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Introduction




Introduction — Multivariate Data
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Introduction — General Approaches

Two general approaches:

Machine Learning

Given training data T = (y, xX) = (), X)1,-.-(, X)y» @
function space { f }, and a constraint on these functions,
teach a machine to learn the mapping y = 1 (x).

Bayesian Learning

Given training data 7, a function space{ f }, the
likelthood of the training data, and a prior defined on the
space of functions, infer the mapping y = 1 (x).




Machine Learning

Choose
Function space F={f(x,w)}

Constraint C F
Loss function™ L ﬁ\
S x, w*)

Method
Find f (x) by minimizing the empirical risk R(w)
subject to the constraint

RU, 1= 2 L0 (0 Con)

*The loss function measures the cost of choosing badly




Machine Learning

Many methods (e.g., neural networks, boosted decision trees,
rule-based systems, random forests,...) use the

quadratic loss

L(y,f(x,w)) — [y_ f(xaw)]z

and choose f (x, w*) by minimizing the
constrained mean square empirical risk
1 N

RUf1= 5 200 = S, wF +COw)




Bayesian Learning

Choose
Function space F={f(x,w)}
Likelihood p(T | w), T=(,x)
Loss function L
Prior p(w)

Method

Use Bayes’ theorem to assign a probability (density)

pw |T)=p(T | w) p(w) / p(T)
=py | x, w)plx|w) p(w)/ p(y|x)p(x)
~p(y | x, w) p(w) (assuming p(x | w) = p(x))

to every function 1n the function space.




Bayesian Learning

Given, the posterior density p(w | T), and new data x one
computes the (predictive) distribution

p(y1%.T)=[ p(y]x.w)p(w|T)dw

If a definite value for y 1s needed for every x, this can be
obtained by minimizing the (risk) function,

RIf,1=| L(y./)p(y|x.T)dy

which for L = (y — f')? approximates f (x) by the average

fx)=5x,T)= [ yp(y|x.T)dy




Bayesian Learning

Suppose that y has only two values 0 and 1, for every x, then

fx)=[yp(y|x,T)dy
reduces to

f(x)=p(|x,T)
where y = 1 1s associated with objects to be kept and y =0
with objects to be discarded. For example, 1n an e-mail filter,
we can reject junk e-mail using the (complement of the) rule

if p(1|x, T) > q accept x

which 1s called the Bayes classifier

10



Classification
In Theory




Classification: Theory

A Signal density
p(x, s) = plx | s) p(s)

Background density
p(x, s) = p(x | s) p(s)

density
p (x)

Optimality criterion: minimize the error rate, o + 3
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Classification: Theory

The total loss L arising from classification errors is given by

L=1L, | H( ) p(x,b)dx Cqst of b.ackg.round
v misclassification
+ L |[1- H(f)]p(x,s)dx  Cost of signal
: misclassification

where f (x) = 0 defines a decision boundary
such that f (x) > 0 defines the acceptance region

H(f) 1s the Heaviside step function:
H(f) =11t£> 0, 0 otherwise

13



Classification: Theory

1-D example

L= LbJH(x —x,)p(x,b)dx + LSJ[I — H(x—x,)]p(x,s)dx
Minimizing the total loss L with respect to the boundary x,

L, _ pGpss) _| p(xy|9) | p(s)

leads to the result: =
L p(x,,b) | p(x,1b) | p(b)

The quantity in brackets 1s just the likelihood ratio. The
result, in the context of hypothesis testing (with p(s) = p())),
1s called the Neyman-Pearson lemma (1933)

14



Classification: Theory

The ratio

plx,s) _ p(s|x) _ )
b plblo) B(x), p(s|x)= p(x,s)/ p(x)

p(b[x)= p(x,b)/ p(x)

is called the Bayes discriminant because of its close
connection to Bayes’ theorem:

B _ e PI9)p(s)
1+ B(x) p(x|$)p(s)+ p(x | b)p(b)

15



Classification: The Bayes Connection

Consider the mean squared risk in the limit N— infinity,

Zlyvm%wn+cwo

ejﬁjwu £GP p(y,x)
= [dx po)| [y (y= 17 p(y1%)|

where we have written p(y | x) = p(y, x) / p(x) and where we
have assumed that the effect of the constraint (in this limait)
1s negligible.

16



Classification: The Bayes Connection

Now minimize the functional R| /] with respect to /. If the
function f1s sufficiently flexible, then R[ /] will reach its
absolute minimum. Then for any small change 0 f in f

SRLS1=2[dx p(x)Sf]| [dv(y= /)p(y]x)|=0

If we require the above to hold for all variations o f, for all x,
then the term 1n brackets must be zero.

