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Two general approaches: 

 Machine Learning 
  Given training data T = (y, x) = (y, x)1,…(y, x)N, a 
function space { f  }, and a constraint on these functions, 
teach a machine to learn the mapping y = f (x). 

 Bayesian Learning 
  Given training data T, a function space{ f  }, the  
likelihood of the training data, and a prior defined on the 
space of functions, infer the mapping  y = f (x). 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

   

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi ,w))

i=1

N

∑

*The loss function measures the cost of choosing badly 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  
 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained mean square empirical risk 

  L( y, f (x,w)) = [y − f (x,w)]2

  
R[ fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)
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Given, the posterior density p(w | T),  and new data x one 
computes the (predictive) distribution  

If a definite value for y is needed for every x, this can be 
obtained by minimizing the (risk) function, 

which for L = (y – f )2 approximates f (x) by the average 
  
R[ fw] = L( y, f ) p( y | x,T ) dy∫

   
f (x)  y(x,T ) ≡ y p( y | x,T ) dy∫
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Suppose that y has only two values 0 and 1, for every x, then 

reduces to 

where y = 1 is associated with objects to be kept and y = 0  
with objects to be discarded. For example, in an e-mail filter, 
we can reject junk e-mail using the (complement of the) rule 

which is called the Bayes classifier 

    

  
f (x) = y p( y | x,T ) dy∫

  f (x) = p(1 | x, T )

if p(1 | x, T) > q accept x 
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Optimality criterion: minimize the error rate, α + β


Background density 
p(x, s) = p(x | s) p(s) 

Signal density 
p(x, s) = p(x | s) p(s) 

x 

de
ns

ity
 

   
p 

(x
) 

x0 

β

α
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The total loss L arising from classification errors is given by 

  

L = Lb H ( f ) p(x,b) dx∫
+ Ls [1− H ( f )] p(x,s) dx∫

where f (x) = 0 defines a decision boundary 
such that f (x) > 0 defines the acceptance region 

H(f ) is the Heaviside step function:  
   H(f )  = 1 if f > 0, 0 otherwise 

Cost of background 
misclassification 
Cost of signal 
misclassification 
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L = Lb H (x − x0 ) p(x,b) dx∫ + Ls [1− H (x − x0 )]p(x,s) dx∫

1-D example 

Minimizing the total loss L with respect to the boundary x0 

  

Lb

Ls

=
p(x0 ,s)
p(x0 ,b)

=
p(x0 | s)
p(x0 | b)

⎡

⎣
⎢

⎤

⎦
⎥

p(s)
p(b)

leads to the result: 

The quantity in brackets is just the likelihood ratio. The 
result, in the context of hypothesis testing (with p(s) = p(b)),  
is called the Neyman-Pearson lemma (1933) 
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B(x)
1+ B(x)

= p(s | x) = p(x | s) p(s)
p(x | s) p(s) + p(x | b) p(b)

The ratio 

  

p(x,s)
p(x,b)

= p(s | x)
p(b | x)

≡ B(x), p(s | x) = p(x,s) / p(x)

                                             p(b | x) = p(x,b) / p(x)
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Consider the mean  squared risk in the limit N     infinity, 

where we have written p(y | x) = p(y, x) / p(x) and where we 
have assumed that the effect of the constraint (in this limit) 
is negligible. 

  

R[ f ] = 1
N

[yi − f (xi , w)]2

i=1

N

∑ + C(w)

→ dx∫ dy[y − f (x, w)]2 p( y,x)∫
= dx p(x)∫ dy ( y − f )2 p( y | x)∫⎡⎣ ⎤

⎦

→
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Now minimize the functional R[ f ] with respect to f. If the 
function f is sufficiently flexible, then R[ f ] will reach its 
absolute minimum. Then for any small change δ f  in f  

If we  require the above to hold for all variations δ f, for all x, 
then the term in brackets must be zero.  

  
δR[ f ] = 2 dx p(x)∫ δ f dy ( y − f ) p( y | x)∫⎡⎣ ⎤

⎦ = 0

  
dy ( y − f ) p( y | x)∫ = 0
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Since for the signal class s, y = 1, while for the background, b,  
y = 0, we obtain the important result: 

See,   Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); 
  Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);   
  Richard and Lippmann, Neural Computation. 3, 461-483 (1991) 

In summary: 
1.  Given sufficient training data T and 
2.  a sufficiently flexible function f (x, w), then f (x, w) will 

approximate p(s | x), if y = 1 is assigned to objects of class 
s and y = 0 is assigned to objects of class b 

  
f = y p( y | x)∫ dy = p(1 | x) ≡ p(s | x)
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In practice, we typically do not use p(s | x) directly, but rather 
the discriminant 

This is fine because p(s | x) is a one-to-one function of D(x) 
and therefore both have the same discrimination power 

