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Goals of this Lecture

This lecture is a brief overview of the results and techniques of probability the-
ory that are most relevant for statistical inference as practiced in high energy
physics today.

There will be lots of dry definitions and a few exciting theorems.

Results will be stated without proof, but with attention to their conditions of
validity.

I will also attempt to describe various contexts in which each of these results
is typically applied.
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Useful References

1 Alan F. Karr, “Probability,” Springer-Verlag New York, Inc., 1993, 282pp.
A lucid, graduate-level introduction to the subject.

2 George Casella and Roger L. Berger, “Statistical Inference,” 2nd ed.,
Duxbury, 2002, 660pp.
Covers probability as an introduction to statistical inference, has good
examples and clear explanations.

3 David Pollard, “A User’s Guide to Measure Theoretic Probability,”
Cambridge University Press, 2002, 351pp.
A modern, abstract treatment.

4 Bruno de Finetti, “Theory of Probability: A critical introductory
treatment,” translated by Antonio Machi and Adrian Smith, John Wiley &
Sons Ltd., 1974, in two volumes (300pp. and 375pp.)
“One of the great books of the world”, “This book is about life: about a
way of thinking that embraces all human activities” (D. V. Lindley in the
Foreword).
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Useful References

Most HEP introductions to statistics contain material about probability theory,
see for example:

5 Glen Cowan, “Statistical Data Analysis,” Clarendon Press, Oxford, 1998,
197pp.

6 Frederick James, “Statistical Methods in Experimental Physics,” 2nd Ed.,
World Scientific, 2006, 345pp.

And then there is always Wikipedia of course...
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Outline

1 Probability

2 Random variables

3 Conditional probability

4 Classical limit theorems
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What Is Probability?

For the purposes of theory, it doesn’t really matter what probability “is”, or
whether it even exists in the real world. All we need is a few definitions and
axioms:

1 The set S of all possible outcomes of a particular experiment is called
the sample space for the experiment.

2 An event is any collection of possible outcomes of an experiment, that
is, any subset of S (including S itself).

To each event A in sample space we would like to associate a number be-
tween zero and one, that will be called the probability of A, or P(A). For
technical reasons one cannot simply define the domain of P as “all subsets of
the sample space S”. Care is required. . .

3 A collection of subsets of S is called a sigma algebra, denoted by B, if it
has the following properties:

• ∅ ∈ B (the empty set is an element of B).
• If A ∈ B, then Ac ∈ B (B is closed under complementation).
• If A1, A2, · · · ∈ B, then ∪∞i=1Ai ∈ B (B is closed under countable

unions).
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What Is Probability?

4 Given a sample space S and an associated sigma algebra B, a
probability function is a function P with domain B that satisfies:

• P(A) ≥ 0 for all A ∈ B.

• P(S) = 1.

• If A1, A2, . . . ∈ B are pairwise disjoint,
then P(∪∞i=1Ai) =

P∞
i=1 P(Ai).

This is known as the axiom of countable additivity. Some
statisticians find it more plausible to work with finite additivity: If
A ∈ B and B ∈ B are disjoint, then P(A ∪B) = P(A) + P(B).
Countable additivity implies finite additivity, but accepting only the
latter makes statistical theory more complicated.

These three properties are usually referred to as the axioms of
probability, or the Kolmogorov axioms. They define probability but do not
specify how it should be interpreted or chosen.
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What Is Probability?

There are two main philosophies for the interpretation of probability:
1 Frequentism

If the same experiment is performed a number of times, different
outcomes may occur, each with its own relative rate or frequency. This
“frequency of occurrence” of an outcome can be thought of as a
probability. In the frequentist school of statistics, the only valid
interpretation of probability is as the long-run frequency of an event.
Thus, measurements and observations have probabilities insofar as
they are repeatable, but constants of nature do not. The Big Bang does
not have a probability.

2 Bayesianism
Here probability is equated with uncertainty. Since uncertainty is always
someone’s uncertainty about something, probability is a property of
someone’s relationship to an event, not an objective property of that
event itself. Probability is someone’s informed degree of belief about
something. Measurements, constants of nature and other parameters
can all be assigned probabilities in this paradigm.

Frequentism has a more “objective” flavor to it than Bayesianism, and is the
main paradigm used in HEP. On the other hand astrophysics deals with unique
cosmic events and tends to use the Bayesian methodology.
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What Is Probability?

From Bruno de Finetti (p. x): “My thesis, paradoxically, and a little provoca-
tively, but nonetheless genuinely, is simply this:

PROBABILITY DOES NOT EXIST.

The abandonment of superstitious beliefs about the existence of Phlogiston,
the Cosmic Ether, Absolute Space and Time, ... , or Fairies and Witches, was
an essential step along the road to scientific thinking. Probability, too, if re-
garded as something endowed with some kind of objective existence, is no
less a misleading misconception, an illusory attempt to exteriorize or materi-
alize our true probabilistic beliefs.”

“In investigating the reasonableness of our own modes of thought and be-
haviour under uncertainty, all we require, and all that we are reasonably enti-
tled to, is consistency among these beliefs, and their reasonable relation to any
kind of relevant objective data (‘relevant’ in as much as subjectively deemed
to be so). This is Probability Theory. In its mathematical formulation we have
the Calculus of Probability, with all its important off-shoots and related theories
like Statistics, Decision Theory, Games Theory, Operations Research and so
on.”