[dv(y=Fp(y]x)=0

17



Classification: The Bayes Connection

Since for the signal class s, y = 1, while for the background, b,
y = 0, we obtain the important result:

f=[ypy|x)dy=pd|x)= p(s|x)

See, Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990);
Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);
Richard and Lippmann, Neural Computation. 3, 461-483 (1991)

In summary:
1. Given sufficient training data T and

2. a sufficiently flexible function £ (x, w), then f (x, w) will
approximate p(s | x), if y =1 1s assigned to objects of class
s and y = 0 1s assigned to objects of class b

18



Classification: The Discriminant

In practice, we typically do not use p(s | x) directly, but rather
the discriminant

Dy =PI exp(h)

- p(x|s)+ p(x]b)  L+exp(d)
where A(x)=In[p(x|s)/ p(x|b)]

This 1s fine because p(s | x) 1s a one-to-one function of D(x)
and therefore both have the same discrimination power

D(x)

P10 = po s a= ) o)

19



Classification
In Practice




Classification: In Practice

Here 1s a short list of multivariate (MVA) methods that can
be used for classification:

®* Random Grid Search

® Fisher Discriminant

® Quadratic Discriminant

® Naive Bayes (Likelithood Discriminant)
® Kernel Density Estimation
® Support Vector Machines
® Binary Decision Trees

® Neural Networks

° Bayesian Neural Networks
® RuleFit

®* Random Forests

21



Illustrative Example




Example — H to ZZ to 4 Leptons

Signal Background
| q £
£
- Y
p
dg / Z/y"
Px q I
pp—H —>ZZ — 07000 pp —ZZ — 001

We shall use this example to illustrate a few of the methods.
We start with p(s) / p(b) ~ 1 /20 and use x = (m,,, m,,)
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A 4-Lepton Event from CMS

CMS Experiment at LHC, CERN

Data recorded: Thu Oct 13 03:39:46 2011 CEST
Run/Event: 178421 / 87514902
Lumi section: 86

(Z,) Ep:8 GeV

7 TeV DATA

44 +7Y Mass: 126.1 GeV A

UHZ,) pr:6GeV
U(Z,) pr: 14 GeV

U*Z,) pr: 67 GeV

24



Random Grid Search




Random Grid Search (RGS)

Take each point of
the signal class as
a cut-point
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Example — H to ZZ to 4Leptons

s 1 | | | | < 150
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The red point gives p(s | x) / p(b | x)~1/1
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Linear & Quadratic Discriminants




Fisher (Linear) Discriminant

B(x)=

p(x|s)p(s)  Takeplx|s)andplx|D)tobe
Gaussian (and dropping the

P (x | b )p (b) constant term) yields

AMx) =

G(x

n)

nG(x

>W-X+¢C

i, )

29



Quadratic Discriminant

If we use different covariance matrices for the signal and the
background densities, we obtain the quadratic discriminant:

Ax) = (= 11,) 5 (x = 11,
—(x—p) T (x -

a fixed value of which defines a curved
surface that partitions the space {x}
into signal-rich and background-rich

regions

0O decision
boundary

30



Naive Bayes
(Likelihood Ratio Discriminant)




Naive Bayes

In this method the d-dimensional density p(x) 1s replaced
by the approximation

d
p(x)=]]a(x)
i=1
where ¢(x.) are the 1-D marginal densities of

p(x)
g(x)= | p(x)dx
{xj ij -'/—')Cl.}

32



Naive Bayes

The naive Bayes estimate of D(x) 1s given by

exp(A)

Dlx)= 1+ exp(i) ,

A= Inlg(x,|5)/ 4(x, [ b)]

In spite of its name, this method can sometimes provide very
good results.

And, of course, if the variables truly are statistically
independent then this approximation is expected to be
good.

33



Kernel Density Estimation




Kernel Density Estimation

Basic Idea

Place a kernel function at each point and adjust their
widths to obtain the best approximation

Parzen Estimation (1960s)

1 X—X
— L 1<n<N
p(x) N §n,¢( . ) n

Mixtures

p(x)=2 o(x.)q(j)  j<<N

35



Kernel Density Estimation
Why does it work? In the limit N goes to infinity

1 X—x, | . X—z
p<x>=ﬁ2¢( p j / Jqp( p jp@dz

the true density p(x) will be recovered provided that the
kernel converges to a d-dimensional o-function:

go[x_hx” j 507 (x—2z)

36



KDE of Signal and Background
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PART II
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Support Vector Machines




Support Vector Machines

This 1s a generalization of the Fisher discriminant (Boser,
Guyon and Vapnik, 1992).

