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Frequentism versus Bayesianism

Frequentism defines probabilities as relative frequencies in sequences of tri-
als:

Probabilities are real, objective, measurable quantities that exist “outside us”.

According to frequentism, a random variable is a physical quantity that fluc-
tuates from one observation to the next. This makes it impossible to assign
a meaningful probability value to a statement such as “the true mass of the
Higgs boson is between 150 and 160 GeV/c2”, since the true mass of the
Higgs boson is a fixed constant of nature.

Frequentism therefore needs an additional, separate concept to describe the
reliability of inferences: this is the concept of confidence. In Frequentism,
confidence and probability have entirely different meanings.

The objective of Frequentist statistics is then to transform measurable proba-
bilities of observations into confidence statements about physics parameters,
models, and hypotheses. Due to the great variety of measurement situations,
frequentism has many “ad hoc” rules and procedures to accomplish this trans-
formation. There is no single unifying principle to guide inference.

3 / 55



Frequentism versus Bayesianism

Bayesianism makes a strict distinction between propositions and probabilities:

• Propositions are either true or false; their truth value is a fact.

• Probabilities are degrees of belief about the truth of some proposition;
they are neither true nor false; they are not propositions.

Bayesian probability:

• is a logical construct rather than a physical reality;

• applies to individual events rather than to ensembles;

• is a statement not about what is in fact the case, but about what one can
reasonably expect to be the case;

• is epistemic, normative, subjective.
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Frequentism versus Bayesianism

Bayesian statistics is entirely based on probability theory, viewed as a form
of extended logic (Jaynes): a process of reasoning by which one extracts
uncertain conclusions from limited information.

This process is guided by Bayes’ theorem:

π(θ |x) =
p(x | θ) π(θ)

m(x)
, where m(x) ≡

Z
Θ

p(x | θ) π(θ) dθ.

All the basic tools of Bayesian statistics are direct applications of probability
theory. An important such tool is marginalization:

π(θ |x) =

Z
Λ

π(θ, λ |x) dλ.

The output of a Bayesian analysis is always the full posterior distribution. The
latter can then be summarized in various ways, by providing point estimates,
interval estimates, hypothesis probabilities, etc.
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Data Analysis: Frequentist or Bayesian?

Frequentist and Bayesian inferences often agree in large samples. Disagree-
ments tend to appear in small samples (discovery situations), where prior as-
sumptions play a more important role (on both sides).

For a small number of problems, the Bayesian and frequentist answers agree
exactly, even in small samples.

An often fruitful approach is to start with a Bayesian method, and then ver-
ify if the solution has any attractive frequentist properties. For example, if a
Bayesian interval is calculated, does the interval contain the true value of the
parameter of interest sufficiently often when the measurement is repeated?
This approach has been formally studied by professional statisticians.

On the other hand, if one starts with a purely frequentist method, it is also
important to check its Bayesian properties for a reasonable choice of prior.

In experimental HEP we often use a hybrid method: a frequentist method to
handle the randomness of the primary observation, combined with Bayesian
techniques to handle uncertainties in auxiliary parameters.
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Quantum Probabilities: Frequentist or Bayesian?

Recent research in quantum information science focuses on the question of
whether quantum probabilities are objective (frequentist) or subjective (Bayesian).

Part of the motivation for this comes from EPR-style arguments: suppose two
systems A and B are prepared in some entangled quantum state and then
spatially separated. By measuring one of two observables on A alone, one
can immediately write down a new state for B. If one accepts that the “real,
objective state of affairs” at B cannot depend on measurements made at A,
then the simplest interpretation of the new state for B is that it is a state of
knowledge.

It is possible to develop this idea of quantum states as states of knowledge in
a fully consistent way. Some aspects of this include:

• Subjective probability assignments must follow the standard quantum
rule for probabilities (Gleason’s theorem).

• There is a connection between quantum probability and long-term
frequency, but it is a non-trivial consequence of Gleason’s theorem and
the concept of maximal information in quantum theory.

7 / 55



Quantum Probabilities: Does It Matter?

Aside from providing yet another interpretation of quantum mechanics, do
Bayesian quantum probabilities have any practical consequence?

Yes! For example, if vacuum fluctuations are not real events, then we do not
need to worry about their effect on the cosmological constant. Arguments
for the physical reality of vacuum fluctuations are usually based on the experi-
mental observations of spontaneous emission, the Lamb shift, and the Casimir
effect. However:

• E.T. Jaynes (1990) showed that spontaneous emission and the Lamb
shift can be derived without the need for vacuum fluctuations. He noted
that this is the consequence of a very general mathematical property:
for every differential equation with a non-negative Green’s function,
there is a stochastic problem with the same solution, even though the
two problems are physically unrelated.

