
Generation of a primary event

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 22, 2013

  Primary vertex and primary particle

  G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

  The particle gun

  Interfaces to HEPEVT and HEPMC

  General Particle Source (or GPS)

  Particle gun or GPS?

Outline

User Classes

G4RunManager::
 SetUserInitialization()

G4RunManager::
 SetUserAction()

G4VUserPrimaryGeneratorAction

  It is one of the mandatory user classes and it
controls the generation of primary particles
  This class does not directly generate primaries

but invokes the GeneratePrimaryVertex() method
of a generator to create the initial state

  It registers the primary particle(s) to the G4Event
object

  It has GeneratePrimaries(G4Event*)
method which is purely virtual, so it must be
implemented in the user class

G4VUserPrimaryGeneratorAction:
the usual recipe

  Constructor
  Instantiate primary generator (i.e. G4ParticleGun())
particleGun = new G4ParticleGun
(n_particle);

  (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(1.0*GeV);

  GeneratePrimaries() mandatory method
  Randomize particle-by-particle value
  Set these values to the primary generator
  Invoke GeneratePrimaryVertex() method of primary

generator
  particleGun->GeneratePrimaryVertex()

  Primary vertex and primary particle

  G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

  The particle gun

  Interfaces to HEPEVT and HEPMC

  General Particle Source (or GPS)

  Particle gun or GPS?

Outline

G4VPrimaryGenerator

  G4VPrimaryGenerator is the base class for particle
generators, that are called by GeneratePrimaries
(G4Event*) to produce an initial state
  Notice: you may have many particles from one vertex, or even many

vertices in the initial state

  Derived class from G4VPrimaryGenerator must
implement the purely virtual method
GeneratePrimaryVertex()

  Geant4 provides three concrete classes derived by
G4VPrimaryGenerator

  G4ParticleGun
  G4HEPEvtInterface
  G4GeneralParticleSource

G4ParticleGun
  (Simplest) concrete implementation of
G4VPrimaryGenerator
  It can be used for experiment specific primary

generator implementation
  It shoots one primary particle of a given energy

from a given point at a given time to a given
direction

  Various “Set” methods are available (see ../source/
event/include/G4ParticleGun.hh)

void SetParticleEnergy(G4double aKineticEnergy);
void SetParticleMomentum(G4double aMomentum);
void SetParticlePosition(G4ThreeVector aPosition);
void SetNumberOfParticles(G4int aHistoryNumber);

  Primary vertex and primary particle
  Built-in primary particle generators

 The particle gun
 Interfaces to HEPEVT and HEPMC
 General Particle Source (or GPS)

  Particle gun or GPS?

Outline

  Concrete implementation of G4VPrimaryGenerator
  Almost all event generators in use are written in

FORTRAN but Geant4 does not link with any external
FORTRAN code
  Geant4 provides an ASCII file interface for such event

generators
  G4HEPEvtInterface reads an ASCII file produced by

an Event generator and reproduce the G4PrimaryParticle
objects.

  In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

  It generates only the kinematics of the initial state, so
does the interaction point must be still set by the User

G4HEPEvtInterface

12

  Primary vertex and primary particle
  Built-in primary particle generators

 The particle gun
• Interfaces to HEPEVT and HEPMC

 General Particle Source (or GPS)

  Particle gun or GPS?

Outline

  source/event/include/G4GeneralParticleSource.hh
  Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4VPrimaryGenerator

  Is designed to replace the G4ParticleGun class
  It is designed to allow specification of multiple particle sources each

with independent definition of particle type, position, direction and
energy distribution
  Primary vertex can be randomly chosen on the surface of a certain

volume
  Momentum direction and kinetic energy of the primary particle can also

be randomised

  Distribution defined by UI commands

G4GeneralParticleSource()

G4GeneralParticleSource

  On line manual: http://
reat.space.qinetiq.com/gps/

  /gps main command
  /gps/pos/type (planar, point, etc.)
  /gps/ang/type (iso, planar wave, etc.)
  /gps/energy/type (monoenergetic, linear, User

defined)
 

15

ParticleGun vs. GPS
  G4ParticleGun

  Simple and native
  Shoots one track at a time
  Easy to handle

  G4GeneralParticleSource
  Powerful
  Controlled by UI commands

  G4GeneralParticleSourceMessenger.hh
  Almost impossible to do with the naïve Set methods

  capability of shooting particles from a surface or a
volume

  Capability of randomizing kinetic energy, position,
direction following a user-specified distribution
(histogram)

Examples

  examples/extended/analysis/A01/
src/A01PrimaryGeneratorAction.cc is
a good example to start with

  Examples also exist for GPS
examples/extended/eventgenerator/
exgps

  And for HEPEvtInterface
example/extended/runAndEvent/RE01/
src/RE01PrimaryGeneratorAction.cc

A summary: what to do and
where to do

  In the constructor of your UserPrimaryGeneratorAction
  Instantiate G4ParticleGun
  Set default values by Set methods of G4ParticleGun:

  Particle type, kinetic energy, position and direction

  In your macro file or from your interactive terminal session
  Set values for a run

  In the GeneratePrimaries() method
  Shoot random numbers and prepare the values of

  kinetic energy, position, direction
  Use set methods of G4ParticleGun to set such values
  Then invoke GeneratePrimaryVertex() method of

G4ParticleGun
  If you need more than one primary track per event, loop over

randomisation and GeneratePrimaryVertex()

