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Parameter estimation

The parameters of a pdf are constants that characterize
its shape, e.g.
f(w;0) = —e—x/ ’

/\

I.vV parameter

Suppose we have a sample of observed values: © = (x1,...,xn)

We want to find some function of the data to estimate the
parameter(s):

o(z) «— estimator written with a hat

Sometimes we say ‘estimator’ for the function of x, ..., x,;

no

‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

_ Y best

large
variance

g(0;0)

biased

—p
%

v
)

We want small (or zero) bias (systematic error): b= E[0] — 0

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error): V0]

— small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter: u = E|x]

Estimator: g = Z T; (‘sample mean”)

Weftind: b=FE[g]—pn=0

~ 02
Vi =" (aﬁ=
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An estimator for the variance

Parameter: 02 = V[z]

Estimator: o2 = y Z (z; — %)% = (‘sample
e variance’)

We find:
b= E[c;\Q] — 02 =20 (factor of n—1 makes this so)

3 1 n—3
V[UQ]:;OM_n—l

,ug) ,  where

pr = [ (@ w*f@) deo
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The likelihood function

Suppose the entire result of an experiment (set of measurements)
1s a collection of numbers x, and suppose the joint pdf for
the data x 1s a function that depends on a set of parameters 6:

f(Z;0)

Now evaluate this function with the data obtained and
regard 1t as a function of the parameter(s). This 1s the
likelithood function:

L(9) = f(&;0) (x constant)
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The likelihood function for 1.1.d.*. data

* 1.1.d. = independent and identically distributed

Consider n independent observations of x: x,, ..., x,, where
x follows f (x; 6). The joint pdf for the whole data sample is:

1=1

In this case the likelihood function is

L(0) = [ f(xi; 6) (x; constant)
i=1
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Maximum likelihood estimators

If the hypothesized 6 1s close to the true value, then we expect
a high probability to get data like that which we actually found.

8 6 & °
e e
S~ — log L=41 2 (ML fit) (&) S~ — logL=139 (b)
-~ log L=41 0 (true parameters) --- logL=189

4 4

2 2

o | o y BB

-02 0 02 0.4 06
X X

So we define the maximum likelthood (ML) estimator(s) to be
the parameter value(s) for which the likelihood 1s maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).
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ML example: parameter of exponential pdf

1
Consider exponential pdf, — f(t;7) = —e t/7
-

and suppose we have 1.1.d. data, t1,...,tn
L |
The likelihood function is L(7) = [[ —e /"
i=1"7

The value of 7 for which L(t) 1s maximum also gives the
maximum value of 1its logarithm (the log-likelihood function):

L) =S Infltgm) =Y (lnl_ﬁ)
=1

i—=1 T T
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ML example: parameter of exponential pdf (2)

o : . In L
Find its maximum by setting 0 5 (7) =0,
T
1 n
— ; Z tz 1

J®

1=1

075

Monte Carlo test:
generate 50 values

05
using 7= 1:
025 |
We find the ML estimate:
O 11
T = 1.062 0 1 2 3 4 5
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Functions of ML estimators

Suppose we had written the exponential pdf as f(t;A) = Xe M
1.e., we use A= 1/7. What i1s the ML estimator for A?

For a function o 0) of a parameter 6, it doesn’t matter
whether we express L as a function of o or 6.

The ML estimator of a function a(6) is simply & = «(9) .

_ (; - ) |

Caveat: ) is biased, even though 7 is unbiased.

| =

So for the decay constant we have )\ =

n

Can show E[)\] = )

S (bias —0 for n — )
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Example of ML: parameters of Gaussian pdf

Consider independent x,, ..., x,, with x, ~ Gaussian (u,0?)

Fain,0?) = e (0007207
o

The log-likelihood function 1s

NL(wo?) = 3 In faipo?)
1=1

1=1
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Example of ML: parameters of Gaussian pdf (2)

Set derivatives with respect to 1, o> to zero and solve,
1 n 12
2 _ 2
— o = — x; — :
- ; - Z ( 1 U)

We already know that the estimator for ¢ 1s unbiased.

n—1 .
But we find, however, E[0?] = ~ ~6?, so ML estimator
n

for ¢ has a bias, but »—0 for n—o0. Recall, however, that

> 1 & 2
s° = > (@ — 1)

n—1,2

1s an unbiased estimator for .

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013



Variance of estimators: Monte Carlo method

Having estimated our parameter we now need to report its
‘statistical error’, 1.e., how widely distributed would estimates

be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from CREN!
sample variance of estimates Jm
we find: 100 %
o> = 0.151
Note distribution of estimates is roughly ~ | % ‘
Gaussian — (almost) always true for -
ML 1n large sample limit. "o o5 1 15
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the

variance of any estimator (not only ML): . ,
Minimum Variance

9N 2 921n I, Bound (MVB)
sz(““%) /E[_ 962 ] (b= E[0] - 0)

Often the bias b 1s small, and equality either holds exactly or
1s a good approximation (e.g. large data sample limit). Then,

821In L
s f[EE

Estimate this using the 2nd derivative of In L at its maximum:

_1
18] = — (82In L)

062

-~

0=0
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Variance of estimators: graphical method

Expand In L (6) about 1ts maximum:

. [0InL _ 921In L _
InL(9)=InL(9)—|—[ 8”9 ]9 9(9—9)+%[ 89”2 ] (0-0)2+...
— ' 60=0

Firstterm1s In L., second term 1s zero, for third term use
information inequality (assume equality):
0 —0)2
In L(0) =~ In Lmax — ( — )
2025

ie., InL(O+ G5) ~ IN Lmax —%

— to get 05, change 6 away from & until In L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential: € *5
= T-M T tem,
7 = 1.062
AT = 0.137
A7, = 0.165
Gz ~ AT_~AFL~015 o e

T

Not quite parabolic In L since finite sample size (n = 50).
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Information inequality for n parameters

Suppose we have estimated n parameters 0= (01,...,00).

The (inverse) minimum variance bound 1s given by the
Fisher information matrix:

I =E

2 a2 o
_o%inLy _ f(a:;@)a In f(z:0)
86,00 80,00 ;

The information inequality then states that V' — I"! is a positive
semi-definite matrix, where V;; = cov([f;,0;]. Therefore

Vgl > (I Yy

Often use I'! as an approximation for covariance matrix
92

estimate using e.g. matrix of 2nd derivatives at maximum of L.
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos 6,

A
> \)( _
1+ ax + Bx & P\ e

flx;a,B) =

2 +23/3 (N

I\

orifx . <x<x_ ., need always to normalize so that

max?

/xmax f(x;a,8)dr =1.