• Jaynes also argued (without calculation) that the Casimir effect does not
require zero-point energy to reside throughout all space. R. L. Jaffe
(2005) showed that the Casimir effect can be calculated without invoking
the quantum vacuum.
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Objective versus Subjective Priors

Depending on how much information is available about a parameter before the
measurement, there are two approaches for choosing a prior:

1 Subjective approach
Consider the construction of a prior for the detector energy scale in the
measurement of the mass of an elementary particle:
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Density

There clearly is a lot of subjectivity involved in the above choices. . .
In HEP, nuisance parameters such as energy scale, tracking efficiency,
background normalization, etc., are typically assigned subjective priors.
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Objective versus Subjective Priors

1 Subjective approach, continued
Subjective Bayesian analysis is by construction a coherent mode of
behavior.

Unfortunately, one cannot make arbitrarily fine discriminations in
judgments about probabilities. Therefore, subjective priors are by nature
imprecise and one needs to check how robust one’s inferences are
against reasonable changes in the prior(s). For example:

• If the default prior for a positive parameter is a truncated Gaussian,
try a gamma or a log-normal, or a linear combination of these;

• For an asymmetric prior, see what happens when the estimated
“central value” of the parameter is used as the median or mode of
the prior distribution, instead of its mean.

Without checking for robustness, one could be seriously misled as to the
accuracy of the conclusion.

If the range of answers is too large, the question of interest may not be
settled without more data or more prior information. This is only realistic.
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Objective versus Subjective Priors

2 Objective approach
When there is no prior information available about a parameter, or one
wishes to pretend that this is the case, then one is led to the concept of
“ignorance” priors, also called “noninformative,” “reference,” “objective,”
or “non-subjective.”
The form of these priors is determined by a formal rule, e.g.:

• Insufficient reason

• Invariance

• Maximal entropy

• Coverage matching

• Maximal “missing” information

• etc.
Objective priors are often improper (infinite normalization), which can
cause various kinds of difficulties with the posterior.

12 / 55



References

1 R.E. Kass and L. Wasserman, “The selection of prior distributions by
formal rules,” J. Amer. Statist. Assoc. 91, 1343 (1996).

2 J. Heinrich, “Review of the Banff challenge on upper limits,” CERN
Yellow Report CERN-2008-001, pg 125;
http://phystat-lhc.web.cern.ch/phystat-lhc/proceedings.html.

13 / 55

http://phystat-lhc.web.cern.ch/phystat-lhc/proceedings.html


Bayesian Hypothesis Testing

The Bayesian approach is to calculate posterior probabilities for all hypotheses
in play. When testing H0 versus H1, Bayes’ theorem yields:

p(H0 |x) =
p(x |H0)π0

p(x |H0)π0 + p(x |H1) π1
,

p(H1 |x) = 1 − p(H0 |x),

where πi is the prior probability of Hi, i = 0, 1.

If p(H0 |x) < p(H1 |x), one rejects H0 and the posterior probability of error
is p(H0 |x). Otherwise H0 is accepted and the posterior error probability is
p(H1 |x).

In contrast with frequentist Type-I and Type-II errors, Bayesian error probabil-
ities are fully conditioned on the observed data. It is often interesting to look
at the evidence against H0 provided by the data alone. This can be done by
computing the ratio of posterior odds to prior odds and is known as the Bayes
factor:

B01(x) =
p(H0 |x)/p(H1 |x)

π0/π1

In the absence of unknown parameters, B01(x) is a likelihood ratio.
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Bayesian Hypothesis Testing
Often the distributions of X under H0 and H1 will depend on unknown param-
eters θ, so that posterior hypothesis probabilities and Bayes factors will involve
marginalization integrals over θ:

p(H0 |x) =

Z
p(x | θ,H0)π(θ |H0)π0 dθZ h

p(x | θ,H0)π(θ |H0)π0 + p(x | θ,H1)π(θ |H1)π1

i
dθ

and: B01(x) =

Z
p(x | θ,H0)π(θ |H0) dθZ
p(x | θ,H1)π(θ |H1) dθ

Suppose now that we are testing H0 : θ = θ0 versus H1 : θ > θ0. Then:

B01(x) =
p(x | θ0)Z

p(x | θ,H1)π(θ |H1) dθ
≥ p(x | θ0)

p(x | θ̂1)
.