  

D(x) = p(x | s)
p(x | s) + p(x | b)

= exp(λ)
1+ exp(λ)

,

                     where  λ(x) ≡ ln[ p(x | s) / p(x | b)]

  
p(s | x) = D(x)

D(x) + [1− D(x)] / a
, a = p(s) / p(b)





Here is a short list of multivariate (MVA) methods that can 
be used for classification:  
h Random Grid Search 
h Fisher Discriminant 
h Quadratic Discriminant 
h Naïve Bayes (Likelihood Discriminant) 
h Kernel Density Estimation 
h Support Vector Machines 
h Binary Decision Trees 
h Neural Networks 
h Bayesian Neural Networks 
h RuleFit 
h Random Forests 
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pp→ H → ZZ→ +− ′ + ′ −

Signal 

 
pp→ ZZ→ +− ′ + ′ −

Background 

We shall use this example to illustrate a few of the methods. 
We start with p(s) / p(b) ~ 1 / 20 and use x = (mZ1, mZ2) 

mZ1

mZ2
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Si
gn

al
 fr
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tio

n 

Background fraction 

0 
0 

1 

1 

Ntot  = # events before cuts 
Ncut  = # events after cuts 
Fraction  = Ncut/Ntot 

x > xi ,   y > yi

H.B.P. et al., Proceedings, CHEP 1995 
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The red point gives p(s | x) / p(b | x) ~ 1 / 1 
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λ(x) = ln

G x | µs ,Σ( )
G x | µb ,Σ( ) → w ⋅ x + c

Take p(x | s) and p(x | b) to be  
Gaussian (and dropping the  
constant term) yields 

w ⋅ x + c > 0

w ⋅ x + c < 0

  
B(x) = p(x | s) p(s)

p(x | b) p(b)

w ∝ Σ−1(µs − µb )

decision boundary 



If we use different covariance matrices for the signal and the 
background densities, we obtain the quadratic discriminant: 

    

    a fixed value of  which defines a curved 
   surface that partitions the space {x}  
   into signal-rich and background-rich  
   regions 
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λ(x) = (x − µb )T Σb
−1(x − µb )

− (x − µs )
T Σs

−1(x − µs )

decision 
boundary 
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In this method the d-dimensional density p(x) is replaced  
by the approximation 

  
p̂(x) = q(xi )

i=1

d

∏
where q(xi) are the 1-D marginal densities of  
p(x) 

  

q(xi ) = p(x
x j : x j ≠ xi{ }
∫ )dx
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The naïve Bayes estimate of D(x) is given by 

In spite of its name, this method can sometimes provide very 
good results.  

And, of course, if the variables truly are statistically 
independent then this approximation is expected to be 
good.  

  
D(x) = exp(λ̂)

1+ exp(λ̂)
, λ̂ = ln[q(xi | s) / q(xi | b)]

i
∑
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Basic Idea 
 Place a kernel function at each point and adjust their 
widths to obtain the best approximation 

Parzen Estimation (1960s) 

Mixtures 
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Why does it work? In the limit N  goes to infinity 

the true density p(x) will be recovered provided that the 
kernel converges to a d-dimensional δ-function: 
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3000 points / KDE 
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f (x) = w ⋅h(x) + c

  h :ℜd →ℜ∞
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Consider separable data in the high dimensional space 
    green plane:  w.h(x) + c =   0 
    red plane:  w.h(x1)+ c = +1 
    blue plane:  w.h(x2)+ c = – 1 

    subtract blue from red 
    w.[h(x1) – h(x2)] = 2 
    
    and normalize the high dimensional 
    vector w    
    ŵ.[h(x1) – h(x2)] = 2/||w|| 

h(x1) 

h(x2) 

w 



42 

h(x1) 

h(x2) 

w 
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Label the red dots y = +1 and the blue dots y = –1. The task is to 
minimize ||w||2 subject to the  constraint 

   yi (w.h(xi) + c) ≥ 1,  i = 1 … N 

   that is, the task is to minimize 

 x1 

x2 

w 

  

L(w,c,α ) = 1
2 w

2

− α i yi w ⋅ h(xi ) + c( ) −1⎡⎣ ⎤⎦
i=1

N

∑
where the α > 0 are Lagrange multipliers 
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When L(w,c,α) is minimized with respect to w and c, the function 
L(w,c,α) can be transformed to 

At the minimum of E(α), the only non-zero coefficients α are 
those corresponding to points on the red and blue planes: that is, 
the so-called support vectors. The key idea is to replace the 
scalar product h(xi).h(xj) between two vectors of infinitely many 
dimensions by a kernel function K(xi, xj). The (unsolved) 
problem is how to choose the correct kernel for a given problem? 
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Problem 13: Prove the conjecture 
 In general, it is impossible to do the following: 
  f(x1,…,xn) = F( g1(x1),…, gn(xn) ) 