L'min

Example: a=0.5, f=0.5,x_. =-0.95,x_ =0.95,

min > “Ymax

generate n = 2000 events with Monte Carlo.
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Example of ML with 2 parameters: fit result

Finding maximum of In L( ¢, 3) numerically (MINUIT) gives

—~ : 1 T T
a = O . 5 O 8 < —— Monte Carlo data

-- ML fit result

~ 08

B = 0.47

N.B. No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or ?). o2t

04 FI[fF~Y4--=3 .

. — 021In L .
(Co)variances from (V—1);; = — ~ (MINUIT routine
00;00; | g—g HESSE)
55 = 0.052 cov[a,B] = 0.0026
53 = 0.11 r = 0.46
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Two-parameter fit: MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

1 ; : ; 5 ; : . = .
; | o | & = 0.499
075 | Lo . .
. _ s; = 0.051
05 —
2+ § N AC
o | _ B = 0.498
N L s; = 0.111
0 025 05 0.75 1 0 0.25 05 0.75 1 N
2 ; cov|d, B] = 0.0024
N ro= 0.42
8
6
.l | Estimates average to ~ true values;
) | | (Co)variances close to previous estimates;
0 e marginal pdfs approximately Gaussian.
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Theln L_,. — 1/2 contour

For large n, In L takes on quadratic form near maximum:

In L(a, B) ~ In Lmax
1 N2 (6-8\° 3\ (56— B
B o — — _2 <Oé—Oé> —
2(1—p?) {( o4 > +( o3 ) ’ e 98
The contour In L(«, 8) = In Lmax — 1/2 1s an ellipse:

1 (a—&>2+ B—p 22p<04—07> B-PB 1
(1—,02) oy JB 04 O'B
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(Co)variances from In L contour

0.7

05 | : The a, f plane for the first

MC data set
05 | truevalue — . -
a L ML fit result
<

04 \

03

.t InL(a,8) = InLmax — 1/2

| | |
0.3 0.4 05 0.6 0.7

o

— Tangent lines to contours give standard deviations.

— Angle of ellipse ¢ related to correlation: tan2¢ =

Correlations between estimators result in an increase
in their standard deviations (statistical errors).
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G. Cowan

Extended ML

Sometimes regard n not as fixed, but as a Poisson r.v., mean v.
Result of experiment defined as: n, x, ..., x,.
The (extended) likelihood function 1s:

Vn

L(v,0) = Ze™ [ (i 0)
s i=1

Suppose theory gives v =v(6), then the log-likelihood 1s

InL@) = —v(@) + 3. In(w(@) (i ) + C
1=1

where C represents terms not depending on 6.

INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Extended ML (2)

Example: expected number of events v(0) = o(0) / Ldt
where the total cross section o(6) 1s predicted as a function of

the parameters of a theory, as 1s the distribution of a variable x.

Extended ML uses more info — smaller errors for 6

Important e.g. for anomalous couplings in etfe™ > W™W~

If v does not depend on @ but remains a free parameter,
extended ML gives:
v = n

same as ML

)
|

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Extended ML example

Consider two types of events (e.g., signal and background) each
of which predict a given pdf for the variable x: f(x) and f, (x).

We observe a mixture of the two event types, signal fraction = 6,
expected total number = v, observed total number = n.

Let us = 0v, pp = (1 — 0)v, goal is to estimate u, u,.

. _ bs Kb
f(@; ps, pp) MS+bes(a:)+us+ubfb(x)

P(n; ps, pp) = (s ‘?:I/ib) e (kstip)

— In L(us, pp) = —(,UJS‘|‘Mb)‘|‘.Z In [Cus + pp) f(xi; s, )]

=1
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Extended ML example (2)

f(x)

Monte Carlo example
with combination of 08
exponential and Gaussian:

(a)

06

04

ps = 6

60 02 r
o LU L Ot SR L

0 0.5 1 1.5 2

Hb

Maximize log-likelithood 1n
terms of u, and w;:

X

Here errors reflect total Poisson
fis = 8.7 £5.5 / fluctuation as well as that in

p = 54.31£8.8 proportion of signal/background.
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Extended ML example: an unphysical estimate

A downwards fluctuation of data in the peak region can lead
to even fewer events than what would be obtained from

background alone.

Estimate for u, here pushed 06
negative (unphysical).

04

We can let this happen as 02 |
long s the (total) pdf stays TR AR TRRT TR TR
positive everywhere.

2 05 : 15 2

X

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Unphysical estimators (2)

Here the unphysical estimator 1s unbiased and should
nevertheless be reported, since average of a large number of
unbiased estimates converges to the true value (cf. PDG).

—~, 30

v
«=.
Nt
-

Repeat entire MC 20 | _
experiment many times,

allow unphysical estimates:
10 +  unphysical -

estimates

g =
; % L U ln

‘ 20 10 0 10 20 30

Hy
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ML with binned data

N
Often put data into a histogram: 7@ = (nq,...,ny), ntet = »_ 7y
i=1
N
Hypothesisis 7= (v1,...,vN), tot = »_ v;  Where
i=1

vi0) = vot | f(a;0) da

bin<

If we model the data as multinomial (n,,, constant),

ni ny
. Ntot! V1 VN
£ 7) = — .( ) ( )
ni:-... NN \Ntot Ntot

N
then the log-likelihood function is: InL(F) = 3 n;Iny;(0) + C
i=1
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ML example with binned data

Previous example with exponential, now put data into histogram:

S 25
= — data
]
20 H --- ML fit to histogram
\
)
5 Lo 1 7 =1.07=+0.17
A
\
P A | (1.06 &= 0.15 for unbinned
\
\ 1L with same sample
s L N . ML witl pl
I I o e N
0 1 2 3 4 5

t

Limit of zero bin width — usual unbinned ML.

If n. treated as Poisson, we get extended log-likelihood:

N
In L(vtot, 0) = —vtot + > niInv;(viot, 0) + C
i=1
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Relationship between ML and Bayesian estimators

In Bayesian statistics, both @ and x are random variables:
L(0) = L(f|9) — fjoint(ﬂe)

Recall the Bayesian method:

Use subjective probability for hypotheses (6);
before experiment, knowledge summarized by prior pdf 7( 6);
use Bayes’ theorem to update prior in light of data:

L(Z|0)m(0)
[ L(Z6D (") db’

p(0]|T) =
/'

Posterior pdf (conditional pdf for 6 given x)
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ML and Bayesian estimators (2)

Purist Bayesian: p(6 | x) contains all knowledge about 6.
Pragmatist Bayesian: p(60|x) could be a complicated function,

— summarize using an estimator 9Bayes

Take mode of p(60 | x) , (could also use e.g. expectation value)

What do we use for 77(6)? No golden rule (subjective!), often
represent ‘prior ignorance’ by si( 6) = constant, in which case

eBayes = OmL

But... we could have used a different parameter, e.g., A=1/6,
and 1f prior 7, 0) 1s constant, then s,(A) 1s not!

‘Complete prior ignorance’ is not well defined.
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Priors from formal rules

Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors”
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).

In a Subjective Bayesian analysis, using objective priors can be an
important part of the sensitivity analysis.
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Priors from formal rules (cont.)

