)
INFN

L/ Geant4

!'_ Generation of a primary event

Luciano Pandola
INFN-LNGS

Queen’s University, Belfast (UK), January 22, 2013

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

*Outline

= Primary vertex and primary particle

s G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

i User Classes

Initialisation classes Action classes
Invoked at the initialization | Invoked during the execution loop

= G4VUserDetectorConstruction | G4VUserPrimaryGen@
s G4VUserPhysicsList = G4UserRunAction

s G4UserEventAction

s G4UserTrackingAction
s G4UserStackingAction
s G4UserSteppingAction

G4RunManager:: G4RunManager::
SetUserInitialization() SetUserAction()

i G4VUserPrimaryGeneratorAction

= [t is one of the mandatory user classes and it
controls the generation of primary particles

= This class does not directly generate primaries
but invokes the GeneratePrimaryVertex() method
of a generator to create the initial state

= It registers the primary particle(s) to the G4Event
object

s [t has GeneratePrimaries (G4Event*)
method which is purely virtual, so it must be
implemented in the user class

G4VUserPrimaryGeneratorAction:
i the usual recipe

s Constructor

= Instantiate primary generator (i.e. G4AParticleGun ())
particleGun = new G4ParticleGun
(n_particle);

« (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(l.0*GeV) ;

= GeneratePrimaries() mandatory method
= Randomize particle-by-particle value
= Set these values to the primary generator

» Invoke GeneratePrimaryVertex() method of primary
generator
= particleGun->GeneratePrimaryVertex ()

26 //
27 // $1d: G4VUserPrimaryGeneratorAction.hh,v 1.5 2006/06/29 21:13:38 gunter Exp $
28 // GEANT4 tag $Name: geant4-09-03-patch-02 $

29 //

S

31 #ifndef G4VUserPrimaryGeneratorAction_h
32 #define G4VUserPrimaryGeneratorAction_h 1

[}
et
[«]
wn
wn

class description:

This is the abstract base class of the user's mandatory action class
for primary vertex/particle generation. This class has only one pure
virtual method GeneratePrimaries() which is invoked from G4RunManager
during the event loop.
Note that this class is NOT intended for generating primary vertex/particle
by itself. This class should
- have one or more G4VPrimaryGenerator concrete classes such as G4ParticleGun
- set/change properties of generator(s)
- pass G4Event object so that the generator(s) can generate primaries.

e e e e e e e
NN N N N N NN NNNN

lass G4VUserPrimaryGeneratorAction

~ N

public:
G4VUserPrimaryGeneratorAction();
virtual ~G4VUserPrimaryGeneratorAction();

public:
virtual void GeneratePrimaries(G4Event* ankEvent) = @;

ERELEEREEEEREGREREEBEREREBELRE

|

*Outline

s G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

i G4VPrimaryGenerator

s GAVPrimaryGenerator is the base class for particle
generators, that are called by GeneratePrimaries

(G4Event*) to produce an initial state

= Notice: you may have many particles from one vertex, or even many
vertices in the initial state

= Derived class from G4VPrimaryGenerator must
implement the purely virtual method
GeneratePrimaryVertex ()

= Geant4 provides three concrete classes derived by

GAVPrimaryGenerator
s G4ParticleGun

= G4HEPEvtInterface

« G4GeneralParticleSource

G4ParticleGun

= (Simplest) concrete implementation of
G4AVPrimaryGenerator

» It can be used for experiment specific primary
generator implementation

= It shoots one primary particle of a given energy
from a given point at a given time to a given
direction

= Various "Set” methods are available (see ../source/
event/include/G4ParticleGun.hh)

void SetParticleEnerqgy (G4double aKineticEnerqgy) ;
void SetParticleMomentum (G4double aMomentum) ;

void SetParticlePosition (G4ThreeVector aPosition) ;
void SetNumberOfParticles (G4int aHistoryNumber) ;

*Outline

B Interfaces to HEPEVT and HEPMC

i G4HEPEvtInterface

= Concrete implementation of G4VPrimaryGenerator

= Almost all event generators in use are written in
FORTRAN but Geant4 does not link with any external
FORTRAN code

= Geant4 provides an ASCII file interface for such event
generators

= GAHEPEvtInterface reads an ASCII file produced by
aB Event generator and reproduce the G4PrimaryParticle
objects.

