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Rough outline 
I.   Basic ideas of parameter estimation 

II.  The method of Maximum Likelihood (ML) 

  Variance of ML estimators 

  Extended ML 

III.  Method of Least Squares (LS) 

IV.  Bayesian parameter estimation 

V.  Goodness of fit from the likelihood ratio 

VI.  Examples of frequentist and Bayesian approaches 
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

r.v. 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 



G. Cowan  INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 11 

ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

For a function α(θ) of a parameter θ, it doesn’t matter 
whether we express L as a function of α or θ. 

The ML estimator of a function α(θ) is simply   

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ,σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 



G. Cowan  INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 16 

Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Example of ML with 2 parameters 
Consider a scattering angle distribution with x = cos θ, 

or if xmin < x < xmax, need always to normalize so that  

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95,  
generate n = 2000 events with Monte Carlo. 
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Example of ML with 2 parameters:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  No binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Two-parameter fit:  MC study 
Repeat ML fit with 500 experiments, all with n = 2000 events: 

Estimates average to ~ true values; 
(Co)variances close to previous estimates; 
marginal pdfs approximately Gaussian. 
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The ln Lmax - 1/2 contour 

For large n, ln L takes on quadratic form near maximum: 

The contour  is an ellipse: 



G. Cowan  INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 24 

(Co)variances from ln L contour 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

Correlations between estimators result in an increase 
in their standard deviations (statistical errors). 

The α, β plane for the first 
MC data set 
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Extended ML 
Sometimes regard n not as fixed, but as a Poisson r.v., mean ν. 

Result of experiment defined as: n, x1, ..., xn. 

The (extended) likelihood function is: 

Suppose theory gives ν = ν(θ), then the log-likelihood is  

where C represents terms not depending on θ. 
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Extended ML (2) 

Extended ML uses more info → smaller errors for  

Example:  expected number of events  
where the total cross section σ(θ) is predicted as a function of 
the parameters of a theory, as is the distribution of a variable x.  

If ν does not depend on θ but remains a free parameter, 
extended ML gives:  

Important e.g. for anomalous couplings in e+e- → W+W-	
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Extended ML example 
Consider two types of events (e.g., signal and background) each  
of which predict a given pdf for the variable x:  fs(x) and fb(x). 

We observe a mixture of the two event types, signal fraction = θ,  
expected total number = ν, observed total number = n. 

Let goal is to estimate µs, µb. 

→ 
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Extended ML example (2) 

Maximize log-likelihood in  
terms of µs and µb: 

Monte Carlo example 
with combination of 
exponential and Gaussian: 

Here errors reflect total Poisson 
fluctuation as well as that in  
proportion of signal/background. 
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Extended ML example:  an unphysical estimate 
A downwards fluctuation of data in the peak region can lead 
to even fewer events than what would be obtained from 
background alone. 

Estimate for µs here pushed 
negative (unphysical). 
 
We can let this happen as  
long as the (total) pdf stays 
positive everywhere. 
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Unphysical estimators (2)  
Here the unphysical estimator is unbiased and should  
nevertheless be reported, since average of a large number of  
unbiased estimates converges to the true value (cf. PDG). 

Repeat entire MC 
experiment many times,  
allow unphysical estimates:  
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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 
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ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 
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Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 
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ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ = 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) is not!   

 ‘Complete prior ignorance’ is not well defined. 



G. Cowan  INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 35 

Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
 energy physics, arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s. 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 
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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 
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Two-parameter LS fit 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Goodness-of-fit vs. statistical errors 
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Goodness-of-fit vs. stat. errors (2) 
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LS with binned data 
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LS with binned data (2) 
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LS with binned data — normalization 
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LS normalization example 
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Goodness of fit from the likelihood ratio 
Suppose we model data using a likelihood L(µ) that depends on N 
parameters µ = (µ1,..., µΝ).  Define the statistic 

Value of tµ reflects agreement between hypothesized µ and the 
data.   

 Good agreement means µ ≈ µ, so tµ is small; 

 Larger tµ means less compatibility between data and µ. 

 

Quantify “goodness of fit” with p-value: 

⌃ 
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Likelihood ratio (2) 

Now suppose the parameters µ = (µ1,..., µΝ) can be determined by 
another set of parameters θ = (θ1,..., θM), with M < N.   

E.g. in LS fit, use µi = µ(xi; θ) where x is a control variable. 

Define the statistic 

fit N parameters 

fit M parameters 

Use qµ to test hypothesized functional form of  µ(x; θ). 