In Objective Bayesian analysis, can use the intervals in a
frequentist way, 1.e., regard Bayes’ theorem as a recipe to produce
an interval with certain coverage properties. For a review see:

Robert E. Kass and Larry Wasserman, The Selection of Prior Distributions by

Formal Rules, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there 1s
recent interest in this direction; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, arxiv:1002.1111 (Feb 2010)
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Jeffreys’ prior

According to Jeffreys’ rule, take prior according to

m(6) x \/det(1(0))
where

L(x|0) dx

I..(6) - — 0% In L(x|6) __/UzlllL(:lf|9)
WS 00,00, | 06,00 ;

1s the Fisher information matrix.

One can show that this leads to inference that 1s invariant under
a transformation of parameters.

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson
mean w it is proportional to 1/V .

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Jeffreys’ prior for Poisson mean

Suppose n ~ Poisson(u). To find the Jeffreys’ prior for wu,

n 2
L(nlp) = Fon el __"

n! o2 12

m(p) oc\/I(p) = —

So e.g. for u= s + b, this means the prior 7(s) ~ 1/N(s + b), which
depends on 5. But this is not designed as a degree of belief about s.
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The method of least squares

Suppose we measure N values, y,, ..., Yy,
assumed to be independent Gaussian
r.v.s with

Ely;] = Axs;0) .

Assume known values of the control
variable x,, ..., x,, and known variances

Vil = o7 .

We want to estimate 6, 1.e., fit the curve to the data points.

The likelithood function is

(0) IJ_V[ f(yi; 0) IJ_V[ /—1

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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2
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The method of least squares (2)

The log-likelihood function 1s therefore

N . 2
- — Xz 0
In L(0) = _1 E (s (;32 ) + terms not depending on 0
2 . 1
1=

g,

So maximizing the likelihood is equivalent to minimizing

N (v — Nz 0))2
co=3 (= A 0)

Minimum defines the least squares (LS) estimator 0.

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize y? numerically (e.g. program MINUIT).
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LS with correlated measurements

If the y, follow a multivariate Gaussian, covariance matrix V,

- 1
y, A\, V)= ex
9y ) (2m) N2V |1/2

1 . - L o
P —5(9 — A)TV 1(y —A)
Then maximizing the likelihood 1s equivalent to minimizing

N
X2(0) = 3 (yi— Az 0) (V1 (y; — M(xj; 0))
1,J=1
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Example of least squares fit

p
Fit a polynomial of order p: A(z;00,...,0p) = >  Onpz"
n=0

Y ' ' ' ' 3
6 — O"order. x2=455 :
-~ - 1% order. x2= 399 :
4" order, ¥2=0.0 I,"
4 - e -
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Variance of LS estimators

In most cases of interest we obtain the variance in a manner
similar to ML. E.g. for data ~ Gaussian we have

2 — _
x~(0) = —21In L(6) = — 5
and so ;;; : | | [ (@
/i 82X2 —1 465
0~g ~ 2 002
0=0

or for the graphical method we
take the values of 6 where 455 |

X2(9) — Xr2nin +1 25 | 2..6 | 217 28 29
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Two-parameter LS fit

2-parameter case (line with nonzero slope):

08

06

O = 0.93 =+ 0.30, °
01 = 0.68 £ 0.10

cov|fy, 01] = —0.028
r=—0.90

Y2 = 3.99 )

Tangent lines — T4, Ty

(b)

04

06

0.8 1

Angle of ellipse — correlation (same as for ML)
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Goodness-of-fit with least squares

The value of the »? at its minimum is a measure of the level
of agreement between the data and fitted curve:

N -\ \2
Xmin — Z Z 2Z
i=1 g

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form A(x; 6).

We can show that if the hypothesis is correct, then the statistic
t = .. follows the chi-square pdf,

1
. _ ng/2—1_—t/2
na) = e ngray” ¢

where the number of degrees of freedom i1s

ny = number of data points — number of fitted parameters

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number
of degrees of freedom, so if )?_. = n,the fitis ‘good’.

@)

More generally, find the p-value: p = / ) f(t;ng) dt

Xmin
This is the probability of obtaining a »?, . as high as the one
we got, or higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (line),

X2 = 3.99, ng=>5-2=3, p = 0.263

whereas for the Oth order polynomial (horizontal line),

X2 = 45.5, ng=5-1=4, p=3.1x10""7

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Goodness-of-fit vs. statistical errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (0'9*)

Value of X12nin — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

y

I I I I I

. 6 — 6,=284+013 .
Op = 2.84 +0.13 =448
2 B -
Xmin = 4.48 ! + {
| |
Variance same as before, _ 1 1

2 ;
NOW Xpmin good’.
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Goodness-of-fit vs. stat. errors (2)

— XQ(HO) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution

of the estimates @. (Doesn’t tell us whether hypothesis correct.)

P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic X12ni11'

Low P-value — hypothesis may be wrong — systematic error.

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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LS with binned data

1 1 T

Jix)

Histogram: 0g | - fited pdf

N bins, 1 entries.
06 r

Hypothesized pdf:
f(z;0) 04 |

02 r

— normalized histogram

We have

Y; = number of entries in bin 2,

— wmd*( — -
)\z( ) — n/a:mm f(x) )d.’E npz( )
1
G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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LS with binned data (2)
LS fit: minimize

N
2 _
X (9) B igl o

where 03 = V[yz-], here not known a priori.

Treat the y; as Poisson r.v.s, in place of true variance take either

)

o7 = X\i(6) (LS method)

0% =1v;  (Modified LS method)

MLS sometimes easier computationally, but X12nin no longer follows

chi-square pdf (or is undefined) if some bins have few (or no) entries.

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013 50



LS with binned data — normalization

Do not ‘fit the normalization’:

max — —

/\z-(ﬁ—', V) = I//men f(z;0)dx = vp;(0)

Ly

i.e. introduce adjustable v, fit along with 6.

U is a bad estimator for 1 (which we know, anyway!)

X 12nin
2

IQLSI’I?J-}-

A . 9
VMLS = T — Xmin
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LS normalization example
Example with n = 400 entries, N = 20 bins:

< 80 I 4ata (400 entries) @ 1 = 60— data (400 entries) (b)

-—— LS: ¥*=17.1,v=4085+20.2 -—- LS: ¥*=17.3, v = 400 (fixed)

---------- MLS: y2=17.8,v=3822+195 wwee ML: %2 =17.6, 9= 400.0 £20.0

40 R
20
0 1 1 1 0 1 1 1
0 0.5 1 15 2 0 05 1 15
X

2
Expect Xz, around N — m,
— relative error in © large when /N large, n small

Either get n directly from data for LS (or better, use ML).

INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Goodness of fit from the likelithood ratio

Suppose we model data using a likelihood L(x) that depends on N
parameters u = (u,..., it,). Define the statistic

L(p)
L(f)

Value of 7, reflects agreement between hypothesized u and the
data.
Good agreement means s = u, SO t, 1s small;

tpy=—2In

Larger ¢, means less compatibility between data and p.

oo
Quantify “goodness of fit” with p-value: p, = / f(tu|p)dt,

tp, ,obs
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Likelihood ratio (2)

Now suppose the parameters u = (u,,..., #,) can be determined by
another set of parameters 0 = (0,,..., 0,,), with M < N.

E.g. in LS fit, use u, = u(x;; @) where x 1s a control variable.

Define the statistic
/ fit M parameters

\ fit N parameters

Use g, to test hypothesized functional form of u(x; 6).
To get p-value, need pdf flg,|).
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Wilks’ Theorem (1938)

Wilks’ Theorem: 1f the hypothesized parameters g = (u,..., 1) are
true then in the large sample limit (and provided certain conditions
are satisfied) ¢, and g, follow chi-square distributions.

For case with g = (uy,..., 1) fixed in numerator:

L(p)

ty = —2In—— f(tulp) ~ X3
H L (”’) H N\
Or if M parameters adjusted in numerator, degrees of
L (é)) / freedom
H 2
= —2In —— F(qulre) ~ XN-m
" L(i)

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.
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Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:

y; ~ Gauss(pi, ;) , i=1,...,N

want to estimate

N
Likelihood: Lip)=T1] e~ (Wi—pi)*/207

1
—1 \/271'0’7;

1 N (yi — pi)?
Log-likelihood: InL(p) = —3 Z i — 1) +C

2
i—1 i
ML estimators:  [i; = y; 1=1,...,N
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Likelihood ratios for Gaussian data

The goodness-of-fit statistics become

; ftulm) ~ X%

5 N A
qu = —2In ngflé;)) =) (Y _5;(0))2 F(@ulr) ~ XN-m
i=1 i

So Wilks’ theorem formally states the well-known property
of the minimized chi-squared from an LS fit.
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[Likelihood ratio for Poisson data

Suppose the data are a set of values n = (n,,..., n,), €.g., the
numbers of events in a histogram with N bins.

Assume n; ~ Poisson(v,), i = 1,..., IV, all independent.

Goal 1s to estimate v = (v,,..., V).

n;

N
Likelihood: Lv) =[] Z5e™
i=1 "

n
N

Log-likelihood: InL(v) = Z niny; — ] +C
i=1

ML estimators: v; =n; , 1=1,...,N
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Goodness of fit with Poisson data

The likelihood ratio statistic (all parameters fixed in numerator):

L(v)

t, = _QIHL(f/)

N
— —QZ [nzlni —Vi+19i]
i=1 Vi

N .
= —QZ [nilnﬁ—ui+ni]

: T
1=1 )

Wilks’ theorem:  f(t,|v) ~ x4
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Goodness of fit with Poisson data (2)

Or with M fitted parameters in numerator:

L(v(9)) al vi(0)
gy = —21In L) _—2; n; In n —v;(0) + n;

Wilks’ theorem:  f(qu|V) ~ X%

Use ¢,, g, to quantity goodness of fit (p-value).

Sampling distribution from Wilks’ theorem (chi-square).

Exact in large sample limit; in practice good approximation for
surprisingly small 7, (~several).
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Goodness of fit with multinomial data

Similar 1f data n = (n,,..., n,) follow multinomial distribution:

Ntot!

nilne!...n

P(n|p,not) = N!p?1p32 DAY

E.g. histogram with N bins but fix: 7Ntot = Z n;

Log-likelihood: In L(v Z n; In (Vi = piftot)

ntot

ML estimators: U; = n; (Only N—1 independent; one
1s n,,, minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

U
tV:—QZniln# ftulv) ~ xnv_q
i—1 i

flau|v) ~ X?V—M—l

quv

||
o
]
S
=
S

One less degree of freedom than in Poisson case because
effectively only N—1 parameters fitted in denominator.
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Estimators and g.o.f. all at once

Evaluate numerators with # (not its estimator):

N
2 v;(6) :
xp(0) 2;::1 lnz In o vi(0) + n; (Poisson)
N
2 _ . vi(6) N
xm(@) = —2 222:1 n;In nz_ (Multinomial)

These are equal to the corresponding -2 In L(#), so minimizing
them gives the usual ML estimators for 6.

The minimized value gives the statistic g,, so we get
goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and
likelihood functions in fits to histograms, NIM 221 (1984) 437.
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Using LS to combine measurements

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;
U,l-? = V[yi], assume known;

A = true value (plays role of ).

For uncorrelated ;, minimize

2 N (yi — A’
A) = ,
() igl o?
Set %\E = () and solve,
N 2
< Sl vifo; 2 1
- A= : VAl =
ity 1/0; sy 1/0?

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Combining correlated measurements with LS

If COV[y?;, y]] = V;'j, minimize

) = 5 (i — NV Visly; = N,

i,J=1
N —1
. N o (V7
)\ - w;Yy;. w,; = j=1 Y
— El iYi () Z]]Xlzl(v_l)kl

N
VIAl= X wiVijw;

t,J=1

LS A has zero bias, minimum variance (Gauss-Markov theorem).
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Example: averaging two correlated measurements

2
o{ pPO103 )

Suppose we have y1, ¢2, and V' = ( 9
po102 05

A 2—
LA =wp + (- w), w =2 PO

0% + 03 — 2p0,09

R 2\ 2 2
V[)\] . (1 P )0102 2

p— = g
0? + 03 — 2p0109

The increase in inverse variance due to 2nd measurement is

— 2nd measurement can only help.
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Negative weights 1in LS average

If p > o1/09, — w < 0,

— weighted average is not between 1 and ys (!7)
Cannot happen if correlation due to common data, but

possible for shared random effect; very unreliable if e.g.

P, 01, 09 ncorrect.

See example in SDA Section 7.6.1 with two measurements at same
temperature using two rulers, different thermal expansion coefficients:
average is outside the two measurements; used to improve

estimate of temperature.

G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.
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Example: fitting a straight line

Data: (xz;,vy;,0;),i=1,...,n.