= In particular it reads the /JHEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

= It generates only the kinematics of the initial state, so
does the interaction point must be still set by the User

*Outline

B General Particle Source (or GPS)

12

i G4GeneralParticleSource()

source/event/include/G4GeneralParticleSource.hh
= Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4AVPrimaryGenerator

= Is designed to replace the G4ParticleGun class

= [tis designed to allow specification of multiple particle sources each
with independent definition of particle type, position, direction and
energy distribution

= Primary vertex can be randomly chosen on the surface of a certain
volume

= Momentum direction and kinetic energy of the primary particle can also
be randomised

= Distribution defined by UI commands

i G4GeneralParticleSource

= On line manual: http://
reat.space.ginetiq.com/gps/

= /gps main command
» /gps/pos/type (planar, point, etc.)
= /gps/ang/type (iso, planar wave, etc.)

» /gps/enerqgy/type (monoenergetic, linear, User
defined)

|

Square plane

3000 r
2000
1000 |
o L
Source Eng|
-2 }
_4- :__-l l 11 1 l 11 1
—4 -2z
Source X—

_'] llllllll

0 100

Source ¢os(thet

Spherical surfq

400080
30030
20060

10060

3000 |
2000 S—
1000 E—
0 g I B
5
Source Ene
-2 ;
= :_.I...I...
-4 =z
Source X—]

0 100

Source ¢os{thet

15

Cylindrical surface, cosine-law radiation, Cosmic diffuse

energy

lllllllllllllll

¢4 086 0.8 1

0 1
0.2

Source Energy Spectrum
10

o
IIIIIIIIIIIIIllIIl

_Illllllllllllllllll

—-10 -3 O o 10

Source X—Z distribution

300

0 100 200

Source ¢os(theta)—phi distribution

10
>

G

-5

IIIIIIIIIIIIIIIIIII

__'lo llllllllllllll[llll
—10 -5 0] 3 10

Source X—Y distribution
10

[au]
IIIIIIIIIIIIIIIIIII

lIIIIIlllIIIIIIlllI

—-10 -5 0 S 10

Source Y—Z distribution

156

100

ot

0 100

Source theta/phi distribution

ParticleGun vs. GPS

= G4ParticleGun olf you need to shot primary
. Simple and native particles from a surface of a

. complicated volume (outward or
= Shoots one track at a time T W= Ty
= Easy to handle

s G4GeneralParticleSource olf you need a complicated

= Powerful distribution, GPS is the choice
= Controlled by UI commands
= G4GeneralParticleSourceMessenger.hh
= Almost impossible to do with the naive Set methods

= capability of shooting particles from a surface or a
volume

« Capability of randomizing kinetic energy, position,
direction following a user-specified distribution
(histogram)

i Examples

» examples/extended/analysis/A01/
src/AO0lPrimaryGeneratorAction.cc IS
a good example to start with

= Examples also exist for GPS
examples/extended/eventgenerator/

exgps
s And for HEPEvtInterface

example/extended/runAndEvent/REQ01/
src/REO1PrimaryGeneratorAction.cc

A summary: what to do and

i where to do

= In the constructor of your UserPrimaryGeneratorAction
= Instantiate G4ParticleGun
= Set default values by Set methods of G4ParticleGun:
= Particle type, kinetic energy, position and direction
= In your macro file or from your interactive terminal session
= Set values for a run
= In the GeneratePrimaries () method

= Shoot random numbers and prepare the values of
= Kinetic energy, position, direction
» Use set methods of G4ParticleGun to set such values

= Then invoke GeneratePrimaryVertex() method of
G4ParticleGun

= If you need more than one primary track per event, loop over
randomisation and GeneratePrimaryVertex ()