The ratio between the Bayes factor and the corresponding likelihood ratio is
larger than 1, and is sometimes called the Ockham’s razor penalty factor: it
penalizes the evidence against H0 for the introduction of an additional degree
of freedom under H1, namely θ.
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Bayesian Hypothesis Testing

The smaller B01, or equivalently, the larger B10 ≡ 1/B01, the stronger the
evidence against H0. A rough descriptive statement of standards of evidence
provided by Bayes factors against a given hypothesis is as follows:

2 lnB10 B10 Evidence against H0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong
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Bayesian Significance Tests

For a hypothesis of the form H0 : θ = θ0, a test can be based directly on
the posterior distribution of θ. First calculate an interval for θ, containing an
integrated posterior probability β. Then, if θ0 is outside that interval, reject H0

at the α = 1 − β credibility level. An exact significance level can be obtained
by finding the smallest α for which H0 is rejected.

There is a lot of freedom in the choice of posterior interval. A natural pos-
sibility is to construct a highest posterior density (HPD) interval. If the lack
of parametrization invariance of HPD intervals is a problem, there are other
choices (see slides on Bayesian interval constructions later).

If the null hypothesis is H0 : θ ≤ θ0, a valid approach is to calculate a lower
limit θL on θ and exclude H0 if θ0 < θL. In this case the exact significance
level is the posterior probability of θ ≤ θ0.
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Interval Estimates
Suppose that we make an observation X = xobs from a distribution f(x | θ),
where θ is a parameter of interest, and that we wish to make a statement about
the true value of θ, based on our observation. One possibility is to calculate a
point estimate θ̂, for example via the maximum-likelihood method:

θ̂ = arg max
θ
f(xobs | θ).

Although such a point estimate has its uses, it comes with no measure of how
confident we are that the true value of θ equals θ̂.

Bayesianism and Frequentism both address this problem by constructing an
interval of θ values believed to contain the true value with some confidence.
However, the interval construction method and the meaning of the associated
confidence level are very different in the two paradigms:
• Frequentists construct an interval [θ1, θ2] whose boundaries θ1 and θ2

are random variables that depend on X in such a way, that if the
measurement is repeated many times, a fraction γ of the produced
intervals will cover the true θ; the fraction γ is called the confidence level
or coverage of the interval construction.

• Bayesians construct the posterior probability density of θ and choose
two values θ1 and θ2 such that the integrated posterior probability
between them equals a desired level γ, called credibility or Bayesian
confidence level of the interval.
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Bayesian Interval Constructions

The output of a Bayesian analysis is always the complete posterior distribution
for the parameter(s) of interest. However, it is often useful to summarize the
posterior by quoting an interval with a given probability content. There are
several schemes for doing this:
• Highest probability density intervals

Any parameter value inside such an interval has a higher posterior
probability density than any parameter value outside the interval,
guaranteeing that the interval will have the shortest possible length.
Unfortunately this construction is not invariant under reparametrizations,
and there are examples where this lack of invariance leads to intervals
with zero coverage over a finite region of parameter space.

• Central intervals
These are intervals that are symmetric around the median of the
posterior distribution. For example, a 68% central interval extends from
the 16th to the 84th percentiles. Central intervals are parametrization
invariant, but they can only be defined for one-dimensional parameters.
Furthermore, if a parameter is constrained to be non-negative, a central
interval will by construction never include the value zero; this may be
problematic if zero is a value of special physical significance.
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Bayesian Interval Constructions

• Upper and lower limits
For one-dimensional posterior distributions, these one-sided intervals
can be defined using percentiles.

• Likelihood regions
These are standard likelihood intervals where the likelihood ratio
between the interval endpoints and the likelihood maximum is adjusted
to obtain the desired posterior credibility. Such intervals are metric
independent and robust with respect to the choice of prior. In
one-dimensional problems with physical boundaries, these intervals
smoothly transition from one-sided to two-sided.

• Intrinsic credible regions
These are intervals of parameter values with minimum reference
posterior expected loss (see slides on reference analysis).

Some things to watch for when quoting Bayesian intervals:

• How sensitive are the intervals to the choice of prior?

• Do the intervals have reasonable coverage?
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Examples of Bayesian Interval Constructions

The following slides illustrate some Bayesian interval constructions for the
mean θ of a Gaussian with unit standard deviation. The mean θ is assumed
to be positive. All intervals are based on a single observation x.

All constructions shown here use a flat prior over θ ≥ 0. As will be explained
later, this corresponds to the reference prior for this problem.
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Examples of Bayesian Intervals: Central and Upper Limit
Left: Graph of θ versus x, showing the θ interval as a function of the observed
value of x. The dotted line is the lower boundary of the physical region.
Right: Frequentist coverage of the interval construction on the left, as a func-
tion of the true value of θ. The dashed line marks the Bayesian credibility.
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θ
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Examples of Bayesian Intervals: HPD and Intrinsic
Left: Graph of θ versus x, showing the θ interval as a function of the observed
value of x. The dotted line is the lower boundary of the physical region.
Right: Frequentist coverage of the interval construction on the left, as a func-
tion of the true value of θ. The dashed line marks the Bayesian credibility.
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θ
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Objective Bayesianism

In physics data analysis we often need to extract information about a param-
eter θ about which very little is known a priori. Or perhaps we would like to
pretend that very little is known for reasons of objectivity. How do we apply
Bayes’ theorem in this case: how do we construct the prior π(θ)?