Model: y. independent and all follow y, ~ Gauss(u(x; ), o;)

,LL(CE, 907 91) — 90 + 012,
assume x; and 0. known.
Goal: estimate 6,

Here suppose we don’t care
about 0, (example of a
“nuisance parameter”)

1.8
+ data
16+ —— model
14 F I
i 1
L
1.2 |
1 -
0‘8 1 1 1 1
0 0.4 0.8 1.2 1.6
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Maximum likelihood fit with Gaussian data

In this example, the y; are assumed independent, so the
likelihood function 1s a product of Gaussians:

n 1 1 (y; — p(xy; g, 01))?
L(0g,01) = exp (—3 )
il;ll V2mo; 2 %2

Maximizing the likelihood is here equivalent to minimizing

v2(0p,601) = —21In L(0p, 01)+const = > (i M(xZQ 0,1)) .

i=1 g;

1.e., for Gaussian data, ML same as Method of Least Squares (LS)
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0, known a priori

| . — u(zy; 00,01))?
L(6g) = H exp _l(yz /L(ZUZQ 0,01)) .
=1 V2mo; 2 o;
. (y; — p(wg; 00, 01))2
v2(0p) = —2In L(0p)4const = > (i “(%2 0,61)) .
. o
1=1 ()
~ 105
T
For Gaussian y,, ML same as LS | 5 ,
| | -
. . . ) —~ 9.3 i
Minimize )?> — estimator 0, . 2 ‘
. 87T
Come up one unit from xai, e *
to find o O - 8T %,
0
7‘?.26 1 .I28 T 1 .I3 1.32
8, %
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ML (or LS) fit of 6, and 6,

n . 2
- — u(x;: 0,0
\2(09,01) = —21n L0, 07)+const = 3 ¥~ 421 00, 01))7
i=1 g,
o o 0.11

Standard deviations from
tangent lines to contour 0.092F

2 2

X°=Xmint+ 1. 0.074 -
Correlation between 0.056

Ao, 01 causes errors 0.038 | o,

0
to 1Increase.
0.02 1 H 1 H 1 M |
T24 126 128 13 132 134

%
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[f we have a measurement ¢, ~ Gauss (6,, %)

The information on 6,

improves accuracy of 6 .

G. Cowan

2(00.01) = z”: (yi — (xi; 0o, 01))? G —t1)?

2
i=1 g; Oty

~ 0.11

0.092

0.074

0.056

0.038 [ —» «— O,

0.02 | " 1 " N |
1.24 1.26 1.28 13 1.32 1.34
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The Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value 0.

Interpret probability of 8 as ‘degree of belief” (subjective).

Need to start with ‘prior pdf” a(6), this reflects degree
of belief about 8 before doing the experiment.

Our experiment has data x, — likelihood function L(x|6).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

L(x[0)m(0)
[ L(z|0")w(0") do’

p(0|z) = o L(x|0)m(6)
Posterior pdf p(60 | x) contains all our knowledge about 6.
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Bayesian method

We need to associate prior probabilities with 6, and 0,, e.g.,

m(00,01) = mo(bo) 71(01) ‘non-informative’, in any
7'('0(90) — const. — case much broader than L(90>
2 2 .
71(01) = %e_(el_tl) /2981« based on previous
2oty measurement
Putting this into Bayes’ theorem gives:
1 : 2 /5,2 1 —(01—t1)2/202
—(yi—n(24;00,01))%/202 1+ —(01-t1)/20;
p(0o, 01]Y) H \/—UZ 0 \/%Utle 1
posterior o likelihood X  prior

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Bayesian method (continued)
We then integrate (marginalize) p(6,, 6, | x) to find p(6, | x):
p(Oolz) = /p(90,91|$) doy .

In this example we can do the integral (rare). We find

1 —(0p0—00)? /202 .
p(Oplx) = e (00=00)%/273, with
V2moy,
o = same as ML estimator
09y = O, (same as before)

Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.
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Digression: marginalization with MCMC

Bayesian computations involve integrals like
p(6ol2) = [ p(00, 61x) dby .

often high dimensionality and impossible in closed form,

also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than Vn .

Basic idea: sample multidimensional 4,

look, e.g., only at distribution of parameters of interest.
G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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MCMC basics: Metropolis-Hastings algorithm
Goal: given an n-dimensional pdf p(0) |

generate a sequence of points 51, 52, 53, .

Proposal density q(0; 50)
&g Gaussian centred

2) Generate 0 ~ q(g; 50) about g

1) Start at some point 50

3) Form Hastings test ratio a = min |1

p(6)q(fg; 0) ]
p(00)q(6; 0p)
4) Generate u ~ Uniform|0, 1]

5 If u<a«a, 01 = 0 , +— move to proposed point

else 1 = 60p +— old point repeated

6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
ecach new point depends on the previous one).

For our purposes this correlation 1s not fatal, but statistical
errors larger than if points had been independent.

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation. Often take proposal
density symmetric: q(0; 0p) = q(0; )

p(6)
p(6o)
Le. if the proposed step is to a point of higher p(6) , take it;

if not, only take the step with probability p(0) / p(0g) .
If proposed step rejected, hop 1n place.

Test ratio 1s (Metropolis-Hastings): o« = min |1,

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013
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Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows
the desired pdf in the limit where 1t runs forever.

There may be a “burn-in” period where the sequence does
not initially follow p(@) .

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try it again starting from 10
different initial points and see if you find same result.
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Example: posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

61 0.085 ¢

Q.08
0.085
0.08
0.075
0.07
0.065
0.06
0.055
0.05
0.045

180
160
140
120
160

80
60
40
20

0

LY AR LAL LALRN AR AR LA LAY R

200
175
150
125
100
75
50
25

AN AARAN ARSI RN AN BAAE N LA AN AR W
ki LA | | LARA| | LSRR |

] |- 11 1 ) I 11
1.25 1.275 1.3 1.325

L LAR AR RN AR AN RN RARN AR

Koo

SN

My

1.25 1275 1.3

1.325

0o

0 ] Lali o Il Il
0.05 0.06 0.07 0.08

)
01
Summarize pdf of parameter of

interest with, e.g., mean, median,
standard deviation, etc.

Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

G. Cowan
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Bayesian method with alternative priors

Suppose we don’t have a previous measurement of 6, but rather,
€.g., a theorist says it should be positive and not too much greater
than 0.1 "or so", 1.e., something like

1
71(01) = _e

1/ 9y >0, 7=0.1.

From this we obtain (numerically) the posterior pdf for 6,:

40

P(6,ly)

32

24 -

16

G. Cowan

—1=0.1
----- t=0.01
-—1=0.001

This summarizes all
knowledge about 6.

_— Look also at result from
variety of priors.

0 Laazem®” 1 1
12 1.25 13 1.35

14

1.45
0

0
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A more general fit (symbolic)

. stat SYS -
Given measurements: yi o3 +0?, i=1,...,n,
and (usually) covariances: V3, V' .

Predicted value: w(x;; 0')\, expectation value FEly;] = u(z;; 0) + b;
/ /

control variable parameters bias
: __ y/stat sys
Often take: Vj; = V5" + V>
Minimize x*(8) = (§ — ()" V(7 — fi(9))

Equivalent to maximizing L(6) » e X 2, 1.e., least squares same
as maximum likelihood using a Gaussian likelihood function.
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Its Bayesian equivalent

Take  L(#]0,b) ~ exp [—%(37— A(0) —b)" Vear (7 — [i(6) — b)

Vet

- 1
1, (B) ~ exp [_5

Joint probability
mp(0) ~ const. / for all parameters

and use Bayes’ theorem:  p(0,b|7) o L(i]6, b)my(0) (D)
To get desired probability for 6, integrate (marginalize) over b:
p(017) = | p(6,817) db

— Posterior 1s Gaussian with mode same as least squares estimator,
o, same as from y* = x? . + 1. (Back where we started!)
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious
Do analysis 1n n ‘equally valid’ ways and
extract systematic error from ‘spread’ in results.
Some are educated guesses
Guess possible size of missing terms 1n perturbation series;

vary renormalization scale (1/2 <Q <2u7?)