But, in 1957, Kolmogorov disproved Hilbert’s conjecture! 
Today, we know that functions of the form 

can provide arbitrarily accurate approximations. 
(Hornik, Stinchcombe, and White,  

Neural Networks 2, 359-366 (1989))   

   
f (x1,,xI ) = a + bj tanh cj + d jixi

i=1

I

∑⎡

⎣
⎢

⎤

⎦
⎥

j=1

H

∑
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f (x,w) = a + bj tanh cj + djixi
i=1

I

∑⎡
⎣⎢

⎤
⎦⎥j=1

H

∑

n(x, w) 

x1 

x2 

cj 

a 

f  is used for regression 
n is used for classification 
w = a, b, c, d 

bj 
dji 
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pp→ H → ZZ→ +− ′ + ′ −

Signal 

 
pp→ ZZ→ +− ′ + ′ −

Background 
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A decision tree is 
a sequence of if then else 
statements, that is, cuts 

Basic idea: choose cuts that  
partition the space {x} into  
regions of increasing purity 
and do so recursively 

root node 

leaf node 

MiniBoone, Byron Roe 

child node 
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MiniBoone, Byron Roe 

0 
0 0.4 
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Energy (GeV) 
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B = 10 
S = 9  

B = 37 
S = 4 

B =  1 
S = 39 

f(x) = 0 f(x) = 1 

f(x) = 0 
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For each variable find the best 
cut, defined as the one that 
yields the biggest  

decrease in impurity 
 = Impurity (parent bin)  
 – Impurity (“left”-bin) 

  – Impurity (“right”-bin) 

Then choose the best cut among 
these cuts, partition the space, 
and repeat with each child bin 0 

0 0.4 

200 

Energy (GeV) 

PM
T 

H
its

 

100 

B = 10 
S = 9  

B = 37 
S = 4 

B =  1 
S = 39 

f(x) = 0 f(x) = 1 

f(x) = 0 
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The most common impurity 
measure is the Gini index 
(Corrado Gini, 1912): 

Impurity = p (1 – p) 
where 

 p = S / (S + B) 

p = 0 or 1 = maximal purity 
p = 0.5      = maximal impurity 

0 
0 0.4 

200 

Energy (GeV) 

PM
T 

H
its

 

100 

B = 10 
S = 9  

B = 37 
S = 4 

B =  1 
S = 39 

f(x) = 0 f(x) = 1 

f(x) = 0 
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Suppose that you have a collection of discriminants f (x, wk), 
which, individually, perform only marginally better than 
random guessing. 

It is possible to build from such discriminants (weak learners) 
highly effective ones by averaging over them:  

Jeromme Friedman & Bogdan Popescu (2008) 
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The most popular methods (used mostly with decision trees) are: 

h Bagging:   each tree trained on a bootstrap 
    sample drawn from training set 

h Random Forest:  bagging with randomized trees 

h Boosting:   each tree trained on a different 
    weighting of full training set 
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Y. Freund and R.E. Schapire. 
Journal of Computer and  Sys. Sci. 55 (1), 119 (1997) 
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pp→ H → ZZ→ +− ′ + ′ −

Signal 

 
pp→ ZZ→ +− ′ + ′ −

Background 

200 trees with  
a minimum of  
100 counts 
per bin (leaf) 
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Consider the observed jet pT spectrum: 

In order to avoid unfolding, we need to publish the response 
function, 

 and the prior 

The latter can be supplied as a sample of points (ν, ω) over 
which one would average. But what of the response 
function?    

69 

fobs (pT |ν,ω ) = R(pT | z,ν,ω ) f (∫ z |ν,ω )dz

R(pT | z,ν,ω )

π (ν,ω )



The response function can be written as 

Therefore, in principle, it could be modeled as follows: 
1.  Build a discriminant D between the original events and 

the events in which the jet pT is replaced by a value 
sampled from a known distribution u(pT) 

2.  Approximate R using 

70 

R(pT | z,ν,ω ) = p(pT , z,ν,ω ) / p(z,ν,ω )

 
R(pT | z,ν,ω )  u(pT )D / (1− D)
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h Multivariate methods can be applied to many aspects of 
data analysis. 

h Many practical methods, and convenient tools such as 
TMVA, are available for regression and classification.  

h All methods approximate the same mathematical entities, 
but no one method is guaranteed to be the best in all 
circumstances. So, just as is true of statistical methods, it is 
good practice to experiment with a few of them! 
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1.  Download (the 25M!) file tutorials.tar.gz from 

 http://www.hep.fsu.edu/~harry/INFNSOS2013 

2.  Unpack 

 tar zxvf tutorials.tar.gz 

3.  Check 

 cd tutorials-cowan 
 python expFit.py 