Although quantum probabilities are constrained by Gleason’s theorem, there
is no such universal rule available to constrain inferences in data analysis.

Historically, this is the main reason for the development of alternative statistical
paradigms: frequentism, likelihood, fiducial probability, objective Bayes, etc. In
general, results from these different methods agree on large data samples, but
not necessarily on small samples (discovery situations).

For this reason, the CMS Statistics Committee at the LHC recommends data
analysts to cross-check their results using three different methods: objective
Bayes, frequentism, and likelihood.
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Objective Bayesianism

At its most optimistic, objective Bayesianism tries to find a completely coherent
objective Bayesian methodology for learning from data.

A much more modest view is that it is simply a collection of ad hoc but useful
methods to learn from the data. There are in fact several approaches, all of
which attempt to construct prior distributions that are minimally informative in
some sense:

• Reference analysis (Bernardo and Berger);

• Maximum entropy priors (Jaynes);

• Invariance priors;

• Matching priors;

• . . .

Flat priors tend to be popular in HEP, even though they are hard to justify
since they are not invariant under parameter transformations. Furthermore,
they sometimes lead to improper posterior distributions and other kinds of
misbehavior.
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Reference Analysis

Reference analysis is a method to produce inferences that only depend on the
model assumed and the data observed. It is meant to provide standards for
scientific communication.

In order to be generally and consistently applicable, reference analysis uses
the Bayesian paradigm, which immediately raises the question of priors: what
kind of prior will produce “objective” inferences?

The primary aim is to obtain posterior distributions that are dominated in some
sense by the information contained in the data, but there are additional re-
quirements that may reasonably be considered as necessary properties of
any proposed solution:

• Generality:
The procedure should be completely general and should always yield
proper posteriors.

• Invariance:
If φ = φ(θ), then π(φ |x) = π(θ |x) |dθ/dφ|. Furthermore, if t = t(x) is a
sufficient statistic, then π(θ |x) = π(θ | t).
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Reference Analysis

• Consistent Marginalization:

Path 1:
p(~x | θ, φ)

πF1(θ, φ)

}

- π(θ, φ | ~x) - ∫

π(θ, φ | ~x) dφ = π(θ | ~x) ≡ π1(θ | t)

Path 2:
p(t | θ, φ) ≡ p(t | θ)

π2(θ)

}

- π2(θ | t)

@
@

@R

�����:=?

A marginalization paradox occurs if π1(θ | t) 6= π2(θ | t) regardless of the
choice of prior π2(θ) in path 2.

• Consistent sampling properties:
The family of posterior distributions π(θ |x) obtained by repeated
sampling from the model p(x | θ, λ) should concentrate on a region of Θ
that contains the true value of θ.

Reference analysis aims to replace the question “What is our prior degree
of belief?” with “What would our posterior degree of belief be, if our prior
knowledge had a minimal effect, relative to the data, on the final inference?”
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Intrinsic Discrepancy

Reference analysis techniques are based on information theory, and in partic-
ular on the concept of intrinsic discrepancy between probability densities:

The intrinsic discrepancy between two probability densities p1 and p2 is:

δ{p1, p2} = min

Z
dx p1(x) ln

p1(x)

p2(x)
,

Z
dx p2(x) ln

p2(x)

p1(x)

ff
,

provided one of the integrals is finite. The intrinsic discrepancy between
two parametric models for x,

M1 = {p1(x |φ), x ∈ X , φ ∈ Φ} and M2 = {p2(x |ψ), x ∈ X , ψ ∈ Ψ},

is the minimum intrinsic discrepancy between their elements:

δ{M1,M2} = inf
φ,ψ

δ{p1(x |φ), p2(x |ψ)}.
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Intrinsic Discrepancy

Properties of the intrinsic discrepancy:

• δ{p1, p2} is symmetric, non-negative, and vanishes if and only if
p1(x) = p2(x) almost everywhere.

• δ{p1, p2} is invariant under one-to-one transformations of x.

• δ{p1, p2} is information-additive: the discrepancy for a set of n
independent observations is n times the discrepancy for one
observation.

• The intrinsic discrepancy δ{M1,M2} between two parametric families
of distributions does not depend on their parametrizations.

• The intrinsic discrepancy δ{M1,M2} is the minimum expected
log-likelihood ratio in favor of the model which generates the data.