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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Motivating a non-Gaussian prior 5, (b)

Suppose now the experiment is characterized by

Etat O_S)/S

: S, 8, 1=1,...,n,

Y o

where s; 1s an (unreported) factor by which the systematic error 1s
over/under-estimated.
Assume correct error for a Gaussian s,(b) would be 5,055, so

b7
2 (8;037°)2

mp(b;) =

] 7'('5(87;) dSZ'

\

Width of o(s;) reflects
‘error on the error’.

1
exp
/ \V 27Tsi0§ys
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Error-on-error function s,(s)

A simple unimodal probability density for 0 <s < 1 with
adjustable mean and variance i1s the Gamma distribution:

. a(as)b—le—as mean = b/a
ma(s) = r(b) variance = b/a?
ms(s) R

Want e.g. expectation value
of 1 and adjustable standard
Deviation 0, , i.e., a = b= 1/02

In fact if we took 7, (s) ~ inverse Gamma, we could integrate 7, (b)
in closed form (cf. D’ Agostini, Dose, von Linden). But Gamma
seems more natural & numerical treatment not too painful.
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Prior for bias m,(b) now has longer tails

1 bz'2
Wb(bz) _/ /_27'('37:O'Z.Sys exp [_2 ( ZO'Z.SyS)2] 7'('3(87:) dS’i
™)
b
Gaussian (6,=0)  P(|b|>40,,) = 6.3 x 107
o, = 0.5 P(|b| > 4()'Sys) = 0.65%
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A simple test

Suppose a fit effectively averages four measurements.

Take o..,.= o,.. = 0.1, uncorrelated.

SyS stat

Case #1: data appear compatible Posterior p(uly):
g . | o
- 5
v . | ! | % j
> | | =
£ <
O 05 2
& 1

experiment u

Usually summarize posterior p(uly) o¢s=0.0: p=1.000=x0.071
with mode and standard deviation: 0s=0.5: [ =1.000+0.072

G. Cowan INFN School of Statistics, Vietri Sul Mare, 3-7 June 2013

88



Simple test with inconsistent data

Case #2: there 1s an outlier Posterior p(uly):

2

05

measurement
p(uy)

experiment u
0s=0.0: f=1.1254+0.071

1.093 £+ 0.089

os = 0.5 I
— Bayesian fit less sensitive to outlier.

(See also D'Agostini 1999; Dose & von der Linden 1999)
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Goodness-of-fit vs. size of error

In LS fit, value of minimized y? does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high »? corresponds to a larger error (and vice versa).

pOSt- o l . u " ..
erior R v 2000 repetitions of
o r A I experiment, o, = 0.5,

here no actual bias.

|~ 0, trom least squares

1 ] I 1
0 2 4 6 8 10
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Formulation of the unfolding problem

Consider a random variable y, goal is to determine pdf £(y).
If parameterization f{y;#) known, find e.g. ML estimators 6.

If no parameterization available, construct histogram:

80

pj = / fy)dy
bin j

60

Hj = HtotPj

\

“true” histogram

40

expected entries

20

- New goal: construct
y  estimators for the y; (or p)).
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Migration
Effect of measurement errors: y = true value, x = observed value,
migration of entries between bins,

f(y) 1s ‘smeared out’, peaks broadened.

fmeas(Z /R 1Y) ferue(y) dy

l, discretize: dataare n = (ny,....nyN)
M
v; = En;] Z Rijpi, 1=1,...,N response
matrix

Ri; = P(observed in bin 7 |true in bin j)

Note u, v are constants; n subject to statistical fluctuations.
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Efficiency, background

Sometimes an event goes undetected:

N N
Z Ri; = Z P(observed in bin i | true value in bin j)
i=1 i=1

— P(observed anywhere | true value in bin j)

4

j <«— cfficiency

Sometimes an observed event 1s due to a background process:
M
Vi = Z Rijpg + B
j=1
B, = expected number of background events in observed histogram.
For now, assume the f, are known.
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The basic ingredients

400 400 |
N
V s
200 200
O PR S S SR I N S S [ S S S S S S S S O PURE SR S SR [ S ST S SR NN R ST SN S R S S T
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X

29

“true

G. Cowan

“observed”
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Summary of ingredients

‘true” histogram:  pu = (p1,..., pM), ot = Z“ ’

probabilities: P = (p1,...,PM) = K/ htot

expectation values for observed histogram: v = (v1,...,VN)
observed histogram: n = (ni,...,nN)
response matrix: R;; = P(observed in bin 7 | true in bin j)

N
efficiencies:  &; =Y Ry

expected background: B3 = (b1,...,0n)

These are related by: Enl=v=Ru+p

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3
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Maximum likelihood (ML) estimator
from 1nverting the response matrix

Assume v = Rp + (3 canbeinverted: p = R_I(V — ,3)

. | vt
Suppose data are independent Poisson: P (n;; 1) = o e
,i.

N
So the log-likelihood is  In L(p) = Z(ni Inv; — ;)
i=1

ML estimatoris Y = n

—> a=R'n-p)
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Example with ML solution
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What went wrong?

800

1 Suppose u really had a lot of

600 [ A A

18 q fine structure.

400

200 é’ [I

800

600 — - _ le
Applying R washes this 400 |

| d
out, but leaves a residual oo ﬁ
structure: [
_] —

Applying R 1'tov puts the fine structure back: i = R™'D.

But we don’t have v, only n. R™! “thinks” fluctuations in n are
the residual of original fine structure, puts this back into .
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ML solution revisited
For Poisson data the ML estimators are unbiased:
Eli) = R™Y(En] - B) = p
Their covariance 1s:

Uij = covlfii, fij] = Z zk R_ ) j1 cOV [N, 1]
k=1

N
= S (R YRk m
k=1

(Recall these statistical errors were huge for the example shown.)
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ML solution revisited (2)

The information inequality gives for unbiased estimators the
minimum (co)variance bound:

[@‘H(_)g‘ /,—| B i R R
laﬂ-l; a,U-'Z_I i=1 U

(U Y = —E

invert > [J;; = by (R Y (R 1

This 1s the same as the actual variance! I.e. ML solution gives

smallest variance among all unbiased estimators, even though
this variance was huge.

In unfolding one must accept some bias in exchange for a
(hopefully large) reduction in variance.
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Correction factor method

Use equal binning for ﬁ, U and take 1 = C} (n, 3; ) where

MC ) .
O — Mo \I( and ,u, © from Monte Carlo
2 l/,,-j\"IC Slmulatlon (no background).