9 / 61



Random Variables

1 A random variable X is a mapping from the sample space S into the real
numbers. Given a probability function on S, it is straightforward to define
a probability function on the range of X. For any set A in that range:

PX(X ∈ A) = P({s ∈ S : X(s) ∈ A}).

The induced probability PX satisfies the probability axioms.

2 A random variable N is discrete if there exists a countable set C such
that PN (C) = 1.

3 A random variable X is absolutely continuous if there exists a positive
function fX on R, the probability density function of X, such that for
every interval (a, b],

P((a, b]) =

Z b

a

fX(t) dt.

4 With every random variable X is associated a cumulative distribution
function:

FX(x) ≡ PX(X ≤ x)
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Cumulative Distribution Functions
Example: In a coin-tossing experiment, let p be the probability of heads, and
define the random variable X to be the number of tosses required to get a
head. This yields a geometric distribution: P(X = x) = (1− p)x−1p, and

FX(x) = P(X ≤ x) =
xX

i=1

P(X = i) =
xX

i=1

(1− p)i−1p = 1− (1− p)x.

Example for p = 0.3:

Note the three properties of a cdf:
1 limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.
2 F (x) is a non-decreasing function of x.
3 F (x) is right-continuous: limx↓x0 F (x) = F (x0) for every x0.
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Quantiles

The inverse of a cumulative distribution function F is called quantile function:

F−1(α) ≡ inf{x : F (x) ≥ α}, for 0 < α < 1.

In words, the quantile of order α of a continuous cdf F , or its α-quantile, is the
value of x to the left of which lies a fraction α of the total probability under F .
Instead of an α-quantile, one sometimes speaks of a 100α-percentile.

Some related concepts include:

• The median of a distribution, which is its 50th percentile.

• The lower quartile (25th percentile), and the upper quartile (75th
percentile).

• A measure of dispersion that is sometimes used is the interquartile
range, the distance between the lower and upper quartiles.

• A random variable with distribution function F can be constructed by
applying F−1 to a random variable uniformly distributed on [0, 1], a
process known as the quantile transformation.
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Probability Densities and Probability Mass Functions

We have already seen that for a continuous random variable one can write
probabilities as integrals of a probability density function (pdf):

P((a, b]) =

Z b

a

fX(t) dt.

The cdf is a special case of this equation:

FX(x) = P(X ≤ x) =

Z x

−∞
fX(t) dt.

The equivalent equation for a discrete random variable involves a probability
mass function (pmf) and a summation instead of an integration:

FN (n) = P(N ≤ n) =
nX

i=0

fN (i),

where fN (i) ≡ P(N = i).
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Random Vectors

Random d-vectors generalize random variables: They are mappings from
sample space into Rd. Distributional concepts describing random vectors in-
clude the following:

1 The distribution of X = (X1, . . . , Xd) is the probability
PX(B) = P(X ∈ B) on Rd.

2 The joint distribution function of X1, . . . , Xd is the function
FX : Rd → [0, 1] given by:

FX(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd).

3 Let X be a random d-vector. Then for each i the distribution function of
component i can be recovered as follows:

FXi(t) = lim
tj→∞,j 6=i

FX(t1, . . . , ti−1, t, ti+1, . . . , td).

4 A random vector X is discrete if there is a countable subset C of Rd

such that P(X ∈ C) = 1, and absolutely continuous if there is a function
fX : Rd → R+, the joint density of X1, . . . , Xd, such that:

P(X1 ≤ t1, . . . , Xd ≤ td) =

Z t1

−∞
. . .

Z td

−∞
fX(y1, . . . , yd) dy1 . . . dyd.
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Random Vectors

5 If X = (X1, . . . , Xd) is absolutely continuous, then for each i, Xi is
absolutely continuous, and

fXi(x) =

Z +∞

−∞
. . .

Z +∞

−∞
fX(y1, . . . , yi−1, x, yi+1, . . . , yd)

× dy1 . . . dyi−1dyi+1 . . . dyd.

Integrating out the variables of the joint density, other than that for Xi,
yields the marginal density function of Xi. The procedure can be
generalized to any subvector of X.
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Expectation, Covariance, Correlation, and Independence

Let X and Y be two continuous random variables with joint pdf fXY (x, y) and
marginals fX(x) and fY (y), respectively. We define:

1 The expectation of X: µX = E(X) ≡
R

x fX(x) dx

2 The variance of X:
σ2

X = Var(X) ≡ E[(X − E(X))2] =
R

(x− µX)2 fX(x) dx.
3 The covariance of X and Y :

Cov(X, Y ) ≡ E[(X−µX) (Y −µY )] =
R

(x−µX) (y−µY ) fXY (x, y) dx dy.

4 The correlation of X and Y : ρXY ≡ Cov(X,Y )
σX σY

. This is a number between
−1 and +1.

In addition, we say that X and Y are independent random variables, if for
every x and y,

fXY (x, y) = fX(x) fY (y).

Note that if X and Y are independent random variables, then Cov(X, Y ) =
0 and ρXY = 0. However the converse is not true. It is possible to find
uncorrelated, dependent random variables. This is because covariance and
correlation only measure a particular kind of linear relationship.