• The intrinsic discrepancy δ{p1, p2} is a measure, in natural information
units, of the minimum amount of expected information required to
discriminate between p1 and p2.
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Missing Information

The expected intrinsic information I{p(θ) |M} from one observation of

M≡ {p(x | θ), x ∈ X , θ ∈ Θ}

about the value of θ when the prior density is p(θ), is:

I{p(θ) |M} = δ{p(x, θ), p(x) p(θ)},

where p(x, θ) = p(x | θ) p(θ) and p(x) =
R
dθ p(x | θ) p(θ).

The stronger the prior knowledge described by p(θ), the smaller the informa-
tion the data may be expected to provide. Conversely, weak initial knowledge
about θ corresponds to large expected information from the data.

Consider the intrinsic information about θ, I{p(θ) |Mk}, which could be ex-
pected from making k independent observations from M. As k increases, the
true value of θ would become precisely known. Thus, as k →∞, I{p(θ) |Mk}
measures the amount of missing information about θ which corresponds to the
prior p(θ). For large k one can show that

I{p(θ) |Mk} = Ex

»Z
dθ p(θ |x) ln

p(θ |x)
p(θ)

–
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Reference Priors for One-Parameter Models

Let P be a class of sufficiently regular priors that are compatible with whatever
“objective” initial information one has about the value of θ.

The reference prior is then defined to be that prior function π(θ) =
π(θ |M,P) which maximizes the missing information about the value of
θ within the class P of candidate priors.

If the parameter space is finite and discrete, Θ = {θ1, . . . , θm}, the missing
information is simply the entropy of the prior distribution, −

Pm
i=1 p(θi) ln p(θi),

and one recovers the prior proposed by Jaynes for this case.

In the continuous case however, I{p(θ) |Mk} diverges as k → ∞, and refer-
ence priors must be defined with a special limiting procedure:
π(θ) = π(θ |M,P) is a reference prior for model M given P if, for some
increasing sequence {Θi}∞i=1 with limi→∞Θi = Θ and

R
Θi
π(θ) dθ <∞,

lim
k→∞

h
I{πi |Mk} − I{pi |Mk}

i
≥ 0 for all Θi, for all p ∈ P,

where πi(θ) and pi(θ) are the renormalized restrictions of π(θ) and p(θ) to
Θi.
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Some Properties of Reference Priors

• In the definition, the limit k →∞ is not an approximation, but an
essential part of the definition, since the reference prior maximizes the
missing information, which is the expected discrepancy between prior
knowledge and perfect knowledge.

• Reference priors only depend on the asymptotic behavior of the model,
which greatly simplifies their derivation. For example, in one-parameter
models and under appropriate regularity conditions to guarantee
asymptotic normality, the reference prior is simply Jeffreys’ prior:

π(θ) ∝ i(θ)1/2, where i(θ) = −
Z
X
dx p(x | θ) ∂2

∂θ2
ln p(x | θ).

• Reference priors are independent of sample size.
• Reference priors are compatible with sufficient statistics and consistent

under reparametrization, due to the fact that the expected information is
invariant under such transformations.

• Reference priors do not represent subjective belief and should not be
interpreted as prior probability distributions. In fact, they are often
improper. Only reference posteriors have a probability interpretation.
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Reference Priors in the Presence of Nuisance Parameters

Suppose the statistical model is p(x | θ, λ), where θ is of interest and λ is a
nuisance parameter. We need a joint reference prior π(θ, λ). The algorithm is
sequential and based on the decomposition π(θ, λ) = π(λ | θ) π(θ):

1 Apply the one-parameter reference algorithm to obtain the conditional
reference prior π(λ | θ).

2 Derive the one-parameter integrated model:

p(x | θ) =

Z
Λ

dλ p(x | θ, λ) π(λ | θ)

3 Apply the one-parameter reference algorithm again, this time to p(x | θ),
and obtain the marginal reference prior π(θ).

Note that step 2 will not work if π(λ | θ) is improper (p(x | θ) will not be normal-
izable). The solution in that case is to introduce a sequence {Λi}∞i=1 of subsets
of Λ that converges to Λ and such that π(λ | θ) is integrable over each Λi. The
integration at step 2 is then performed over Λi instead of Λ. This procedure
results in a sequence of posteriors {πi(θ |x)}∞i=1 and the desired reference
posterior is obtained as the limit of that sequence.
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Restricted Reference Priors

The definition of reference priors specifies that they must be taken from a
class P of priors that are compatible with whatever initial information is avail-
able. If there is no initial information, the class is labeled P0 and the prior is
unrestricted. Initial information can take several forms:

1 Constraints on parameter space.

2 Specified expected values.
Suppose that the initial information about θ is of the form E[gi(θ)] = βi,
for appropriately chosen functions gi, i = 1, . . . ,m. It can then be shown
that the reference prior π(θ |M,P) must be of the form:

π(θ |M,P) = π(θ |M,P0) exp

(
mX
i=1

λi gi(θ)

)
,

where the λi’s are constants determined by the constraints.

