Assume that ν is con-
strained by the auxiliary measurement of a Poisson variate K with mean τν, where τ is a
known constant:

N ∼ Poisson(µν), (1)

K ∼ Poisson(τν). (2)

In high energy physics one could think of µ as the production cross section for some process
of interest and ν as a product of efficiencies, acceptances, and integrated luminosity. One
can argue that the sum M ≡ N + K provides no information about the ratio µ/τ of the
above two Poisson means, or about µ itself. It is therefore interesting to seek inferences that
condition on M .

1. Compute the conditional distribution of N given M .

2. Next, assume that the expectation value of N is the sum of µ and ν instead of their
product, so we have:

N ∼ Poisson(µ + ν), (3)

K ∼ Poisson(τν). (4)

What is the conditional distribution of N given M here?

Problem 2: Eliminating nuisance parameters by Bayesian marginalization.
Here we take the first of the above problems (N ∼ Poisson(µν)) and eliminate the nuisance
parameter ν by Bayesian marginalization. One can proceed as follows:

1. Consider the auxiliary measurement of ν, via K ∼ Poisson(τν).

2. Compute Jeffreys’ prior for ν for that auxiliary measurement.

3. Compute the posterior for ν for that auxiliary measurement.

4. Use the auxiliary posterior for ν as a prior for ν in the measurement of µ.
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5. Now we still need a prior for µ. In fact, since the problem involves two parameters,
µ and ν, what we really need is a conditional prior for µ given ν. Reference analysis
provides a method for calculating this conditional prior, and the result is identical to
Jeffreys’ prior calculated for a fixed value of ν.

6. Write out the joint posterior for µ and ν, without trying to normalize it.

7. Integrate out the ν dependence.

8. Compare the resulting posterior for µ with the µ dependence of the conditional pdf for
N obtained in Problem 1.

Problem 3: Sampling to a foregone conclusion.
This is an exercise to illustrate the Law of the Iterated Logarithm. Write a little Monte
Carlo program to do the following:

• Generate random numbers Xi from a Gaussian distribution with zero mean and unit
standard deviation.

• As you generate them, compute a “running significance” Zn:

Zn ≡
1√
n
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n∑

i=1

Xi

∣∣∣∣∣ , (5)

where n is the number of Gaussian variates generated so far.

• Make a plot of Zn versus n. At what value of n does the first crossing of Zn = 2 occur?
What about Zn = 3? Compare with the curve

√
2 ln ln n. What happens if, instead of

checking the significance after each new data point, we only check it after every 100
new data points?

Problem 4: Bayesian intervals for an exponential lifetime.

Consider an exponential decay time t with probability density f(t | τ) = e−t/τ/τ . Derive
Jeffreys’ prior for this problem and compute the corresponding posterior. Construct equal-
tailed intervals from this posterior and compute their frequentist coverage. Repeat with a
flat prior.