The above definitions can be adapted to discrete random variables by replac-
ing the integrals with sums.
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Transformation Theory
If X is a random variable, then any function of X, say g(X), is also a ran-
dom variable. Often g(X) itself is of interest and we write Y = g(X). The
probability distribution of Y is then given by

P(Y ∈ A) = P(g(X) ∈ A) = P(x ∈ X : g(x) ∈ A).

This is all that is needed in practice. For example, if X and Y are discrete
random variables, the formula can be applied directly to the probability mass
functions:

fY (y) =
X

x∈g−1(y)

fX(x),

keeping in mind that g−1(y) is a set that may contain more than one point.

For the case that X and Y are continuous, an example will illustrate the issues.
Suppose g(X) = X2. We can write:

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤
p

(y))

= P(X ≤ √
y)− P(X ≤ −√y) = FX(

√
y)− FX(−√y).

The pdf of Y can now be obtained from the cdf by differentiation:

fY (y) =
d

dy
FY (y) =

1

2
√

y
fX(

√
y) +

1

2
√

y
fX(−√y).
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Transformation Theory

This example can be generalized as follows. Suppose the sample space of X
can be partitioned into k sets, such that g(x) is a one-to-one transformation
from each set onto the sample space of Y . Then:

fY (y) =
kX

i=1

fX

“
g−1

i (y)
” ˛̨̨̨ d

dy
g−1

i (y)

˛̨̨̨
,

where gi is the restriction of g to the ith set.
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Characterization of Probability Distributions
There are several ways to characterize the probability distribution of a random
variable X.

1 Functional characterizations:
• The probability density function (pdf) for a continuous random

variable, or the probability mass function (pmf) for a discrete
random variable.

• The cumulative distribution function (cdf).
• The characteristic function, φX(t) = E(eitX) (a Fourier transform).

2 Measures of location:
• The mean: the expectation value of X, E(X).
• The median: the point at which the cdf reaches 50%.
• The mode: the location of the maximum of the pdf or pmf, when

unique.
3 Measures of dispersion:

• The variance: the expectation of (X − µ)2, where µ is the mean.
• The standard deviation, or the square root of the variance.

4 Measures of shape:
• The skewness, defined by µ3/µ

3/2
2 , where µn ≡ E[(X − E(X))n] is

the nth central moment.
• The excess kurtosis, µ4/µ2

2 − 3
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Examples of Probability Distributions

In HEP we encounter the following distributions (among others!):

1 Binomial;

2 Multinomial;

3 Poisson;

4 Uniform;

5 Exponential;

6 Gaussian;

7 Log-Normal;

8 Gamma;

9 Chi-squared;

10 Cauchy (Breit-Wigner);

11 Student’s t;

12 Fisher-Snedecor.
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The Binomial Distribution

Parameters: Number of trials n,
Success probability p

Support: k ∈ {0, . . . , n}

pmf:
`

n
k

´
pk(1− p)n−k

cdf: I1−p(n− k, 1 + k)

Mean: np

Median: bnpc or dnpe

Mode: b(n + 1)pc or b(n + 1)pc − 1

Variance: np(1− p)

Skewness: 1−2p√
np(1−p)

Ex. Kurtosis: 1−6p(1−p)
np(1−p)

(http://en.wikipedia.org/wiki/Binomial_distribution)
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The Binomial Distribution

The binomial distribution comes up mostly when calculating the efficiency of
an event selection. With the total number of events fixed, one counts the
number of events that passed the selection and draws inferences about the
“probability of success”.

Another example is a study of forward-backward asymmetry. One collects N
events from a given process and is looking for an asymmetry between the
numbers F and B of events in the forward and backward hemispheres, re-
spectively. The distribution of F is binomial: 

N

F

!
pF (1− p)B

with mean pN and standard deviation
p

Np(1− p) ≈
p

F (1− p). The forward-
backward asymmetry is usually defined as

R ≡ F −B

F + B
=

2F

N
− 1

and has variance
Var(R) =

4p(1− p)

N
≈ 4FB

N 3
.
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The Multinomial Distribution

Parameters: Number of trials n,
Event probabilities p1, . . . , pk,

Pk
i=1 pi = 1

Support: xi ∈ {0, . . . , n},
Pk

i=1 xi = n

pmf: n!
x1!...xk!

px1
1 . . . p

xk
k

Mean: E(Xi) = npi

Variance: Var(Xi) = npi(1− pi)

Covariance: Cov(Xi, Xj) = −npipj (i 6= j)

This is the distribution of the contents of the bins of a histogram, when the total
number of events n is fixed.

(http://en.wikipedia.org/wiki/Multinomial_distribution)
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The Poisson Distribution

Parameters: λ > 0

Support: k ∈ {0, 1, 2, 3, . . .}

pmf: λk

k!
e−λ

cdf: Γ(bk+1c,λ)
bkc!

