
Generation of a primary event

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 22, 2013

  Primary vertex and primary particle

  G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

  The particle gun

  Interfaces to HEPEVT and HEPMC

  General Particle Source (or GPS)

  Particle gun or GPS?

Outline

User Classes

G4RunManager::
 SetUserInitialization()

G4RunManager::
 SetUserAction()

G4VUserPrimaryGeneratorAction

  It is one of the mandatory user classes and it
controls the generation of primary particles
  This class does not directly generate primaries

but invokes the GeneratePrimaryVertex() method
of a generator to create the initial state

  It registers the primary particle(s) to the G4Event
object

  It has GeneratePrimaries(G4Event*)
method which is purely virtual, so it must be
implemented in the user class

G4VUserPrimaryGeneratorAction:
the usual recipe

  Constructor
  Instantiate primary generator (i.e. G4ParticleGun())
particleGun = new G4ParticleGun
(n_particle);

  (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(1.0*GeV);

  GeneratePrimaries() mandatory method
  Randomize particle-by-particle value
  Set these values to the primary generator
  Invoke GeneratePrimaryVertex() method of primary

generator
  particleGun->GeneratePrimaryVertex()

  Primary vertex and primary particle

  G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

  The particle gun

  Interfaces to HEPEVT and HEPMC

  General Particle Source (or GPS)

  Particle gun or GPS?

Outline

G4VPrimaryGenerator

  G4VPrimaryGenerator is the base class for particle
generators, that are called by GeneratePrimaries
(G4Event*) to produce an initial state
  Notice: you may have many particles from one vertex, or even many

vertices in the initial state

  Derived class from G4VPrimaryGenerator must
implement the purely virtual method
GeneratePrimaryVertex()

  Geant4 provides three concrete classes derived by
G4VPrimaryGenerator

  G4ParticleGun
  G4HEPEvtInterface
  G4GeneralParticleSource

G4ParticleGun
  (Simplest) concrete implementation of
G4VPrimaryGenerator
  It can be used for experiment specific primary

generator implementation
  It shoots one primary particle of a given energy

from a given point at a given time to a given
direction

  Various “Set” methods are available (see ../source/
event/include/G4ParticleGun.hh)

void SetParticleEnergy(G4double aKineticEnergy);
void SetParticleMomentum(G4double aMomentum);
void SetParticlePosition(G4ThreeVector aPosition);
void SetNumberOfParticles(G4int aHistoryNumber);

  Primary vertex and primary particle
  Built-in primary particle generators

 The particle gun
 Interfaces to HEPEVT and HEPMC
 General Particle Source (or GPS)

  Particle gun or GPS?

Outline

  Concrete implementation of G4VPrimaryGenerator
  Almost all event generators in use are written in

FORTRAN but Geant4 does not link with any external
FORTRAN code
  Geant4 provides an ASCII file interface for such event

generators
  G4HEPEvtInterface reads an ASCII file produced by

an Event generator and reproduce the G4PrimaryParticle
objects.

  In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

  It generates only the kinematics of the initial state, so
does the interaction point must be still set by the User

G4HEPEvtInterface

12

  Primary vertex and primary particle
  Built-in primary particle generators

 The particle gun
• Interfaces to HEPEVT and HEPMC

 General Particle Source (or GPS)

  Particle gun or GPS?

Outline

  source/event/include/G4GeneralParticleSource.hh
  Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4VPrimaryGenerator

  Is designed to replace the G4ParticleGun class
  It is designed to allow specification of multiple particle sources each

with independent definition of particle type, position, direction and
energy distribution
  Primary vertex can be randomly chosen on the surface of a certain

volume
  Momentum direction and kinetic energy of the primary particle can also

be randomised

  Distribution defined by UI commands

G4GeneralParticleSource()

G4GeneralParticleSource

  On line manual: http://
reat.space.qinetiq.com/gps/

  /gps main command
  /gps/pos/type (planar, point, etc.)
  /gps/ang/type (iso, planar wave, etc.)
  /gps/energy/type (monoenergetic, linear, User

defined)
 

15

ParticleGun vs. GPS
  G4ParticleGun

  Simple and native
  Shoots one track at a time
  Easy to handle

  G4GeneralParticleSource
  Powerful
  Controlled by UI commands

  G4GeneralParticleSourceMessenger.hh
  Almost impossible to do with the naïve Set methods

  capability of shooting particles from a surface or a
volume

  Capability of randomizing kinetic energy, position,
direction following a user-specified distribution
(histogram)

Examples

  examples/extended/analysis/A01/
src/A01PrimaryGeneratorAction.cc is
a good example to start with

  Examples also exist for GPS
examples/extended/eventgenerator/
exgps

  And for HEPEvtInterface
example/extended/runAndEvent/RE01/
src/RE01PrimaryGeneratorAction.cc

A summary: what to do and
where to do

  In the constructor of your UserPrimaryGeneratorAction
  Instantiate G4ParticleGun
  Set default values by Set methods of G4ParticleGun:

  Particle type, kinetic energy, position and direction

  In your macro file or from your interactive terminal session
  Set values for a run

  In the GeneratePrimaries() method
  Shoot random numbers and prepare the values of

  kinetic energy, position, direction
  Use set methods of G4ParticleGun to set such values
  Then invoke GeneratePrimaryVertex() method of

G4ParticleGun
  If you need more than one primary track per event, loop over

randomisation and GeneratePrimaryVertex()