3 Subjective marginal prior.
Suppose the model depends on two parameters, θ1 and θ2, and the
subjective marginal π(θ1) is known. The reference conditional π(θ2 | θ1)
is then proportional to |Σ22(θ1, θ2)|1/2, where Σ22(θ1, θ2) is the per
observation Fisher information for θ2, given that θ1 is held fixed.
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Reference Priors: General Remarks

• Generalization of the reference algorithm from two to any number of
parameters is straightforward.

• Since the algorithm is sequential, it requires that the parameters be
ordered, say in order of inferential interest. In most applications it is
found that the order does not affect the result, but there are exceptions.

• A direct consequence of this sequential algorithm is that, within a single
model, it is possible to have as many reference priors as there are
possible parameters of interest. This is because a setup that maximizes
the missing information about a parameter θ will generally differ from a
setup that maximizes the missing information about a parameter η,
unless η is a one-to-one function of θ.

• The good news is that using different non-subjective priors for different
parameters of interest is the only way to avoid the marginalization
paradoxes.
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Example: a Poisson Process with Uncertain Mean

Consider the likelihood:

L(σ, ε, b |n) =
(b+ εσ)n

n!
e−b−εσ,

where the parameter of interest is σ (say a cross section), whereas ε (an
effective efficiency) and b (a background) are nuisance parameters.

Note that σ, ε, and b are not identifiable. This problem is usually addressed by
introducing a subjective prior for ε and b, say π(ε, b).

A common choice of prior for σ is π(σ) = 1 (improper!), the claim being that
this is noninformative. . . Whatever one may think of this claim, if the ε prior has
non-zero density at ε = 0 (such as a truncated Gaussian), the posterior will be
improper.
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Poisson Process with Uncertain Signal Efficiency

Bayesian upper limits at the 95% credibility level on a signal cross section σ,
as a function of the cutoff σmax on the flat prior for σ. The signal efficiency has
a truncated Gaussian prior.
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Reference Prior for the Poisson Problem

Assume we are given a subjective prior π(ε, b). We must therefore find the
conditional reference prior π(σ | ε, b). As described before, we start by calcu-
lating the Fisher information for σ given that ε and b are held fixed:

Σσσ = E
»
− ∂2

∂σ2
lnL

–
=

ε2

b+ εσ
,

which would suggest:
π(σ | ε, b) ∝ ε√

b+ εσ
.

This prior is improper however, requiring that it be renormalized using a se-
quence of nested compact sets in order to obtain the correct dependence
of π(σ | ε, b) on the nuisance parameters ε and b. With properly chosen
sets, it turns out that the renormalization procedure leaves the above prior
unchanged.
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Reference Posterior for the Poisson Problem

To fix ideas, let us consider a product of gamma densities for the subjective
prior π(ε, b):

π(ε, b) =
τ(τε)x−1/2 e−τε

Γ(x+ 1/2)

c(cb)y−1/2 e−cb

Γ(y + 1/2)
.

The σ-reference posterior is then:

π(σ |n) ∝
Z ∞

0

dε

Z ∞

0

db
(b+ εσ)n−1/2 e−b−εσ

n!

(τε)x+1/2 e−τε

Γ(x+ 1/2)

c(cb)y−1/2 e−cb

Γ(y + 1/2)
.

The integrals may seem daunting, but it is straightforward to design a Monte
Carlo algorithm that generates σ values from the posterior.
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Repeated Sampling Properties

The Poisson problem just considered involves both subjective and objective
priors, which complicates the checking of repeated sampling properties. There
are three possible ways to proceed:

1 Full Frequentist Ensemble
If the nuisance priors are posteriors from actual subsidiary
measurements, one can calculate the coverage with respect to an
ensemble in which all the parameters are kept fixed, while the
observations from both primary and subsidiary measurements are
fluctuated. In the Poisson example, the gamma priors can be derived as
reference posteriors from Poisson measurements, allowing this type of
coverage to be checked.

2 Restricted Frequentist Ensemble
More often, the nuisance priors incorporate information from simulation
studies, theoretical beliefs, etc., precluding a fully frequentist
interpretation. The only proper frequentist way to calculate coverage in
this case is to keep all the parameters fixed while fluctuating the
observation from the primary measurement.

3 Bayesian Averaged Frequentist Ensemble
Respect the Bayesian interpretation of the subjective priors, and
average the coverage over them.
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Coverage of Reference Bayes Poisson Upper Limits

Coverage of 90% credibility level reference Bayes upper limits on a signal
cross section σ, as a function of the true value of that cross section. The
coverage calculation was done according to a full frequentist ensemble (left)
and to a Bayesian averaged frequentist ensemble (right).
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Intrinsic Estimation and Intrinsic Credible Regions

The Bayesian outcome of a problem of inference is precisely the full posterior
distribution for the parameter of interest.