Mean: λ

Median: ≈ bλ + 1
3
− 0.02

λ
c

Mode: bλc, dλe − 1

Variance: λ

Skewness: λ−1/2

Ex. Kurtosis: λ−1

(http://en.wikipedia.org/wiki/Poisson_distribution)
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The Poisson Distribution
The Poisson distribution is ubiquitous in HEP. It can be derived from the so-
called Poisson postulates:

For each t ≥ 0, let Nt be an integer-valued random variable with the following
properties (think of Nt as denoting the no. of arrivals from time 0 to time t):

1 Start with no arrivals: N0 = 0.
2 Arrivals in disjoint time periods are independent:

s < t ⇒ Ns and Nt −Ns are independent.
3 Number of arrivals depends only on period length: Ns and Nt+s −Nt

are identically distributed.
4 Arrival probability is proportional to period length, if length is small:

limt→0
P(Nt=1)

t
= λ.

5 No simultaneous arrivals: limt→0
P(Nt>1)

t
= 0.

Then, for any integer n:

P(Nt = n) = e−λt (λt)n

n!
,

that is, Nt ∼ Poisson(λt).

Example: The number of particles emitted in a fixed time interval t from a
radioactive source.

25 / 61



The Uniform Distribution

Parameters: a, b ∈ R

Support: x ∈ [a, b]

pdf: 1
b−a

for x ∈ [a, b], 0 otherwise

cdf: 0 for x < a, x−a
b−a

for a ≤ x < b,

1 for x ≥ b

Mean: 1
2
(a + b)

Median: 1
2
(a + b)

Mode: Any value in [a, b]

Variance: 1
12

(b− a)2

Skewness: 0

Ex. Kurtosis: − 6
5

(http://en.wikipedia.org/wiki/Uniform_distribution_(continuous))
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The Exponential Distribution

Parameters: λ > 0

Support: x ≥ 0

pdf: λe−λx

cdf: 1− e−λx

Mean: 1
λ

Median: ln 2
λ

Mode: 0

Variance: 1
λ2

Skewness: 2

Ex. Kurtosis: 6

(http://en.wikipedia.org/wiki/Exponential_distribution)
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The Exponential Distribution

In a Poisson process with a mean of λ events per unit time:

P(N) = e−λt (λt)N

N !
,

the probability of no events in time t is the exponential distribution e−λt.

For the time interval Z between two successive Poisson events, one has:

P(Z > t) = e−λt.
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The Gaussian (or Normal) Distribution

Parameters: Mean µ, Variance σ2 > 0

Support: x ∈ R

pdf: 1√
2π σ

exp
n
− (x−µ)2

2σ2

o
cdf: 1

2

h
1 + erf

“
x−µ√

2 σ

”i
Mean: µ

Median: µ

Mode: µ

Variance: σ2

Skewness: 0

Ex. Kurtosis: 0

(http://en.wikipedia.org/wiki/Normal_distribution)
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The Gaussian (or Normal) Distribution

This is the most important distribution in all of statistics, in large part due to
the limit theorems, see later.

The probability content of some commonly used intervals:

P(−1.00 ≤ X − µ

σ
≤ 1.00) = 0.68 P(−1.64 ≤ X − µ

σ
≤ 1.64) = 0.90

P(−1.96 ≤ X − µ

σ
≤ 1.96) = 0.95 P(−2.58 ≤ X − µ

σ
≤ 2.58) = 0.99

P(−3.29 ≤ X − µ

σ
≤ 3.29) = 0.999

The bivariate Normal distribution has pdf

f(x, y) =
1

2πσXσY

p
1− ρ2

exp


− 1

2(1− ρ2)

»
(x− µX)2

σ2
X

− 2ρ
(X − µX)(Y − µY )

σXσY
+

(y − µY )2

σ2
Y

–ff
.
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The Log-Normal Distribution

Parameters: Log-scale µ, Shape σ2 > 0

Support: x > 0

pdf: 1

x
√

2π σ
exp
n
− (ln x−µ)2

2σ2

o
cdf: 1

2

h
1 + erf

“
ln x−µ√

2 σ

”i
Mean: eµ+σ2/2

Median: eµ

Mode: eµ−σ2

Variance: (eσ2

− 1) e2µ+σ2

Skewness: (eσ2

+ 2)
p

eσ2 − 1

Ex. Kurtosis: e4σ2

+ 2e3σ2

+ 3e2σ2

− 6

The logarithm of a Lognormal random variable follows a Normal distribution.

(http://en.wikipedia.org/wiki/Log-normal_distribution)
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The Gamma Distribution

Parameters: Shape α > 0, Rate β > 0

or Shape k ≡ α, Scale θ ≡ 1
β

Support: x > 0

pdf: βα

Γ(α)
xα−1 e−βx

cdf: γ(α,βx)
Γ(α)

Mean: α
β

Median: No simple closed form

Mode: α−1
β

for α > 1

Variance: α
β2

Skewness: 2√
α

Ex. Kurtosis: 6
α

(http://en.wikipedia.org/wiki/Gamma_distribution)
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The Gamma Distribution

The exponential and chi-squared distributions are special cases of the Gamma
distribution.