U.,jj . ()\-’[ (4, ,[L]'] = C'.,? C()V['nia n}]

Often C; ~ O(1) so statistical errors far smaller than for ML.

pMC 10;
But the bias b; = E[,u.,j] — WUiis b = L
¢ MC S12
Vi Vi
Nonzero bias unless MC = Nature. /1
blf.’, L A

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 101



Example from Bob Cousins

Reality check on the statistical errors

Suppose for some bin i we have:
C; =0.1 B3; =0 n; = 100
—_—> [Lz' — C’znz = 10 Op; — Cz-\/-n.z- = 1.0 (10% stat.

eIror)

But according to the estimate, only 10 of the 100 events
found 1n the bin belong there; the rest spilled in from outside.

How can we have a 10% measurement if it 1s based on only 10
events that really carry information about the desired parameter?
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Discussion of correction factor method

As with all unfolding methods, we get a reduction in statistical
error 1n exchange for a bias; here the bias 1s difficult to quantify
(difficult also for many other unfolding methods).

The bias should be small 1f the bin width is substantially larger
than the resolution, so that there 1s not much bin migration.

So 1f other uncertainties dominate in an analysis, correction factors
may provide a quick and simple solution (a “first-look™).

Still the method has important flaws and 1t would be best to
avoid it.
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Regularized unfolding

Consider ‘reasonable’ estimators such that for some A log L.
l()g L([Z) > log Lma.x — A log L

Out of these estimators, choose the ‘smoothest’, by maximizing
O(fi) = o log L(f1) + S(f),

S(fi) = regularization function (measure of smoothness),

a = regularization parameter (choose to give desired A log L)
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Regularized unfolding (2)

N
In addition require > v; = ) Ri]-,u]— = Ntot. .. Maximize
i=1 i
— — — ‘7\:
90(:“7 )‘) - l()gL(,LL) + S(,LL) + A Ntot — L V;

.2' _—

N
where A is a Lagrange multiplier, OJp /X = 0 — X 1; = Nyt
1=1

a = () gives smoothest solution (ignores datal),

a — 00 gives ML solution (variance too large).

r - - . -
We need:  regularization function .S ( ,u),

a prescription for setting .
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Tikhonov regularization

Take measure of smoothness = mean square of kth derivative,

dkftrue(y)
dyk

2
) dy , wherek = 1,2, ...

S[fre(y)] = — | (

If we use Tikhonov (k = 2) with log L, = —%XQ,

M—2

S(p) =— ) (—pi +2pi41 — pit2)®
i—1

Lo Qv . .
c/)(,u, A) = —;XQ(,[L) + S(,LL) quadratic in L4;,

— setting derivatives of 0 equal to zero gives linear equations.

Solution using Singular Value Decomposition (SVD).
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SVD implementation of Tikhonov unfolding

A. Hoecker, V. Kartvelishvili, NIM A372 (1996) 469;
(TSVDUnfold in ROOT).

Minimizes Xﬁg(u) + T Z [(,U'i—l-l — i) — (Hi — Hz‘—l)g]
()

Numerical implementation using Singular Value Decomposition.
Recommendations for setting regularization parameter t:

Transform variables so errors ~ Gauss(0,1);

number of transformed values significantly different
from zero gives prescription for ;

or base choice of 7 on unfolding of test distributions.
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A. Hocker, V.

Kartvelishvili, NIM A372 (1996) 469.

0.16 37\
0.14 3
0.12 3~
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0.08 3~

0.06 3~
0.04 4
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G. Cowan

SVD example

3& : LI B I I T TT I LI B B | | L :
0 C (b) e ]
E g e b 3
250 :_ +-+-i+ . X(*)' T=S‘02E
: P ]

150 |- *ﬁ +‘+ . *3.++++ e
o —:-E -:..I I 1 I 1 1 I 1 l‘-é~ "
0 0.5 1 15 2

E (4) 12

" test
e o4 > FEgion of x

teat )
e X - X( L, oTmst

il - -
T =
III[lIIIIIII'IIIII _w_IIIIIIIIIIIIIIIIIII

10

20 30 0 0.5 1 15 2
: i : ;

St. Andrews 2012 / Statistics for HEP / Lecture 3

108



Regularization function based on entropy

Shannon entropy of a set of probabilities is

M
H = — .21 pilog pi
=

All p; equal — maximum entropy (maximum smoothness)
One p; = 1, all others = 0 — minimum entropy

Use entropy as regularization function,

N o M L i
S(i) = H(ji) = — ¥ —log
1=1 Mtot Htot

X log(mlmber of ways to arrange it entries in M bins)

Can have Bayesian motivation: S ( ;L) — prior pdf for
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G. Cowan

Example of entropy-based unfolding

I 1

(a)
20000 | Original i
- 10000 | -
0 | 1 1
0 10 20 30 40 50
o000 - blurred i
10000 i
0 | |
0 10 20 30 40 50
> I I | I I
2 0000 1 unfolded |
=
=2
10000 .
o e Il 1 1
0 10 20 30 40 50

pixel number (row 36)
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G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Estimating bias and variance

In general, the equations determining ﬁ(’fi) are nonlinear.

Expand ﬁ(ﬁ) about 7hs (observed data set),
Use error propagation to get covariance Uz-j = COV[,LALz-, ,LAL]-],

and estimators for the bias, bi = F [ILALZ'] — [,

A N ("),LALZ' .
b; = X - Ui —n
! i1 C)'n] ( J .7)7
Wherela’zRﬁ—I—g. (NBI% n. )

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 111



G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
Choosing the regularization parameter
a=0— /Aj maximally smooth (ignores data).
« — 00 — ML solution (no bias, very large variance).

Possible criteria for best trade-off between bias and variance:

Minimize mean squared error,

1 M .
M El( b)), o
1 M Uy + b2
MSE' = — . -
M z:§1 [l
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G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
Choosing the regularization parameter (2)

Or look at changes in X2 from unregularized (ML) solution,
Ay?=2AlogL =N

Or require that bias be consistent with zero to within its own error,

, M Db , -
Xb = El W, = M where W ij — COV [bz-, bj].

i.e. if bias significantly different from zero, we would subtract it;

— equivalent to going to smaller A log L or larger « (less bias).
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G. Cowan

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Some examples with Tikhonov regularization

u ﬁ T T T T B T T T T

2000 | : 200 - 1
o 1 +++ —l—_*_*_—l— 1 _'_'__I_

1000 T ot T

-200 - minimum MSE .

o 1 1 1 1 1 1 1 1

u ﬁ T T T T b T T T T
2000 ; 200 (
0 R

1000

200 xg = M 7

o 1 1 1 1
0 02 04 0.6 08 1

X X
St. Andrews 2012 / Statistics for HEP / Lecture 3 114



G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Some examples with entropy regularization

l‘lr ﬁ T T T T b
2000 | - 200
1000 — . + +_|_+ +—|—+
-200 '  minimum MSE
0 ~
l‘lr ﬁ T T T T b
2000 | 200

o Het +—I— I'I'-l— By -H' -+

JF ”rTIJr +

1000 |

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 115



Estimating systematic uncertainty

We know that unfolding introduces a bias, but quantifying this
(including correlations) can be difficult.