Basic Idea

Data that are non-separable in d-dimensions may be better
separated 1f mapped into a space of higher (usually,
infinite) dimension

h: R >R

As 1n the Fisher discriminant, a hyper-plane 1is used to
partition the high dimensional space

f(x)=w-h(x)+c

40



Support Vector Machines

Consider separable data 1n the high dimensional space
oreen plane: wh(x)+c= 0

red plane:
blue plane:

w.h(x,)+c=+1
wh(x,)tc=-1

subtract blue from red
w.Lh(x,) — hx,)] =2

and normalize the high dimensional

vector w
W.[h(x,) = h(x,)] = 2/||w]

41



Support Vector Machines

The quantity m = w.[A(x,) — h(x,)], the distance between the red
and blue planes, 1s called the margin. The best separation occurs
when the margin 1s as large as possible.

Note: because m ~ 1/||w|],
maximizing the margin 1is
equivalent to minimizing

[l

42



Support Vector Machines

Label the red dots y = +1 and the blue dots y =—1. The task 1s to
minimize ||w||* subject to the constraint

y.whx)+c)=1, 1=1...N
® @

that 1s, the task 1s to minimize

2
L(w,c,00) = %HWH

—iai[yi(w-h(xi)+c)—l]

where the a0>0 are Lagrange multipliers

43



Support Vector Machines

When L(w,c,o0) 1s minimized with respect to w and ¢, the function
L(w,c,at) can be transformed to

E(a)= Zoc ——220505 v.yh(x)-h(x))

11]1

At the mmimum of E(«), the only non-zero coefficients « are
those corresponding to points on the red and blue planes: that 1s,
the so-called support vectors. The key 1dea is to replace the
scalar product /(x;).h(x;) between two vectors of infinitely many
dimensions by a kernel function K(x, x;). The (unsolved)
problem 1s how to choose the correct kernel for a given problem?
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Neural Networks




Neural Networks

Given
T=x,y

X=X XN Y= AV INS
of N training examples

Find
Find a function f (x, w), with parameters w, using
maximum likelihood

46



Neural Networks

A typical likelihood for classification 1s
p(y | x, w) =1L n(x, w)¥ [1 —n(x, w) ]y

where y = 0 for background events (e.g, junk e-mail)
y =1 for signal events (e.g., “good” e-mail)

As noted in the previous lecture, IF n(x, w) 1s sufficiently
flexible, then the maximum likelihood solution for w 1s
n(x, w) = p(s | x), asymptotically, that 1s, as we acquire
more and more data

47



Historical Aside — Hilbert’s 13t Problem

Problem 13: Prove the conjecture

In general, 1t 1s impossible to do the following:
f(xb‘ : ‘9xn) - F( gl(xl)ﬁ’ e gn(xn) )

But, in 1957, Kolmogorov disproved Hilbert’s conjecture!

Today, we know that functions of the form
I

H
J(x,,x,) = a+2bj tanh| ¢, + 2 d .x,

Jii

j=1 i i=1
can provide arbitrarily accurate approximations.
(Hornik, Stinchcombe, and White,

Neural Networks 2, 359-366 (1989))

48



NN — Graphical Representation

H
i f(x,w)=a+2bj tanh| c, +Zdﬂ.xi
j=1 '

n(x,w)=

1+exp[—f(x,w)]

n(x, w)

f 1s used for regression
n 18 used for classification
w=a,b,c,d

49
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Decision Trees




Decision Trees

.. . root node
A decision tree 1s ( Q))
a sequence of if then else 82
statements, that 1s, cuts <O NT Hits? ch11d node
. B 2
Basic 1dea: choose cuts that 37/4 \._11/48 /

partition the space {x} into
regions of increasing purity
and do so recursively

leaf node

MiniBoone, Byron Roe
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Decision Trees

Geometrically, a decision tree 200 B B
is simply a d-dimensional fx)=0 1 Ax)=1
histogram whose bins are
constructed recursively

|
e

0 B

B =
S =

|
To each bin we associate the 100 9 =39
value of the function f'(x) to f(x) =
be approximated.