There is a special relationship between the Gamma and Poisson distributions.
If X is a Gamma(α, β) random variable where α is integer, then

P(X ≤ x) = P(Y ≥ α),

where Y is a Poisson(xβ) random variable.
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The Chi-Squared Distribution

Parameters: Degrees of freedom k ∈ N

Support: x ≥ 0

pdf: 1

2
k
2 Γ( k

2 )
x

k
2
−1 e−

x
2

cdf: 1

Γ( k
2 )

γ
`

k
2
, x

2

´
Mean: k

Median: ≈ k
`
1− 2

9k

´3
Mode: max(k − 2, 0)

Variance: 2k

Skewness:
p

8/k

Ex. Kurtosis: 12/k

(http://en.wikipedia.org/wiki/Chi-squared_distribution)
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The Chi-Squared Distribution

If X1, . . . , Xn are independent, standard Normal random variables (N(0, 1)),
then the sum of their squares,

X2
(n) ≡

nX
i=1

X2
i ,

follows a chi-squared distribution for n degrees of freedom.

At large n, the quantities

Zn =
X2

(n) − n
√

2n
,

Z′
n =

q
2X2

(n) −
√

2n− 1,

are approximately standard Normal.

35 / 61



The Cauchy (or Lorentz, or Breit-Wigner) Distribution

Parameters: Location x0, Scale γ > 0

Support: x ∈ R

pdf: 1

πγ

»
1+

“
x−x0

γ

”2
–

cdf: 1
π

arctan
“

x−x0
γ

”
+ 1

2

Mean: undefined

Median: x0

Mode: x0

Variance: undefined

Skewness: undefined

Ex. Kurtosis: undefined

(http://en.wikipedia.org/wiki/Cauchy_distribution)
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The Cauchy (or Lorentz, or Breit-Wigner) Distribution

Although the Cauchy distribution is pretty pathological, since none of its mo-
ments exist, it “has a way of turning up when you least expect it” (Casella &
Berger).

For example, the ratio of two standard normal random variables has a Cauchy
distribution.
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Student’s t-Distribution

Parameters: Degrees of freedom ν > 0

Support: x ∈ R

pdf:
Γ( ν+1

2 )
√

νπ Γ( ν
2 )

“
1 + x2

ν

”− ν+1
2

cdf: 1− 1
2
I ν

x2+ν

`
ν
2
, 1

2

´
, for x > 0

Mean: 0 for ν > 1

Median: 0

Mode: 0

Variance: ν
ν−2

for ν > 2, ∞ for 1 < ν ≤ 2

Skewness: 0 for ν > 3

Ex. Kurtosis: 6
ν−4

for ν > 4, ∞ for 2 < ν ≤ 4

(http://en.wikipedia.org/wiki/Student's_t-distribution)
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Student’s t-Distribution

Let X1, X2, . . . , Xn be Normal random variables with mean µ and standard
deviation σ. Then the quantities

X̄ =
1

n

nX
i=1

Xi,

S2 =
1

n− 1

nX
i=1

(Xi − X̄)2

are independently distributed, (X̄ − µ)/(σ/
√

n) as standard normal, and
(n− 1)S2/σ2 as chi-squared for (n− 1) degrees of freedom.
To test whether X̄ is statistically consistent with µ, when σ is unknown, the
correct test statistic to use is the ratio

t =
(X̄ − µ)/(σ/

√
n)

S/σ
=

√
n (X̄ − µ)

S
,

which has a Student’s t-distribution with n− 1 degrees of freedom.

Note that for ν = 1 the t-distribution becomes the Cauchy distribution.
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The Fisher-Snedecor (or F-) Distribution

Parameters: Degrees of freedom d1, d2 > 0

Support: x ≥ 0

pdf:

r
(d1x)d1 d

d2
2

(d1x+d2)d1+d2

1

x B
“

d1
2

,
d2
2

”
cdf: I d1x
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(http://en.wikipedia.org/wiki/F-distribution)
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The Fisher-Snedecor (or F-) Distribution

Let X1, . . . , Xn be a random sample from a N(µX , σ2
X) distribution, and Y1, . . . , Ym

a random sample from a N(µY , σ2
Y ) distribution. We may be interested in com-

paring the variabilities of the X and Y populations. A quantity of interest in this
case is the ratio σ2

X/σ2
Y , information about which is contained in the ratio of

sample variances S2
X/S2

Y , where

S2
X =

1

n− 1

nX
i=1

(Xi − X̄)2,

S2
Y =

1

m− 1

mX
i=1

(Yi − Ȳ )2.

The F -distribution with n − 1 and m − 1 degrees of freedom provides the
distribution of the ratio

S2
X/S2

Y

σ2
X/σ2

Y

=
S2

X/σ2
X

S2
Y /σ2

Y

,

which is a ratio of scaled chi-squared variates that are independent.
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Relationships Among Distributions

(From Casella & Berger)
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Conditional Probability

It is sometimes desirable to revise probabilities to account for the knowledge
that an event has occurred. This can be done using the concept of conditional
probability:

Let A and B be events. Provided that P(A) > 0, the conditional probability of
B given A is

P(B | A) =
P(B ∩A)

P(A)
.

If P(A) = 0, one sets P(B | A) = P(B) by convention.

What happens in the conditional probability calculation is that B becomes the
sample space: P(B | B) = 1. The original sample space S has been updated
to B.

It follows from the definition that P(B ∩A) = P(B | A) P(A), and by symmetry,
P(A ∩ B) = P(A | B) P(B). Equating the right-hand sides of both equations
yields:

P(A | B) = P(B | A)
P(A)

P(B)
,

which is known as Bayes’ rule.
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Conditional Probability

A more general version of Bayes’ rule is obtained by considering a partition
A1, A2, . . . of the sample space S, that is, the Ai are pairwise disjoint subsets
of S, and ∪∞i=1Ai = S.