Suppose a model predicts a spectrum

f(y;0) ~ 1/y" — u(8)

A priori suppose e.g. 8 = 8 £ 2. More precisely, assign prior z(6).
Propagate this into a systematic covariance for the unfolded
spectrum:

o [, N | (Typically large
Uij = /(Mz — pi(0)) (5 — pi(0)) w(6) do positive correlations.)

Often 1n practice, one doesn’t have 7(6) but rather a few models
that differ in spectrum. Not obvious how to convert this into

a meaningful covariance for the unfolded distribution.
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Stat. and sys. errors of unfolded solution

In general the statistical covariance matrix of the unfolded
estimators 1s not diagonal; need to report full

Ui; = cov|fii, [i;]

But unfolding necessarily introduces biases as well, corresponding
to a systematic uncertainty (also correlated between bins).

This 1s more difficult to estimate. Suppose, nevertheless,
we manage to report both Uy, and U,

To test a new theory depending on parameters @, use e.g.

X°(0) = (1(0) — )" (Ustat + Usys) ™" (1(8) — 1)

Mixes frequentist and Bayesian elements; interpretation of result
can be problematic, especially if U itself has large uncertainty.
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Folding

Suppose a theory predicts f(y) — u (may depend on parameters ).

Given the response matrix R and expected background f, this
predicts the expected numbers of observed events:

v=Rp+p3

From this we can get the likelihood, e.g., for Poisson data,

L(n|v) =

And using this we can fit parameters and/or test, e.g., using
the likelihood ratio statistic

_ L(nlv)
=2l hE) TN
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Versus unfolding

If we have an unfolded spectrum and full statistical and
systematic covariance matrices, to compare this to a model u
compute likelithood

L(ft|p) ~ e/
where

X2 — (N - ﬂ)T(Ust.at + Usys)_l(/-l' - /-Al')
Complications because one needs estimate of systematic bias U,

If we find a gain in sensitivity from the test using the unfolded
distribution, e.g., through a decrease 1n statistical errors, then we
are exploiting information inserted via the regularization (e.g.,
imposed smoothness).
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ML solution again

From the standpoint of testing a theory or estimating its parameters,
the ML solution, despite catastrophically large errors, 1s equivalent
to using the uncorrected data (same information content).

There 1s no bias (at least from unfolding), so use
1 (0) = (14(8) — finir.)" Ustar (14(8) — finr)

The estimators of @ should have close to optimal properties:
zero bias, minimum variance.

The corresponding estimators from any unfolded solution cannot
in general match this.

Crucial point is to use full covariance, not just diagonal errors.
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Summary/discussion

Unfolding can be a minefield and is not necessary if goal is to
compare measured distribution with a model prediction.

Even comparison of uncorrected distribution with future theories
not a problem, as long as it 1s reported together with the expected
background and response matrix.

In practice complications because these ingredients have
uncertainties, and they must be reported as well.

Unfolding useful for getting an actual estimate of the distribution
we think we’ve measured; can e.g. compare ATLAS/CMS.

Model test using unfolded distribution should take account of
the (correlated) bias introduced by the unfolding procedure.
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Finally...

Estimation of parameters is usually the “easy” part of
statistics:

Frequentist: maximize the likelihood.
Bayesian: find posterior pdf and summarize (e.g. mode).

Standard tools for quantifying precision of estimates:
Variance of estimators, confidence intervals,...

But there are many potential stumbling blocks:
bias versus variance trade-off (how many parameters to fit?);
goodness of fit (usually only for LS or binned data);
choice of prior for Bayesian approach;
unexpected behaviour in LS averages with correlations,...

We will practice this afternoon with MINUIT.
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Extra Slides
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Covariance, correlation, etc.

For a pair of random variables x and y, the covariance and
correlation are

cov[:c, y] — E[:l:y] _ E[:L’]E[y] Py = COV[CE,y]

OOy

One only talks about the correlation of two quantities to which one
assigns probability (1.e., random variables).

So 1n frequentist statistics, estimators for parameters can be
correlated, but not the parameters themselves.

In Bayesian statistics 1t does make sense to say that two parameters
are correlated, e.g.,

COV[@Z',HJ'] — /Hiejp(glx) df — /Hip(9|x) de /ij(9|:l:) de
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Example of “correlated systematics™

Suppose we carry out two independent measurements of the
length of an object using two rulers with diferent thermal

expansion properties.

Suppose the temperature 1s not known exactly but must
be measured (but lengths measured together so T same for both),

T ~ Gauss(T,07)

The expectation value of the measured length L. (i = 1, 2)
1s related to true length 4 at a reference temperature 7, by

E[Li]:A—sz‘(T—To), 2212
and the (uncorrected) length measurements are modeled as

L; ~ Gauss(A — a;(T — 70), 0%)
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Two rulers (2)

The model thus treats the measurements 7, L,, L, as uncorrelated
with standard deviations o, 7,, 7,, respectively:

L(T. L. Lol\. T —(T 7)2 /202, —(L,;—/\-i—a-i('r—To))Q/Qai?
( b 2| | ) \/Q_WUT H\/ﬁoz

Alternatively we could correct each raw measurement:
Y; = L; + O{.i(T — To)

which introduces a correlation between y,, y, and T

cov[yr, yo] = a1007 cov[y;, T] = ;0%

But the likelihood function (multivariate Gauss in 7, y,, y,)
1s the same function of 7 and A as before.

Language of y,, y,: temperature gives correlated systematic.
Language of L,, L,: temperature gives “coherent” systematic.
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Two rulers (3)

Outcome has some surprises:

Estimate of A does not lie
between y, and y,.

length

Stat. error on new estimate
of temperature substantially
= smaller than initial o.

N

< X<

—_

These are features, not bugs,
that result from our model
assumptions.

)
~

TO
temperature
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Two rulers (4)

We may re-examine the assumptions of our model and
conclude that, say, the parameters a,, a, and 7, were also
uncertain.

We may treat their nominal values as measurements (need a model;
Gaussian?) and regard a,, a, and 7, as as nuisance parameters.

L(Lla LQaTa 7:0) &1? &2|A? 7,70, GII,QIQ) —

2
1 e—(T—T)Q/Qo% H 1 e—(L,-—)\+ai(7‘—‘1‘0))2/20;‘.2
V2TmoT pale \V2To;

—(di—ai)z/%éi

1 e—(fo—To)z/Q‘f-

X —
V 27('0'%0 H 271-0-02
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Two rulers (5)

The outcome changes; some surprises may be “reduced”.

length

0
\I

TO
temperature
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