To get p-value, need pdf f(qµ|µ). 
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Wilks’ Theorem (1938) 
Wilks’ Theorem: if the hypothesized parameters µ = (µ1,..., µΝ) are  
true then in the large sample limit (and provided certain conditions  
are satisfied) tµ and qµ follow chi-square distributions. 

For case with µ = (µ1,..., µΝ) fixed in numerator: 

Or if M parameters adjusted in numerator, degrees of 
freedom 
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Goodness of fit with Gaussian data 
Suppose the data are N independent Gaussian distributed values: 

known want to estimate 

Likelihood: 

Log-likelihood: 

ML estimators: 



G. Cowan  INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 57 

Likelihood ratios for Gaussian data 

The goodness-of-fit statistics become 

So Wilks’ theorem formally states the well-known property 
of the minimized chi-squared from an LS fit. 
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Likelihood ratio for Poisson data 
Suppose the data are a set of values n = (n1,..., nΝ), e.g., the 
numbers of events in a histogram with N bins. 

Assume ni ~ Poisson(νi), i = 1,..., N, all independent.   

Goal is to estimate ν = (ν1,..., νΝ). 

Likelihood: 

Log-likelihood: 

ML estimators: 
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Goodness of fit with Poisson data 
The likelihood ratio statistic (all parameters fixed in numerator): 

Wilks’ theorem:   
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Goodness of fit with Poisson data (2) 
Or with M fitted parameters in numerator: 

Wilks’ theorem:   

Use tµ, qµ to quantify goodness of fit (p-value). 

Sampling distribution from Wilks’ theorem (chi-square). 

Exact in large sample limit; in practice good approximation for  
surprisingly small ni (~several). 
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Goodness of fit with multinomial data 
Similar if data n = (n1,..., nΝ) follow multinomial distribution: 

E.g. histogram with N bins but fix:  

Log-likelihood: 

ML estimators: (Only N-1 independent; one 
is ntot minus sum of rest.) 
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Goodness of fit with multinomial data (2) 

The likelihood ratio statistics become: 

One less degree of freedom than in Poisson case because  
effectively only N-1 parameters fitted in denominator. 
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Estimators and g.o.f. all at once 
Evaluate numerators with θ (not its estimator): 

(Poisson) 

(Multinomial) 

These are equal to the corresponding -2 ln L(θ), so minimizing 
them gives the usual ML estimators for θ. 

The minimized value gives the statistic qµ, so we get 
goodness-of-fit for free. 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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The Bayesian approach 

In Bayesian statistics we can associate a probability with 
a hypothesis, e.g., a parameter value θ. 

        Interpret probability of θ as ‘degree of belief’ (subjective). 

Need to start with ‘prior pdf’ π(θ), this reflects degree  
of belief about θ before doing the experiment. 

        Our experiment has data x, → likelihood function L(x|θ). 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Posterior pdf  p(θ | x) contains all our knowledge about θ. 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ... 

MCMC generates correlated sequence of random numbers: 
 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than √n . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points had been independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Metropolis-Hastings caveats 
Actually one can only prove that the sequence of points follows 
the desired pdf in the limit where it runs forever. 

There may be a “burn-in” period where the sequence does 
not initially follow 

Unfortunately there are few useful theorems to tell us when the 
sequence has converged. 

Look at trace plots, autocorrelation. 
Check result with different proposal density. 
If you think it’s converged, try it again starting from 10  
different initial points and see if you find same result. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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A more general fit (symbolic) 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) » e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
     σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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The error on the error 
Some systematic errors are well determined 

 Error from finite Monte Carlo sample 
 
Some are less obvious 

 Do analysis in n ‘equally valid’ ways and 
 extract systematic error from ‘spread’ in results. 

 
Some are educated guesses 

 Guess possible size of missing terms in perturbation series;  

 vary renormalization scale 

Can we incorporate the ‘error on the error’? 

 (cf. G. D’Agostini 1999; Dose & von der Linden 1999) 
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Motivating a non-Gaussian prior πb(b) 
Suppose now the experiment is characterized by 

where si is an (unreported) factor by which the systematic error is  
over/under-estimated. 