Let B be any set. By the Law of Total Probability we have

P(B) =
∞X
i=1

P(B | Ai) P(Ai).

Substituting this result in the basic version of Bayes’ rule shows that, for each
i = 1, 2, . . .:

P(Ai | B) =
P(B | Ai) P(Ai)P∞

j=1 P(B | Aj) P(Aj)
.
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Conditional Probability for Random Variables
So far we defined conditional probability for subsets of sample space (“events”).
The extension to random vectors is straightforward.

The simplest case is that of discrete random vectors. Let (X, Y ) be a discrete
bivariate random vector with joint probability mass function (pmf) fX,Y (x, y)
and marginal pmfs fX(x) and fY (y). For any y such that fY (y) > 0, the
conditional pmf of X given that Y = y is the function of x defined by

fX|Y (x | y) = P(X = x | Y = y) =
fX,Y (x, y)

fY (y)
.

This is a properly normalized pmf that is everywhere positive.

For an absolutely continuous random (n+1)-vector (X, Y1, . . . , Yn) with density
f , the conditional density of X given Y1, . . . , Yn is the function of x defined by

fX|Y1,...,Yn(x | y1, . . . , yn) =
f(x, y1, . . . , yn)R +∞

−∞ f(z, y1, . . . , yn) dz
.

The conditional cumulative distribution function of X given Y1, . . . , Yn is ob-
tained by integrating the conditional density:

FX|Y1,...,Yn(t | y1, . . . , yn) =

Z t

−∞
fX|Y1,...,Yn(x | y1, . . . , yn) dx.
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Bayes’ Theorem and the Predictive Distribution

The Bayesian paradigm makes extensive use of conditional probabilities, start-
ing with Bayes’ theorem, which is a reformulation of Bayes’ rule for random
variables. Suppose we have some data X with a known distribution p(X | θ)
depending on some unknown parameter θ. If we have prior information about
θ in the form of a prior distribution π(θ), Bayes’ theorem tells us how to update
that information to take into account the new data. The result is a posterior
distribution for θ:

p(θ | X) =
p(X | θ) π(θ)R

p(X | θ′) π(θ′) dθ′
.

The result of a Bayesian analysis is this posterior distribution. Usually one tries
to summarize it by providing a mean, or quantiles, or intervals with specific
probability content.
The posterior distribution also provides the basis for predicting the values of
future observations Xnew, via the predictive distribution:

p(Xnew | X) =

Z
p(Xnew | θ) p(θ | X) dθ.

46 / 61



The Borel-Kolmogorov Paradox

This paradox illustrates some of the pitfalls attached to conditional probability
calculations. Imagine a uniform distribution of points over the surface of the
earth. Intuitively it is obvious that the subset of points along the equator will
also be uniformly distributed. That is, their conditional distribution, given a
latitude of zero, is uniform. However the equator is only the equator because
of our choice of coordinate system. Any other great circle could serve as
equator. By invariance one would expect the points to be just as uniformly
distributed along meridians, for example.

Unfortunately this cannot be the case. A quarter of a meridian’s length lies
north of latitude 45◦N. Integrating over all meridians would lead to the expec-
tation that the earth’s cap above 45◦N covers a quarter of the total surface,
which is clearly incorrect.

To resolve the paradox, one must realize that conditioning on a set of proba-
bility zero is inadmissible. The proper procedure is first to condition on a small
but finite set around the value of interest, and then take a limit. However the
limit is not uniquely defined. In the case of the equator, it is a band of parallels
whose width goes to zero, whereas in the case of the meridian it is a lune of
meridians whose opening angle goes to zero. . .
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The Borel-Kolmogorov Paradox

For a mathematical explanation, we introduce a latitude φ and a longitude λ,
with −π/2 ≤ φ ≤ +π/2 and −π < λ ≤ +π. The probability density function of
a uniform distribution on the unit sphere is given by:

f(φ, λ) =
1

4π
cos φ.

The marginal densities are:

f(φ) =

Z +π

−π

f(φ, λ) dλ =
1

2
cos φ,

f(λ) =

Z +π/2

−π/2

f(φ, λ) dφ =
1

2π
.

For the conditional densities at zero longitude and zero latitude this gives:

f(φ | λ = 0) =
f(φ, λ = 0)

f(λ = 0)
=

1

2
cos φ,

f(λ | φ = 0) =
f(φ = 0, λ)

f(φ = 0)
=

1

2π
,

showing that the conditional distributions along the Greenwich meridian and
along the equator are indeed different.
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The Borel-Kolmogorov Paradox

Let’s now change coordinates: Keep the latitude φ but replace the longitude:

λ → µ =
λ

g(φ)
,

where g(φ) is a strictly positive function. In terms of φ and µ, the density of
points on the unit sphere is given by:

f(φ, µ) =
1

4π
cos φ

˛̨̨̨
∂(φ, λ)

∂(φ, µ)

˛̨̨̨
=

1

4π
cos φ g(φ)

For the conditional density of latitudes given µ = 0 we find:

f(φ | µ = 0) ∝ cos φ g(φ).