However, it is often useful and sometimes even necessary to summarize the
posterior distribution by providing a measure of location and quoting regions
of given posterior probability content.

The typical Bayesian approach formulates point estimation as a decision prob-
lem. Suppose that θ̂ is an estimate of the parameter θ, whose true value θt
is unknown. One specifies a loss function `(θ̂, θt), which measures the con-
sequence of using the model p(x | θ̂) instead of the true model p(x | θt). The
Bayes estimator θb = θb(x) of θ minimizes the posterior loss:

θb(x) = arg min
θ̂∈Θ

Z
Θ

dθ `(θ̂, θ) p(θ |x).

Some conventional loss functions are:

1 Squared error loss: `(θ̂, θt) = (θ̂ − θt)2 ⇒ θb is the posterior mean.

2 Zero-one loss: `(θ̂, θt) = 1− I[θt−ε,θt+ε](θ̂) ⇒ θb is the posterior mode.

3 Absolute error loss: `(θ̂, θt) = |θ̂ − θt| ⇒ θb is the posterior median.
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Intrinsic Estimation and Intrinsic Credible Regions
In physics, interest usually focuses on the actual mechanism that governs
the data. Therefore we need a point estimate that is invariant under one-to-
one transformations of the parameter and/or the data (including reduction to
sufficient statistics). Fortunately, we have already encountered a loss function
that will deliver such an estimate: the intrinsic discrepancy!

The intrinsic discrepancy between two probability densities p1 and p2 is:

δ{p1, p2} = min

Z
dx p1(x) ln

p1(x)

p2(x)
,

Z
dx p2(x) ln

p2(x)

p1(x)

ff
,

provided one of the integrals is finite. The intrinsic discrepancy between
two parametric models for x,

M1 = {p1(x |φ), x ∈ X , φ ∈ Φ} and M2 = {p2(x |ψ), x ∈ X , ψ ∈ Ψ},

is the minimum intrinsic discrepancy between their elements:

δ{M1,M2} = inf
φ,ψ

δ{p1(x |φ), p2(x |ψ)}.

This suggests setting `(θ̂, θt) = δ{θ̂, θt} ≡ δ{p(x | θ̂), p(x | θt)}.
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Intrinsic Estimation and Intrinsic Credible Regions

Let {p(x | θ), x ∈ X , θ ∈ Θ} be a family of probability models for some observ-
able data x. The intrinsic estimator minimizes the reference posterior expec-
tation of the intrinsic discrepancy:

θ?(x) = arg min
θ̂∈Θ

d(θ̂ |x) = arg min
θ̂∈Θ

Z
Θ

dθ δ{θ̂, θ} πδ(θ |x),

where πδ(θ |x) is the reference posterior when the intrinsic discrepancy is the
parameter of interest.
An intrinsic α-credible region is a subset R?α of the parameter space Θ such
that:

(i)

Z
R?

α

dθ π(θ |x) = α;

(ii) For all θi ∈ R?α and θj /∈ R?α, d(θi |x) ≤ d(θj |x).

Although the concepts of intrinsic estimator and credible region have been
defined here for reference problems, they can also be used in situations where
proper prior information is available.
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Example: Transverse Momentum Measurement

Consider the measurement of the transverse momentum of particles in a track-
ing chamber immersed in a magnetic field. The probability density is (approx-
imately) Gaussian in the inverse of the transverse momentum:

p(x |µ) =
e−

1
2

` 1/x−1/µ
σ

´2

√
2π σ x2

,

where x is the measured signed pT , µ is the true signed pT , and σ is a function
of the magnetic field strength and the chamber resolution.

It is easy to verify that a naive Bayesian analysis yields unreasonable results.
To begin with, “non-informative” priors such as π(µ) ∝ 1 or π(µ) ∝ 1/µ lead
to improper posteriors. The next choice, π(µ) ∝ 1/µ2, does lead to a proper
posterior, but the resulting HPD Bayes estimate of µ is bounded from above,
regardless of the measured value x! Similarly, HPD intervals always exclude
µ values above a certain threshold, with the consequence that their coverage
drops to zero above that threshold.

One would think that a reference analysis of this problem will yield a more
satisfactory solution due to its invariance properties.
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Example: Transverse Momentum Measurement

Left: posterior densities for 1/µ2 prior; Right: posterior mode versus observed
track momentum.
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Example: Transverse Momentum Measurement

Coverage probability of Highest Posterior Density intervals as a function of
true track momentum.
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Example: Transverse Momentum Measurement

A reference analysis of this problem can be done entirely analytically:

1 Intrinsic discrepancy:

δ{µ̂, µ} =
1

2

„
1/µ− 1/µ̂

σ

«2

.