Assume correct error for a Gaussian πb(b) would be siσi
sys, so 

Width of σs(si) reflects 
‘error on the error’. 
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Error-on-error function πs(s) 
A simple unimodal probability density for 0 < s < 1 with  
adjustable mean and variance is the Gamma distribution: 

Want e.g. expectation value  
of 1 and adjustable standard  
Deviation σs , i.e.,  

mean = b/a 
variance = b/a2 

In fact if we took πs (s) ~ inverse Gamma, we could integrate πb(b) 
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful. 

s 
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Prior for bias πb(b) now has longer tails 

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5 

σs = 0.5                    P(|b| > 4σsys)  =  0.65% 

b 
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A simple test 
Suppose a fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 

m
ea

su
re

m
en

t 	



µ	


p(

µ|
y)
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Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

Posterior p(µ|y): 

experiment 

m
ea

su
re

m
en

t 	



µ	



p(
µ|

y)
	



(See also D'Agostini 1999; Dose & von der Linden 1999) 
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Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 
 
In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

χ2 

σµ from least squares 

post- 
erior	
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Formulation of the unfolding problem 

New goal:  construct  
estimators for the µj (or pj). 

“true” histogram 

Consider a random variable y, goal is to determine pdf f(y). 

If parameterization f(y;θ) known, find e.g. ML estimators    . 

If no parameterization available, construct histogram:   

 !̂
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Migration 

discretize:  data are 

response 
matrix 

Effect of measurement errors:  y = true value, x = observed value, 

 migration of entries between bins, 

 f(y) is ‘smeared out’, peaks broadened. 

Note µ, ν are constants; n subject to statistical fluctuations. 
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Efficiency, background 

efficiency 

Sometimes an observed event is due to a background process: 

Sometimes an event goes undetected: 

βi = expected number of background events in observed histogram. 

For now, assume the βi are known.  
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The basic ingredients 

“true” “observed” 
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Summary of ingredients 
‘true’ histogram: 

probabilities: 

expectation values for observed histogram: 

observed histogram: 

response matrix: 

efficiencies: 

expected background: 

These are related by: 
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Maximum likelihood (ML) estimator 
from inverting the response matrix 

Assume  can be inverted: 

Suppose data are independent Poisson: 

So the log-likelihood is 

ML estimator is  
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Example with ML solution 

Catastrophic 
failure??? 
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What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have ν, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.
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ML solution revisited 

For Poisson data the ML estimators are unbiased: 

Their covariance is: 

(Recall these statistical errors were huge for the example shown.) 
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ML solution revisited (2) 
The information inequality gives for unbiased estimators the  
minimum (co)variance bound: 

invert → 

This is the same as the actual variance!  I.e. ML solution gives 
smallest variance among all unbiased estimators, even though 
this variance was huge. 

In unfolding one must accept some bias in exchange for a 
(hopefully large) reduction in variance. 
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Correction factor method 

Nonzero bias unless MC = Nature.  

Often Ci ~ O(1) so statistical errors far smaller than for ML. 
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Reality check on the statistical errors 

Suppose for some bin i we have:  

Example from Bob Cousins 

But according to the estimate, only 10 of the 100 events 
found in the bin belong there; the rest spilled in from outside. 

How can we have a 10% measurement if it is based on only 10 
events that really carry information about the desired parameter? 

(10% stat. 
error) 
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Discussion of correction factor method 

As with all unfolding methods, we get a reduction in statistical 
error in exchange for a bias; here the bias is difficult to quantify 
(difficult also for many other unfolding methods). 

The bias should be small if the bin width is substantially larger  
than the resolution, so that there is not much bin migration. 

So if other uncertainties dominate in an analysis, correction factors 
may provide a quick and simple solution (a “first-look”). 

Still the method has important flaws and it would be best to 
avoid it. 
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Regularized unfolding 
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Regularized unfolding (2) 
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Tikhonov regularization 

Solution using Singular Value Decomposition (SVD). 
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SVD implementation of Tikhonov unfolding 
A.  Hoecker, V. Kartvelishvili, NIM A372 (1996) 469; 
(TSVDUnfold in ROOT). 

Minimizes  

Numerical implementation using Singular Value Decomposition. 

Recommendations for setting regularization parameter τ: 

 Transform variables so errors ~ Gauss(0,1); 
 number of transformed values significantly different  
 from zero gives prescription for τ; 
 or base choice of τ on unfolding of test distributions. 
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SVD example 
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Regularization function based on entropy 

Can have Bayesian motivation: 
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Example of entropy-based unfolding 
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Estimating bias and variance 

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with Tikhonov regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with entropy regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Estimating systematic uncertainty 
We know that unfolding introduces a bias, but quantifying this 
(including correlations) can be difficult. 

Suppose a model predicts a spectrum 

A priori suppose e.g. θ ≈ 8 ± 2.  More precisely, assign prior π(θ). 
Propagate this into a systematic covariance for the unfolded 
spectrum: 

Often in practice, one doesn’t have π(θ) but rather a few models 
that differ in spectrum.  Not obvious how to convert this into 
a meaningful covariance for the unfolded distribution. 