Observe that µ = 0 is entirely equivalent to λ = 0; both conditions correspond
to the same set of points on the unit sphere. And yet the conditional distribu-
tions differ by the factor g(φ). This is because of the implicit limiting procedure
used in conditioning. To condition on λ = 0 we consider the set {λ : |λ| ≤ ε}
and let ε go to zero. To condition on µ = 0 the set is {λ : |λ| ≤ ε g(φ)}.
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Classical Limit Theorems

The limit theorems describe the behavior of certain sample quantities as the
sample size approaches infinity.

The notion of an infinite sample size is somewhat fanciful, but it provides an
often useful approximation for the finite sample case due to the simplification
it introduces in various formulae.

First we have to clarify what we mean by random variables “approaching infin-
ity”. . .
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Modes of Stochastic Convergence

Consider a sequence of random variables X1, X2, . . ., not necessarily inde-
pendent or identically distributed. There are many different ways this se-
quence can converge to a random variable X. Here we only consider three:

1 Convergence in distribution:
Xn

d−→ X if limn→∞ FXn(x) = FX(x) at all points x where FX(x) is
continuous.

2 Convergence in probability (or weak convergence):
Xn

P−→ X if, for every ε > 0, limn→∞ P(|Xn −X| < ε) = 1.
“For any ε > 0 and δ > 0 there is an integer N such that the individual
deviation probabilities P(|Xn −X| > ε) are less than δ for all n > N .”

3 Almost sure convergence (or strong convergence):
Xn

a.s.−−→ X if, for every ε > 0, P(limn→∞|Xn −X| < ε) = 1.
“For any ε > 0 and δ > 0 there is an integer N such that the probability
for any deviation |Xn −X|, n > N , to be greater than ε, is less than δ.”

Almost sure convergence implies convergence in probability, and convergence
in probability implies convergence in distribution.
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Classical Limit Theorems: The Statements

Let X1, X2, . . . be i.i.d.; set X̄n ≡ 1
n

Pn
i=1 Xi, µ = E(X1), and σ2 = Var(X1).

The weak law of large numbers:
If µ < ∞, then X̄n

P−→ µ.

The strong law of large numbers:
If µ < ∞, then X̄n

a.s.−−→ µ.

The central limit theorem:

If σ2 < ∞, then
X̄n − µ

σ/
√

n

d−→ N(0, 1).

The law of the iterated logarithm:

If σ2 < ∞, then lim sup
n→∞

X̄n − µ

σ/
√

n

1√
2 ln ln n

= 1.
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Short Digression on “Lim Sup”

The limit superior and limit inferior of a sequence of Xn are defined by

lim sup
n→∞

Xn ≡ lim
n→∞

„
sup
m≥n

Xm

«
= inf

n≥0
sup
m≥n

Xm

lim inf
n→∞

Xn ≡ lim
n→∞

„
inf

m≥n
Xm

«
= sup

n≥0
inf

m≥n
Xm

The limit superior of Xi is the smallest
real number b such that, for any ε > 0,
there exists an n such that Xm < b + ε
for all m > n. In other words, any
number larger than the limit superior is
an eventual upper bound for the
sequence. Only a finite number of
elements of the sequence are greater
than b + ε.

A sequence converges when its limit inferior and limit superior are equal.
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Classical Limit Theorems: Applications

1 Consistency
The property described by the Weak Law of Large Numbers, a
sequence of random variables converging to a constant, is known as
consistency. This is an important property for the study of point
estimators in statistics.

2 Frequentist Statistics
As an application of the Weak Law of Large Numbers, let Xi be a
Bernoulli random variable, with Xi = 1 representing “success”, and
Xi = 0 “failure”. Then X̄n = 1

n

Pn
i=1 Xi is the frequency of successes in

the first n trials. If p is the probability of success, the Weak Law of Large
Numbers states that X̄n

P−→ p.

This result is often used by frequentist statisticians to justify their
identification of probability with frequency. One must be very careful with
this however. Logically one cannot assume something as a definition
and then prove it as a theorem. Furthermore, there is a contradiction
between a definition that would assume as certain something that the
theorem only states to be very probable.
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Classical Limit Theorems: Applications

3 Monte Carlo Integration:
Let f be a function on [a, b], with

R b

a
|f(x)| dx < ∞, and let U1, U2, . . . be

independent random variables that are uniformly distributed between a
and b. Then:

1

n

nX
i=1

f(Ui)
a.s.−−→

Z b

a

f(x) dx.

This follows directly from the Strong Law of Large Numbers. This Monte
Carlo technique of integration is one of the simplest, and it extends to
multi-dimensional integrals.
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Classical Limit Theorems: Applications

4 Maximum Likelihood Estimation:
Suppose that we have observed data X1, . . . , Xn from a distribution
f(x | θ), where θ is an unknown parameter. The likelihood function is:

Ln(θ) =
nY

i=1

f(Xi | θ).

We can estimate θ by its value at the maximum of the likelihood:

θ̂n = arg max
{θ}

Ln(θ).