2 Reference prior when µ is the quantity of interest: π(µ) ∝ 1/µ2.

3 Reference prior when δ is the quantity of interest. Since δ is a piecewise
one-to-one function of µ, this reference prior is also 1/µ2.

4 Reference posterior:

p(µ |x) =
e−

1
2

` 1/x−1/µ
σ

´2

√
2π σ µ2

.

5 Reference posterior expected intrinsic loss:

d(µ̂ |x) =
1

2
+

1

2

„
1/x− 1/µ̂

σ

«2

.
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Example: Transverse Momentum Measurement

Reference posterior expected intrinsic loss d(µ |x) (solid line), and reference
posterior density p(µ |x) (dashed line) for the problem of measuring transverse
momenta in a tracking chamber.
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Example: Transverse Momentum Measurement

The results of the reference analysis are as follows:

• The intrinsic estimate of µ, i.e. the value of µ that minimizes the
reference posterior expected intrinsic loss, is µ? = x.

• Minimum reference posterior expected intrinsic loss intervals have the
form:

If d <
1

2
+

1

2σ2x2
:

»
x

1 + σx
√

2d− 1
,

x

1− σx
√

2d− 1

–
,

If d =
1

2
+

1

2σ2x2
and x ≥ 0 :

hx
2
,+∞

i
,

If d =
1

2
+

1

2σ2x2
and x < 0 :

h
−∞, x

2

i
,

If d >
1

2
+

1

2σ2x2
:

h
−∞, x

1−σx
√

2d−1

i
∪

h
x

1+σx
√

2d−1
,+∞

i
,

where d is determined by the requirement of a specified posterior
probability content. Note that µ? is contained in all the intrinsic intervals.
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Reference Analysis and Hypothesis Testing

The usual Bayesian approach to hypothesis testing is based on Bayes factors.
Unfortunately this approach tends to fail when one is testing a precise null
hypothesis (H0 : θ = θ0) against a “vague” alternative (H1 : θ 6= θ0) (cfr.
Lindley’s paradox).

Reference analysis provides a solution to this problem by recasting it as a
decision problem with two possible actions:

1 a0: Accept H0 and work with p(x | θ0).

2 a1: Reject H0 and keep the unrestricted model p(x | θ).
The consequence of each action can be described by a loss function `(ai, θ),
but actually, only the loss difference ∆`(θ) = `(a0, θ) − `(a1, θ), which mea-
sures the advantage of rejecting H0 as a function of θ, needs to be specified.
Reference analysis uses the intrinsic discrepancy between the distributions
p(x | θ0) and p(x | θ) to define this loss difference:

∆`(θ) = δ{θ0, θ} − d?,

where d? is a positive constant measuring the advantage of being able to
work with the simpler model when it is true.
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Reference Analysis and Hypothesis Testing

Given available data x, the Bayesian reference criterion (BRC) rejects H0 if
the reference posterior expected intrinsic loss exceeds a critical value d?, i.e.
if:

d(θ0 |x) =

Z
Θ

dθ δ{θ0, θ} πδ(θ |x) > d?.

Properties of the BRC:
• As the sample size increases, the expected value of d(θ0 |x) under

sampling tends to one when H0 is true, and tends to infinity otherwise;
• The interpretation of the intrinsic discrepancy in terms of the minimum

posterior expected likelihood ratio in favor of the true model provides a
direct calibration of the required critical value d?:

d∗ ≈ ln(10) ≈ 2.3 : �mild evidence against H0�;

d∗ ≈ ln(100) ≈ 4.6 : �strong evidence against H0�;

d∗ ≈ ln(1000) ≈ 6.9 : �very strong evidence against H0�.

• In contrast with frequentist hypothesis testing, the statistic d is measured
on an absolute scale which remains valid for any sample size and any
dimensionality.
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Summary of Reference Analysis Ideas

• Noninformative priors have been studied for a long time and most of
them have been found defective in more than one way. Reference
analysis arose from this study as the only general method that produces
priors that have the required invariance properties, deal successfully
with the marginalization paradoxes, and have consistent sampling
properties.

• Reference priors should not be interpreted as probability distributions
expressing subjective degree of belief; instead, they help answer the
question of what could be said about the quantity of interest if one’s prior
knowledge were dominated by the data.

• Reference analysis also provides methods for summarizing the posterior
density of a measurement. Intrinsic point estimates, credible intervals,
and hypothesis tests have invariance properties that are essential for
scientific inference.

• There exist numerical algorithms to compute reference priors, and the
CMS statistics committee hopes to implement one of these for general
use.
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