This provides a piecewise
constant approximation of B =37

f (). S=4

PMT Hits

S

E GeV
MiniBoone, Byron Roe 0 nergy (GeV) 0.4




Decision Trees

For each variable find the best
cut, defined as the one that
yields the biggest

decrease 1n 1mpurity
= Impurity (parent bin)
— Impurity (“left”-bin)
— Impurity (“right”-bin)

Then choose the best cut among
these cuts, partition the space,
and repeat with each child bin

200

100

PMT Hits

0

fx)=0 | fix)=1

B=10 B=1

S=9 S =39
fix)=0

B =137

S=4

0 Energy (GeV) 0.4
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Decision Trees

The most common impurity 200
measure 1s the Gini index
(Corrado Gini, 1912):

Impurity =p (1 — p)

where 100
p=8S/(S+B) z

E

) ° F

p =0 or 1 = maximal purity >
=3

p=0.5 = maximal impurity

S

fx)=0 | fix)=1
B=10 B=1
S=9 S =39
fix)=0
B =37
S=4
0 Energy (GeV) 0.4
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Ensemble Methods




Ensemble Methods

Suppose that you have a collection of discriminants f (x, w,),
which, individually, perform only marginally better than
random guessing.

It 1s possible to build from such discriminants (weak learners)
highly effective ones by averaging over them:

f(x)=a, +Zakf<x, w, )

Jeromme Friedman & Bogdan Popescu (2008)

57



Ensemble Methods

The most popular methods (used mostly with decision trees) are:

°* Bagging:

® Random Forest:

° Boosting:

each tree trained on a bootstrap
sample drawn from training set

bagging with randomized trees

each tree trained on a different
weighting of full training set

58



Adaptive Boosting

Repeat K times:

1.
2.
3.
4. Modify training set: increase weight of incorrectly

Create a decision tree f (x, w)
Compute 1ts error rate € on the weighted training set
Compute =1In (1-¢)/ €

classified examples relative to the weights of those
that are correctly classified

Then compute weighted average f(x) = > o, f(x, wy)

Y. Freund and R.E. Schapire.
Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

59
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First 100 Decision Trees

| 1 | | | | | | I 1 1 | 1
0 50 100 150
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Averaging over a Forest

50 lrees 100 trees

my, 1GeV)
my, 1GeV)

m, (GeV)

m, 1GeV)
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error rate

error rate vs number of trees

Error Rate vs Number of Trees
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Example — H to ZZ to 4Leptons
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Bayesian Neural Networks




Bayesian Neural Networks

Given

pw | T) =p(T"| w) p(w) / p(T)
over the parameter space of the functions

n(x, w)=1/[1+exp(—f (x, w))]

one can estimate p(s | x) as follows

p(s | X) ~n(x) =] n(x, w) p(w | 7) dw

n(x) is called a Bayesian Neural Network (BNN)
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Bayesian Neural Networks

Generate Sample

N points {w} from p(w | 7) using a Markov chain Monte
Carlo (MCMC) technique (see talk by Glen Cowan) and

average over the last M points
n(x) = n(x, w) p(w | 7) dw

~Y n(x, w) / M

67



Example — H to ZZ to 4Leptons

Dots P
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Modeling Response Functions

Consider the observed jet p; spectrum:

fobs(pT | V,C()) — JR(PT | Z,V,w)f(z | V,C())dZ

In order to avoid unfolding, we need to publish the response
function,

R(p; | z,v,m)

and the prior
m(v,0)

The latter can be supplied as a sample of points (v, @) over
which one would average. But what of the response
function?
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Modeling Response Functions

The response function can be written as

R(p; | z,v,0)= p(p;,z,v,0)/ p(z,V,0)

Therefore, 1n principle, it could be modeled as follows:

1. Build a discriminant D between the original events and
the events 1n which the jet p 1s replaced by a value
sampled from a known distribution u(p)

2. Approximate R using
R(p; 1 2,v,0) = u(p,;)D /(1 - D)
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Summary

® Multivariate methods can be applied to many aspects of
data analysis.

® Many practical methods, and convenient tools such as
TMVA, are available for regression and classification.

® All methods approximate the same mathematical entities,
but no one method 1s guaranteed to be the best in all
circumstances. So, just as 1s true of statistical methods, it 1s
good practice to experiment with a few of them!
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MV A Tutorials

1. Download (the 25M!) file tutorials.tar.gz from

http://www .hep.fsu.edu/~harry/INFNSOS2013
2. Unpack

tar zxv{ tutorials.tar.gz

3. Check

cd tutorials-cowan
python expFit.py
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