The estimator θ̂n depends on the sample size n. If the likelihood
function satisfies some standard regularity conditions, one can prove
two limit theorems for θ̂n, as n →∞:

• Consistency: θ̂n
P−→ θ;

• Asymptotic normality:
√

n[θ̂n − θ]
d−→ N(0, σ2(θ)), where

σ2(θ) = 1/I(θ) and I(θ) is the Fisher information:

I(θ) ≡ E

"„
d

dθ
ln f(X1 | θ)

«2
#
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Classical Limit Theorems: Applications

5 Empirical Distribution Functions:
Let X1, . . . , Xn be i.i.d. with entirely unknown distribution function F .
We can estimate F by the empirical distribution function:

F̂n(t) =
1

n

nX
i=1

1(Xi ≤ t).

This estimator is justified by the Strong Law of Large Numbers:

F̂n(t) =
1

n

nX
i=1

1(Xi ≤ t)
a.s.−−→ E[1(X1 ≤ t)] = F (t).

The convergence is actually uniform in t, a result known as the
Glivenko-Cantelli theorem:

sup
{t}
|F̂n(t)− F (t)| a.s.−−→ 0.

Accompanying this result is a central limit theorem known as the
Kolmogorov-Smirnov theorem:

√
n sup
{t}
|F̂n(t)− F (t)| d−→ Z, where P(Z ≤ t) = 1− 2

∞X
j=1

(−1)j+1e−2j2t2

.

57 / 61



Classical Limit Theorems: Applications

6 The Delta Method:
Suppose we make an observation X that we can use to estimate a
parameter θ. However we are not interested in θ itself, but in some
function g of θ. We could then consider using g(X) as an estimator of
g(θ). What are the properties of this estimator? What is its variance, its
sampling distribution?
A first-order Taylor expansion of g(X) around X = θ yields:

g(X) = g(θ) + g′(θ)(X − θ) + Remainder

Assuming that the mean of X is θ, this leads to E(g(X)) ≈ g(θ)
(neglecting the remainder in the Taylor expansion), and therefore:

Varg(X) ≈ E([g(X)− g(θ)]2) ≈ E([g′(θ)(X − θ)]2) = [g′(θ)]2VarX

So far all we have done is rederive the rule of error propagation. Where
it gets interesting is that this rule is associated with a generalization of
the Central Limit Theorem.
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Classical Limit Theorems: Applications

6 The Delta Method (continued):
• Basic Delta Method:

Let Y1, Y2, . . . be random with
√

n(Yn − θ)
d−→ N(0, σ2). For given g

and θ, suppose that g′(θ) exists and is not zero. Then
√

n[g(Yn)− g(θ)]
d−→ N(0, σ2[g′(θ)]2).

• Second-Order Delta Method:
Let Y1, Y2, . . . be random with

√
n(Yn − θ)

d−→ N(0, σ2). For given g
and θ, suppose that g′(θ) = 0 and g′′(θ) exists and is not zero.
Then

n[g(Yn)− g(θ)]
d−→ 1

2
σ2g′′(θ)χ2

1.

• Multivariate Delta Method:
Let ~X1, ~X2, . . . be a sequence of random p-vectors such that
E(Xik) = µi and Cov(Xik, Xjk) = σij . For a given function g with
continuous first partial derivatives and a specific value of ~µ,
suppose that τ 2 ≡

PP
σij

∂g
∂µi

∂g
∂µj

> 0. Then:

√
n[g(X̄1, . . . , X̄p)− g(µ1, . . . , µp)]

d−→ N(0, τ 2).
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Classical Limit Theorems: Applications

7 Sampling to a Foregone Conclusion
Suppose we are looking for a new physics signal in a specific channel.
We have a sample of n events in that channel, and for each event in the
sample we measure property X. We plan to claim discovery if the
observed significance Zn exceeds a pre-set threshold c:

Zn ≡
|X̄n − µ|
σ/
√

n
≥ c,

where µ is the expected value of X in the absence of signal and σ is the
measurement resolution. The discovery threshold c is typically set to 3
or 5 in HEP.

Suppose that after an initial data collection run we observe some
indication of a signal, but not enough to claim discovery. We then
proceed to take more data and regularly check our discovery criterion.
As the sample size increases, is there any guarantee that the probability
for making the correct decision regarding the presence of signal goes to
1?
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Classical Limit Theorems: Applications

7 Sampling to a Foregone Conclusion (continued)
The answer is NO! At least not if we keep c constant with n. This is a
consequence of the Law of the Iterated Logarithm (LIL), according to
which the event Zn ≥ (1 + ε)

√
2 ln ln n happens infinitely many times if

ε ≤ 0. Therefore, regardless of the choice of c, Zn will eventually exceed
c for some n, even if there is no signal.

Furthermore, the LIL tells us exactly how to vary the discovery threshold
with sample size in order to avoid “sampling to a foregone conclusion”.

“A blind use of [significances] allows the statistician to cheat, by claiming
at a suitable point in a sequential experiment that he has a train to
catch. This must have been known to Khintchine when he proved in
1924 that, in sequential binomial sampling, a "sigmage" of nearly√

2 ln ln n is reached infinitely often, with probability 1. [. . . ] But note that
the iterated logarithm increases with fabulous slowness, so that this
particular objection to the use of [significances] is theoretical rather than
practical. To be reasonably sure of getting 3σ one would need to go
sampling for billions of years, by which time there might not be any
trains to catch.” (I.J. Good, J. R. Statist. Soc. B 27 (1965) p.197.)
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