(Typically large 
positive correlations.) 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 117 

Stat. and sys. errors of unfolded solution 
In general the statistical covariance matrix of the unfolded  
estimators is not diagonal; need to report full 

But unfolding necessarily introduces biases as well, corresponding 
to a systematic uncertainty (also correlated between bins). 

 This is more difficult to estimate.  Suppose, nevertheless, 
 we manage to report both Ustat and Usys. 

To test a new theory depending on parameters θ, use e.g. 

Mixes frequentist and Bayesian elements; interpretation of result 
can be problematic, especially if Usys itself has large uncertainty.   
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Folding 
Suppose a theory predicts f(y) → µ (may depend on parameters θ). 

Given the response matrix R and expected background β, this  
predicts the expected numbers of observed events:  

From this we can get the likelihood, e.g., for Poisson data, 

And using this we can fit parameters and/or test, e.g., using 
the likelihood ratio statistic 
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Versus unfolding 
If we have an unfolded spectrum and full statistical and 
systematic covariance matrices, to compare this to a model µ 
compute likelihood 

where 

Complications because one needs estimate of systematic bias Usys. 

If we find a gain in sensitivity from the test using the unfolded 
distribution, e.g., through a decrease in statistical errors, then we  
are exploiting information inserted via the regularization (e.g.,  
imposed smoothness). 
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ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of θ should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Crucial point is to use full covariance, not just diagonal errors. 
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Summary/discussion 
Unfolding can be a minefield and is not necessary if goal is to  
compare measured distribution with a model prediction. 

Even comparison of uncorrected distribution with future theories  
not a problem, as long as it is reported together with the expected  
background and response matrix. 

 In practice complications because these ingredients have 
 uncertainties, and they must be reported as well.  

Unfolding useful for getting an actual estimate of the distribution 
we think we’ve measured; can e.g. compare ATLAS/CMS. 

Model test using unfolded distribution should take account of  
the (correlated) bias introduced by the unfolding procedure. 



Finally... 
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Estimation of parameters is usually the “easy” part of 
statistics: 

 Frequentist:  maximize the likelihood. 

 Bayesian:  find posterior pdf and summarize (e.g. mode). 

 Standard tools for quantifying precision of estimates: 
 Variance of estimators, confidence intervals,... 

But there are many potential stumbling blocks: 

 bias versus variance trade-off (how many parameters to fit?); 

 goodness of fit (usually only for LS or binned data); 

 choice of prior for Bayesian approach; 

 unexpected behaviour in LS averages with correlations,... 

We will practice this afternoon with MINUIT. 



Extra Slides 
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Covariance, correlation, etc. 
For a pair of random variables x and y, the covariance and 
correlation are 

One only talks about the correlation of two quantities to which one 
assigns probability (i.e., random variables).   

So in frequentist statistics, estimators for parameters can be 
correlated, but not the parameters themselves. 

In Bayesian statistics it does make sense to say that two parameters 
are correlated, e.g.,   
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Example of “correlated systematics” 
Suppose we carry out two independent measurements of the  
length of an object using two rulers with diferent thermal 
expansion properties. 

Suppose the temperature is not known exactly but must 
be measured (but lengths measured together so T same for both), 

and the (uncorrected) length measurements are modeled as 

The expectation value of the measured length Li (i = 1, 2)  
is related to true length λ at a reference temperature τ0 by 
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Two rulers (2) 
The model thus treats the measurements T, L1, L2 as uncorrelated 
with standard deviations σT, σ1, σ2, respectively: 

Alternatively we could correct each raw measurement:  

which introduces a correlation between y1, y2 and T 

But the likelihood function (multivariate Gauss in T, y1, y2)  
is the same function of τ and λ as before. 

     Language of y1, y2:  temperature gives correlated systematic. 
     Language of L1, L2:  temperature gives “coherent” systematic. 
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Two rulers (3) 

Outcome has some surprises: 

Estimate of λ does not lie 
between y1 and y2. 
 
Stat. error on new estimate 
of temperature substantially 
smaller than initial σT. 
 
These are features, not bugs, 
that result from our model 
assumptions. 
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Two rulers (4) 
We may re-examine the assumptions of our model and  
conclude that, say, the parameters α1, α2 and τ0 were also 
uncertain. 

We may treat their nominal values as measurements (need a model; 
Gaussian?) and regard α1, α2 and τ0  as as nuisance parameters. 
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Two rulers (5) 
The outcome changes; some surprises may be “reduced”. 


